Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
ГлавнаяРезультаты поиска
СтатьяИскать документыПерейти к записи. 2024 Дек. 04; Т. 5, № 3: 407–420. DOI:10.17816/DD626310
Ограничения при применении сервисов искусственного интеллекта для анализа рентгенограмм органов грудной клетки
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Аффилированные организации
[1]Искать документыПерейти к записи
Аннотация

Обоснование. Одним из первых направлений в лучевой диагностике, в котором искусственный интеллект начал применяться и активно применяется по сей день, является рентгенография органов грудной клетки. Тем не менее при интерпретации этих исследований с помощью технологий искусственного интеллекта врачи-рентгенологи до сих пор ежедневно сталкиваются с рядом ограничений, которые приходится учитывать при вынесении врачебного заключения и на которые необходимо обратить внимание разработчиков с целью дальнейшего усовершенствования алгоритмов для повышения их эффективности.

Цель. Выявление ограничений при применении сервисов искусственного интеллекта для анализа рентгенограмм органов грудной клетки и оценка клинической значимости этих ограничений.

Материалы и методы. Проведён ретроспективный анализ 155 случаев расхождения результатов заключений сервисов искусственного интеллекта с врачебными заключениями при анализе рентгенограмм органов грудной клетки. Все включённые в исследование случаи были получены из Единого радиологического информационного сервиса Единой медицинской информационно-аналитической системы г. Москвы.

Результаты. Среди проанализированных 155 случаев расхождений 48 (31,0[%]) оказались ложноположительными, а 78 (50,3[%]) — ложноотрицательными. Остальные 29 (18,7[%]) случаев были исключены из дальнейшего исследования, поскольку при экспертном пересмотре оказались истинно положительными (27) или истинно отрицательными (2). Среди 48 ложноположительных случаев большинство (93,8[%]) было обусловлено тем, что сервис искусственного интеллекта принимал за признаки пневмоторакса нормальные анатомические структуры грудной клетки (97,8[%] случаев) или тень катетера (2,2[%] случаев). Среди ложноотрицательных исследований доля пропусков клинически значимой патологии составила 22,0[%]. Почти половина этих случаев (44,4[%]) была связана с пропуском лёгочных узлов. Самой распространённой клинически не значимой патологией оказались кальцинаты в лёгких (60,9[%]).

Заключение. Со стороны сервисов искусственного интеллекта прослеживается тенденция к гипердиагностике. Все ложноположительные случаи были связаны с ошибочным обнаружением клинически значимой патологии: пневмоторакса, лёгочных узлов и лёгочного затемнения. Среди ложноотрицательных случаев доля пропуска клинически значимой патологии была невелика и составила менее одной четвёртой.

Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Çallı E., Sogancioglu E., van Ginneken B., et al. Deep learning for chest X-ray analysis: A survey // Medical Image Analysis. 2021. Vol. 72. P. 102125. doi: 10.1016/j.media.2021.102125.
DOI: 10.1016/j.media.2021.102125

Васильев Ю.А., Тыров И.А., Владзимирский А.В., и др. Новая модель организации массовых профилактических исследований, основанная на автономном искусственном интеллекте для сортировки результатов флюорографии // Здоровье населения и среда обитания. 2023. Т. 31, № 11. С. 23–32. doi: 10.35627/2219-5238/2023-31-11-23-32.
DOI: 10.35627/2219-5238/2023-31-11-23-32

Akhter Y., Singh R., Vatsa M. AI-based radiodiagnosis using chest X-rays: A review // Frontiers in Big Data. 2023. Vol. 6. P. 1120989. doi: 10.3389/fdata.2023.1120989.
DOI: 10.3389/fdata.2023.1120989

Fanni S.C., Marcucci A., Volpi F., et al. Artificial Intelligence-Based Software with CE Mark for Chest X-ray Interpretation: Opportunities and Challenges // Diagnostics (Basel). 2023. Vol. 13, N 12. P. 2020. doi: 10.3390/diagnostics13122020.
DOI: 10.3390/diagnostics13122020

Гусев А.В., Владзимирский А.В., Шарова Д.Е., и др. Развитие исследований и разработок в сфере технологий искусственного интеллекта для здравоохранения в Российской Федерации: итоги 2021 года // Digital Diagnostics. 2022. Т. 3, № 3. С. 178–194. doi: 10.17816/DD107367.
DOI: 10.17816/DD107367

Kim J., Kim K.H. Role of chest radiographs in early lung cancer detection // Translational Lung Cancer Research. 2020. Vol. 9, N 3. P. 522–531. doi: 10.21037/tlcr.2020.04.02.
DOI: 10.21037/tlcr.2020.04.02

Голубев Н.А., Огрызко Е.В., Тюрина Е.М., и др. Особенности развития службы лучевой диагностики в Российской Федерации за 2014-2019 года // Современные проблемы здравоохранения и медицинской статистики. 2021. № 2. С. 356–376. doi: 10.24412/2312-2935-2021-2-356-376.
DOI: 10.24412/2312-2935-2021-2-356-376

Wu J.T., Wong K.C.L., Gur Y., et al. Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents // JAMA Network Open. 2020. Vol. 3, N 10. P. e2022779. doi: 10.1001/jamanetworkopen.2020.22779.
DOI: 10.1001/jamanetworkopen.2020.22779

Miró Catalina Q., Fuster-Casanovas A., Solé-Casals J., Vidal-Alaball J. Developing an Artificial Intelligence Model for Reading Chest X-rays: Protocol for a Prospective Validation Study // JMIR Research Protocols. 2022. Vol. 11, N 11. P. e39536. doi: 10.2196/39536.
DOI: 10.2196/39536

Plesner L.L., Müller F.C., Nybing J.D., et al. Autonomous Chest Radiograph Reporting Using AI: Estimation of Clinical Impact // Radiology. 2023. Vol. 307, N 3. P. e222268. doi: 10.1148/radiol.222268.
DOI: 10.1148/radiol.222268

Vasilev Yu., Vladzymyrskyy A., Omelyanskaya O., et al. AI-Based CXR First Reading: Current Limitations to Ensure Practical Value // Diagnostics (Basel). 2023. Vol. 13, N 8. P. 1430. doi: 10.3390/diagnostics13081430.
DOI: 10.3390/diagnostics13081430

Driver C.N., Bowles B.S., Bartholmai B.J., Greenberg-Worisek A.J. Artificial Intelligence in Radiology: A Call for Thoughtful Application // Clinical and Translational Science. 2020. Vol. 13, N 2. P. 216–218. doi: 10.1111/cts.12704.
DOI: 10.1111/cts.12704

Yoo H., Kim E.Y., Kim H., et al. Artificial intelligence-based identification of normal chest radiographs: a simulation study in a multicenter health screening cohort // Korean Journal of Radiology. 2022. Vol. 23, N 10. P. 1009–1018. doi: 10.3348/kjr.2022.0189.
DOI: 10.3348/kjr.2022.0189

Suganuma N., Yoshida S., Takeuchi Y., et al. Artificial intelligence in quantitative chest imaging analysis for occupational lung disease // Seminars in Respiratory and Critical Care Medicine. 2023. Vol. 44, N 3. P. 362–369. doi: 10.1055/s-0043-1767760.
DOI: 10.1055/s-0043-1767760

Brown C., Nazeer R., Gibbs A., et al. Breaking Bias: The role of artificial intelligence in improving clinical decision-making // Cureus. 2023. Vol. 15, N 3. P. e36415. doi: 10.7759/cureus.36415.
DOI: 10.7759/cureus.36415

Kaviani P., Kalra M.K., Digumarthy S.R., et al. Frequency of missed findings on chest radiographs (CXRs) in an international, multicenter study: application of AI to reduce missed findings // Diagnostics (Basel). 2022. Vol. 12, N 10. P. 2382. doi: 10.3390/diagnostics12102382.
DOI: 10.3390/diagnostics12102382

de Groot P.M., Carter B.W., Abbott G.F., Wu C.C. Pitfalls in chest radiographic interpretation: blind spots // Seminars in Roentgenology. 2015. Vol. 50, N. 3. P. 197–209. doi: 10.1053/j.ro.2015.01.008.
DOI: 10.1053/j.ro.2015.01.008

Gefter W.B., Post B.A., Hatabu H. Commonly missed findings on chest radiographs: causes and consequences // Chest. 2023. Vol. 163, N 3. P. 650–661. doi: 10.1016/j.chest.2022.10.039.
DOI: 10.1016/j.chest.2022.10.039

Компьютерное зрение в лучевой диагностике: первый этап Московского эксперимента / под ред. Ю.А. Васильева, А.В. Владзимирского. Москва: Издательские решения, 2022.

Морозов С.П., Буренчев Д.В., Владзимирский А.В, и др. Принципы и правила описаний результатов лучевых исследований. Серия «Лучшие практики лучевой и инструментальной диагностики». Вып. 97. Москва: Государственное бюджетное учреждение здравоохранения города Москвы «Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения города Москвы», 2021.

Choi Y.R., Yoon S.H., Kim J., et al. Chest Radiography of Tuberculosis: Determination of Activity Using Deep Learning Algorithm // Tuberculosis and Respiratory Diseases. 2023. Vol. 86, N 3. P. 226–233. doi: 10.4046/trd.2023.0020.
DOI: 10.4046/trd.2023.0020

Sun Z., Zhou J., Zhao L. Application status and problems summary of artificial intelligence in chest imaging // Asian Journal of Surgery. 2023. Vol. 46, N 10. P. 4437–4438. doi: 10.1016/j.asjsur.2023.04.100.
DOI: 10.1016/j.asjsur.2023.04.100

Bernstein M.H., Atalay M.K., Dibble E.H., et al. Can incorrect artificial intelligence (AI) results impact radiologists, and if so, what can we do about it? A multi-reader pilot study of lung cancer detection with chest radiography // European Radiology. 2023. Vol. 33, N 11. P. 8263–8269. doi: 10.1007/s00330-023-09747-1.
DOI: 10.1007/s00330-023-09747-1

Becker J., Decker J.A., Römmele C., et al. Artificial Intelligence-based detection of pneumonia in chest radiographs // Diagnostics (Basel). 2022. Vol. 12, N 6. P. 1465. doi: 10.3390/diagnostics12061465.
DOI: 10.3390/diagnostics12061465

Dasegowda G., Bizzo B.C., Gupta R.V., et al. Radiologist-trained AI model for identifying suboptimal chest-radiographs // Academic Radiology. 2023. Vol. 30, N 12. P. 2921–2930. doi: 10.1016/j.acra.2023.03.006.
DOI: 10.1016/j.acra.2023.03.006

Fanni S.C., Greco G., Rossi S., et al. Role of artificial intelligence in oncologic emergencies: a narrative review // Exploration of Targeted Anti-tumor Therapy. 2023. Vol. 4, N 2. P. 344–354. doi: 10.37349/etat.2023.00138.
DOI: 10.37349/etat.2023.00138

Hwang E.J., Goo J.M., Nam J.G., et al. Conventional versus artificial intelligence-assisted interpretation of chest radiographs in patients with acute respiratory symptoms in emergency department: a pragmatic randomized clinical trial // Korean Journal of Radiology. 2023. Vol. 24, N 3. P. 259–270. doi: 10.3348/kjr.2022.0651.
DOI: 10.3348/kjr.2022.0651

Tan H., Xu H., Yu N., et al. The value of deep learning-based computer aided diagnostic system in improving diagnostic performance of rib fractures in acute blunt trauma // BMC Medical Imaging. 2023. Vol. 23, N 1. P. 55. doi: 10.1186/s12880-023-01012-7.
DOI: 10.1186/s12880-023-01012-7

Wu J., Liu N., Li X., et al. Convolutional neural network for detecting rib fractures on chest radiographs: a feasibility study // BMC Medical Imaging. 2023. Vol. 23, N 1. P. 18. doi: 10.1186/s12880-023-00975-x.
DOI: 10.1186/s12880-023-00975-x

Lee H.W., Jin K.N., Oh S., et al. Artificial intelligence solution for chest radiographs in respiratory outpatient clinics: multicenter prospective randomized clinical trial // Annals of the American Thoracic Society. 2023. Vol. 20, N 5. P. 660–667. doi: 10.1513/AnnalsATS.202206-481OC.
DOI: 10.1513/AnnalsATS.202206-481OC

Hillis J.M., Bizzo B.C., Mercaldo S., et al. Evaluation of an artificial intelligence model for detection of pneumothorax and tension pneumothorax in chest radiographs // JAMA Network Open. 2022. Vol. 5, N 12. P. e2247172. doi: 10.1001/jamanetworkopen.2022.47172.
DOI: 10.1001/jamanetworkopen.2022.47172

Дополнительная информация
Язык текста: Русский
ISSN: 2712-8490
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/45562d4a44442d41525449434c452d363236333130/