El-Khuffash A, Jain A, Lewandowski AJ, Levy P. Preventing disease in the 21st century: Early breast milk exposure and later cardiovascular health in premature infants. Pediatr Res. 2020;87:385–390. DOI: 10.1038/s41390-019-0648-5..
DOI: 10.1038/s41390-019-0648-5
Vrselja A, Pillow JJ, Black MJ. Effect of preterm birth on cardiac and cardiomyocyte growth and the consequences of antenatal and postnatal glucocorticoid treatment. J Clin Med. 2021;10(17):3896. DOI: 10.3390/jcm10173896..
DOI: 10.3390/jcm10173896
Bates ML, Levy PT, Nuyt AM, Goss KN, Lewandowski AJ, McNamara PJ. Adult cardiovascular health risk and cardiovascular phenotypes of prematurity. J Pediatr. 2020;227:17–30. DOI: 10.1016/j.jpeds.2020.09.019..
DOI: 10.1016/j.jpeds.2020.09.019
Yubbu P, Kauffman H, Calderon-Anyosa R, Montero AE, Sato T, Matsubara D, Banerjee A. Peak apical recoil rate is a simplified index of left ventricular untwist: validation and application for assessment of diastolic function in children. Int J Cardiovasc. 2022;38:1505–1516. DOI: 10.1007/s10554-022-02587-y..
DOI: 10.1007/s10554-022-02587-y
Коваленко В.Н., Яблучанский Н.И. Диастола сердца (физиология, изменения при патологических состояниях). Вестник Харьковского национального университета им. В.Н. Каразина. Серия «Медицина». 2003;(6):5–14. EDN: SHKJMD.
Sabatino J, Castaldi B, Di Salvo G. How to measure left ventricular twist by two-dimensional speckle-tracking analysis. Eur Heart J Cardiovasc Imaging. 2021;229(9):961–963. DOI: 10.1093/ehjci/jeab108..
DOI: 10.1093/ehjci/jeab108
De Waal K, Costley N, Phad N, Crendal E. Left ventricular diastolic dysfunction and diastolic heart failure in preterm infants. Pediatr Cardiol. 2019;40(8):1709–1715. DOI: 10.1007/s00246-019-02208-x..
DOI: 10.1007/s00246-019-02208-x
Cohen ED, Yee M, Porter GA Jr, Ritzer E, McDavid AN, Brookes PS, Pryhuber GS, O'Reilly MA. Neonatal hyperoxia inhibits proliferation and survival of atrial cardiomyocytes by suppressing fatty acid synthesis. JCI Insight. 2021;6(5):e140785. DOI: 10.1172/jci.insight.140785..
DOI: 10.1172/jci.insight.140785
Tan CMJ, Lewandowski AJ. The transitional heart: From early embryonic and fetal development to neonatal life. Fetal Diagn Ther. 2020;47(5):406–419. DOI: 10.1159/000501906..
DOI: 10.1159/000501906
Zafra-Rodríguez P, Méndez-Abad P, Lubián-López SP, Benavente-Fernández I. NT-proBNP as an early marker of diastolic ventricular dysfunction in very-low-birth-weight infants. Pediatr Cardiol. 2019;40(6):1165–1170. DOI: 10.1007/s00246-019-02125-z..
DOI: 10.1007/s00246-019-02125-z
Shi Y, Ji J, Wang C. Exploring the NT-proBNP expression in premature infants with patent ductus arteriosus (PDA) by echocardiography. Pak J Med Sci. 2021;37(6):1615–1619. DOI: 10.12669/pjms.37.6-СТ.4853..
DOI: 10.12669/pjms.37.6-СТ.4853
Lapidaire W, Clark C, Fewtrell MS, Lucas A, Leeson P, Lewandowski AJ. The preterm heart-brain axis in young adulthood: The impact of birth history and modifiable risk factors. J Clin Med. 2021;10(6):1285. DOI: 10.3390/jcm10061285..
DOI: 10.3390/jcm10061285
Greer C, Troughton RW, Adamson PD, Harris SL. Preterm birth and cardiac function in adulthood. Heart. 2022;108(3):172–177. DOI: 10.1136/heartjnl-2020-318241..
DOI: 10.1136/heartjnl-2020-318241
Crump C, Howell EA, Stroustrup A, McLaughlin MA, Sundquist J, Sundquist K. Association of preterm birth with risk of ischemic heart disease in adulthood. JAMA Pediatr. 2019;173(8):736–743. DOI: 10.1001/jamapediatrics.2019.1327..
DOI: 10.1001/jamapediatrics.2019.1327
Crump C. Preterm birth and mortality in adulthood: A systematic review. J Perinatol. 2020;40(6):833–843. DOI: 10.1038/s41372-019-0563- у..
DOI: 10.1038/s41372-019-0563- у
Risnes K, Bilsteen JF, Brown P, Pulakka A, Andersen AMN, Opdahl S, Sandin S. Mortality among young adults born preterm and early term in 4 Nordic nations. JAMA Netw Open. 2021;4(1):e2032779–e2032779. DOI: 10.1001/jamanetworkopen.2020.32779..
DOI: 10.1001/jamanetworkopen.2020.32779
Sedmera D, Thompson RP, Campione M, Aranega A, Franco D, Miquerol L, Siekmann AF. Morphogenesis of cardiovascular structures: On form and function. Oxford: The ESC Textbook of Cardiovascular Development; 2018. 331 р.
Bussmann N, Afif EK, Breatnach CR, McCallion N, Franklin O, Singh GK, Levy PT. Left ventricular diastolic function influences right ventricular — pulmonary vascular coupling in premature infants. Early Hum Dev. 2019;128:35–40. DOI: 10.1016/j.earlhumdev.2018.11.006..
DOI: 10.1016/j.earlhumdev.2018.11.006
Phad N, de Waal K. Biplane left ventricular ejection fraction in preterm infants. Echocardiography. 2020;37(8):1265–271. DOI: 10.1111/echo.14784..
DOI: 10.1111/echo.14784
Lewandowski AJ, Augustine D, Lamata P, Davis EF, Lazdam M, Francis J, Smith NP. Preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation. 2013;127(2):197–206. DOI: 10.1161/CIRCULATIONAHA.112.126920..
DOI: 10.1161/CIRCULATIONAHA.112.126920
Lamata P, Lazdam M, Ashcroft A, Lewandowski AJ, Leeson P, Smith N. Computational mesh as a descriptor of left ventricular shape for clinical diagnosis. Computing in Cardiology. 2013;40:571–574.
Harris SL, Bray H, Troughton R, Elliott J, Frampton C, Horwood J, Darlow BA. Cardiovascular outcomes in young adulthood in a population-based very low birth weight cohort. J Pediatr. 2020;225:74–79. DOI: 10.1016/j.jpeds.2020.06.023..
DOI: 10.1016/j.jpeds.2020.06.023
Chang HY, Chang JH, Peng CC, Hsu CH, Ko MH, Hung CL, Chen MR. Subclinical changes in left heart structure and function at preschool age in very low birth weight preterm infants. Front Cardiovasc Med. 2022;9:879952–879952. DOI: 10.3389/fcvm.2022.879952..
DOI: 10.3389/fcvm.2022.879952
Erickson CT, Patel MD, Choudhry S, Bisselou KS, Sekarski T, Craft M, Levy PT. Persistence of right ventricular dysfunction and altered morphometry in asymptomatic preterm infants through one year of age: Cardiac phenotype of prematurity. Cardiol Young. 2019;29(7):945–953. DOI: 10.1017/S1047951119001161..
DOI: 10.1017/S1047951119001161
Phad NS, de Waal K, Holder C. Dilated hypertrophy: a distinct pattern of cardiac remodeling in preterm infants. Pediatr Res. 2020;87:146–152. DOI: 10.1038/s41390-019-0568-4..
DOI: 10.1038/s41390-019-0568-4
Mohlkert LA, Hallberg J, Broberg O, Sjöberg G, Rydberg A, Liuba P, Pegelow Halvorsen C. Right heart structure, geometry and function assessed by echocardiography in 6-year-old children born extremely preterm — A population-based cohort study. J Clin Med. 2020;10(1):122. DOI: 10.3390/jcm10010122..
DOI: 10.3390/jcm10010122
Lewandowski AJ, Bradlow WM, Augustine D, Davis EF, Francis J, Singhal A, Leeson P. Right ventricular systolic dysfunction in young adults born preterm. Circulation. 2013;128(7):713–720. DOI: 10.1161/CIRCULATIONAHA.113.002583..
DOI: 10.1161/CIRCULATIONAHA.113.002583
Mohamed A, Lamata P, Williamson W, Alsharqi M, Tan CM, Burchert H, Lewandowski AJ. Multimodality imaging demonstrates reduced right-ventricular function independent of pulmonary physiology in moderately preterm-born adults. JACC Cardiovasc Imaging. 2020;13(9):2046–2048. DOI: 10.1016/j.jcmg.2020.03.016..
DOI: 10.1016/j.jcmg.2020.03.016
Mohamed A, Lamata P, Williamson W, Alsharqi M, Tan CMJ, Burchert H, Lewandowski AJ. Right ventricular morphology and function analysis in moderately preterm-born young adults. Eur Heart J. 2020;41(2):ehaa946-0303. DOI: 10.1093/ehjci/ehaa946.0303..
DOI: 10.1093/ehjci/ehaa946.0303
Greer C, Harris SL, Troughton R, Adamson PD, Horwood J, Frampton C, Darlow BA. Right ventricular structure and function in young adults born preterm at very low birth weight. J Clin Med. 2021;10(21):4864. DOI: 10.3390/jcm10214864..
DOI: 10.3390/jcm10214864
Corrado PA, Barton GP, Macdonald JA, François CJ, Eldridge MW, Goss KN, Wieben O. Altered right ventricular filling at four-dimensional flow MRI in young adults born prematurely. Radiol Cardiothorac Imaging. 2021;3(3):e200618. DOI: 10.1148/ryct.2021200618..
DOI: 10.1148/ryct.2021200618
Abushaban L, Rathinasamy J, Sharma PN, Vel MT. Normal reference ranges for the left ventricular mass and left ventricular mass index in preterm infants. Ann Pediatr Cardiol. 2020;13(1):25. DOI: 10.4103/apc.APC_171_18..
DOI: 10.4103/apc.APC_171_18
Cox DJ, Bai W, Price AN, Edwards AD, Rueckert D, Groves AM. Ventricular remodeling in preterm infants: computational cardiac magnetic resonance atlasing shows significant early remodeling of the left ventricle. Pediatr Res. 2019;85(6):807–815. DOI: 10.1038/s41390-018-0171-0..
DOI: 10.1038/s41390-018-0171-0
Zaharie GC, Hăşmăşanu MG, Blaga L, Matyas M, Mureșan D, Bolboacă SD. Cardiac left heart morphology and function in newborns with intrauterine growth restriction: Relevance for long-term assessment. Med Ultrason. 2019;21(1):62–68. DOI: 10.11152/mu-1667..
DOI: 10.11152/mu-1667
Lewandowski AJ, Raman B, Bertagnolli M, Mohamed A, Williamson W, Pelado JL, Leeson P. Association of preterm birth with myocardial fibrosis and diastolic dysfunction in young adulthood. J Am Coll Cardiol. 2021;78(7):683–692 DOI: 10.1016/j.jacc.2021.05.053..
DOI: 10.1016/j.jacc.2021.05.053
Jimbo S, Noto N, Okuma H, Kato M, Komori A, Ayusawa M, Morioka I. Normal reference values for left atrial strains and strain rates in school children assessed using two-dimensional speckle-tracking echocardiography. Heart Vessels. 2020;35(9):1270–1280. DOI: 10.1007/s00380-020-01594-0..
DOI: 10.1007/s00380-020-01594-0
Hope KD, Wang Y, Banerjee MM, Montero AE, Pandian NG, Banerjee A. Left atrial mechanics in children: insights from new applications of strain imaging. Int J Cardiovasc Imaging. 2019;35:57–65. DOI: 10.1007/s10554-018-1429-7..
DOI: 10.1007/s10554-018-1429-7
De Waal K, Phad N, Boyle A. Left atrium function and deformation in very preterm infants with and without volume load. Echocardiography. 2018;35(11):1818–1826. DOI: 10.1111/echo.14140..
DOI: 10.1111/echo.14140
Kang SJ, Jung H, Hwang SJ, Kim HJ. Right atrial strain in preterm infants with a history of bronchopulmonary dysplasia. J Cardiovasc Imaging. 2022;30(2):112. DOI: 10.4250/jcvi.2021.0126..
DOI: 10.4250/jcvi.2021.0126
Aldana-Aguirre JC, Eckersley L, Hyderi A, Hirose A, Boom JVD, Kumaran K, Hornberger LK. Influence of extreme prematurity and bronchopulmonary dysplasia on cardiac function. Echocardiography. 2021;38(9):1596–1603. DOI: 10.1111/echo.15178..
DOI: 10.1111/echo.15178
Blanca AJ, Duijts L, van Mastrigt E, Pijnenburg MW, Ten Harkel DJD, Helbing WA, Koopman LP. Right ventricular function in infants with bronchopulmonary dysplasia and pulmonary hypertension: A pilot study. Pulm Circ. 2019;9(1):2045894018816063. DOI: 10.1177/2045894018816063..
DOI: 10.1177/2045894018816063
Yoshida-Montezuma Y, Stone E, Iftikhar S, De Rubeis V, Andreacchi AT, Keown-Stoneman C, Anderson LN. The association between late preterm birth and cardiometabolic conditions across the life course: A systematic review and meta-analysis. Paediat Perinat Epidemiol. 2022;36(2):264–275. DOI: 10.1111/ppe.12831..
DOI: 10.1111/ppe.12831
Bensley JG, Moore L, De Matteo R, Harding R, Black MJ. Impact of preterm birth on the developing myocardium of the neonate. Pediatr Res. 2018;83(4):880. DOI: 10.1038/pr.2017.324..
DOI: 10.1038/pr.2017.324
Knott MH, Haskell SE, Strawser PE, Rice OM, Bonthius NT, Movva VC, Roghair RD. Neonatal growth restriction slows cardiomyocyte development and reduces adult heart size. Anat Rec. 2018;301(8):1398–1404. DOI: 10.1002/ar.23851..
DOI: 10.1002/ar.23851
El-Khuffash A, McNamara PJ. Hemodynamic assessment and monitoring of premature infants. Clin Perinatol. 2017;44(2):377–393. DOI: 10.1016/j.clp.2017.02.001..
DOI: 10.1016/j.clp.2017.02.001
Кулида Л.В., Малышева М.В., Перетятко Л.П., Сарыева О.П., Проценко Е.В. Патоморфология гипоксически-ишемических повреждений миокарда у новорождённых 22–27 недель гестации. Архив патологии. 2021;83(4):29–34. DOI: 10.17116/patol20218304129..
DOI: 10.17116/patol20218304129
Марковский В.Д., Мирошниченко М.С., Плитень О.Н. Патоморфология сердца плодов и новорождённых при различных вариантах задержки внутриутробного развития. Перинатология и педиатрия. 2012;(2):75–77. EDN: TTKIWL.
Коркушко О.В. Современные представления о синдроме миокардиальной ишемии. Кровообіг та гемостаз. 2003;(1):8–17.
Рыбакова М.Г., Кузнецова И.А. Роль апоптоза в ишемическом повреждении миокарда. Архив патологии. 2005;67(5):23–25. EDN: HSSYJD.
Гаргин В.В., .В.интрансли М.С. Морфофункциональные особенности сердец у плодов и новорождённых с задержкой внутриутробного развития в сроке гестации 27–35 недель. Перинатология и педиатрия. 2010;(2):130–132. EDN: TUYRQD.
Шнитков А.М., Конкина Е.А., Шниткова Е.В. Структурно-функциональные особенности сердечно-сосудистой системы плодов и новорождённых при хронической плацентарной недостаточности. Вестник новых медицинских технологий. 2013;20(4):154–160. EDN: RSXGJL.
Марковский В.Д., Гаргин В.В., Мирошниченко М.С. Макроскопические и микроскопические особенности сердец плодов и новорождённых с задержкой внутриутробного развития в сроке гестации 36–41 недель. Клінічна анатомія та оперативна хірургія. 2010;(1):77–80.
Humberg A, Fortmann I, Siller B, Kopp MV, Herting E, Göpel W, Härtel C. Preterm birth and sustained inflammation: Consequences for the neonate. Semin Immunopathol. 2020;42:451. DOI: 10.1007/s00281-020-00803-2..
DOI: 10.1007/s00281-020-00803-2
Trainini J, Lowenstein J, Beraudo M, Wernicke M, Trainini A, Llabata VM, Carreras CF. Myocardial torsion and cardiac fulcrum. Morphologie. 2021;105(348):15. DOI: 10.1016/j.morpho.2020.06.010..
DOI: 10.1016/j.morpho.2020.06.010
Picazo-Angelin B, Zabala-Argüelles JI, Anderson RH, Sánchez-Quintana D. Anatomy of the normal fetal heart: The basis for understanding fetal echocardiography. Ann Pediatr Cardiol. 2018;11(2):164–173. DOI: 10.4103/apc.APC_152_17..
DOI: 10.4103/apc.APC_152_17
Кошарный В.В., Слободян А.Н., Абдул-Оглы Л.В., Козлов С.В., Демьяненко И.А., Дубовик К.И., Рутгайзер В.Г. Особенности формообразования стенки сердца и его пространственной ориентации на этапах пренатального онтогенеза. Днепр: «Середняк Т.К.»; 2017. 148 с.
Thornburg KL. The programming of cardiovascular disease. J Dev Orig Health Dis. 2015;6(5):366–376. DOI: 10.1017/S2040174415001300..
DOI: 10.1017/S2040174415001300
Radi R, Cassina A, Hodara R. Nitric oxide and peroxyntrite intereractions with mitochondria. Biol Chem. 2002;383:401–409.33. DOI: 10.1515/BC.2002.044..
DOI: 10.1515/BC.2002.044
Андреева А.А., Якушенко Н.С., Опарина Т.И. Механизмы нарушений функций сердечно-сосудистой системы у новорождённых детей с задержкой внутриутробного развития и отдалённые последствия. Журнал акушерства и женских болезней. 2011;60(3):32–36. EDN: OFSQHT.
Gao Y, Dasgupta C, Huang L, Song R, Zhang Z, Zhang L. Multi-omics integration reveals short and long-term effects of gestational hypoxia on the heart development. Cells. 2019;8(12):1608. DOI: 10.3390/cells8121608..
DOI: 10.3390/cells8121608
Paradis AN, Gay MS, Wilson CG, Zhang L. Newborn hypoxia/anoxia inhibits cardiomyocyte proliferation and decreases cardiomyocyte endowment in the developing heart: Role of endothelin-1. PloS One. 2015;10(2):e0116600. DOI: 10.1371/journal.pone.0116600..
DOI: 10.1371/journal.pone.0116600
Botting KJ, McMillen IC, Forbes H, Nyengaard JR, Morrison JL. Chronic hypoxemia in late gestation decreases cardiomyocyte number but does not change expression of hypoxia-responsive genes. J Am Heart Assoc. 2014;3(4):e000531. DOI: 10.1161/JAHA.113.000531..
DOI: 10.1161/JAHA.113.000531
Bubb KJ, Cock ML, Black MJ, Dodic M, Boon WM, Parkington HC, Tare M. Intrauterine growth restriction delays cardiomyocyte maturation and alters coronary artery function in the fetal sheep. J Physiol. 2007;578:871–881. DOI: 10.1113/jphysiol.2006.121160..
DOI: 10.1113/jphysiol.2006.121160
Tong W, Xue Q, Li Y, Zhang L. Maternal hypoxia alters matrix metalloproteinase expression patterns and causes cardiac remodeling in fetal and neonatal rats. Am J Physiol Heart Circ Physiol. 2011;301:H2113–H2121. DOI: 10.1152/ajpheart.00356.2011..
DOI: 10.1152/ajpheart.00356.2011
Сидоров А.Г. Морфологические основы электрической нестабильности миокарда у новорождённых, перенёсших перинатальную гипоксию. Вестник аритмологии. 2000;(19):57–60. EDN: HSPKTF.
Bamber AR, Pryce J, Cook A, Ashworth M, Sebire NJ. Myocardial necrosis and infarction in newborns and infants. Forensic Sci Med Pathol. 2013;9(4):521–527. DOI: 10.1007/s12024-013-9472-0..
DOI: 10.1007/s12024-013-9472-0
Oh KS, Bender TM, Bowen A, Godine L, Park SC. Transient myocardial ischemia of the newborn infant. Pediatr Radiol. 1985;15(1):29–33. DOI: 10.1007/BF02387849..
DOI: 10.1007/BF02387849
El-Sabrout H, Ganta S, Guyon P, Ratnayaka K, Vaughn G, Perry J, El-Said H. Neonatal myocardial infarction: A proposed algorithm for coronary arterial thrombus management. Circ Cardiovasc Interv. 2022;15(5):e011664. DOI: 10.1161/circinterventions.121.011664..
DOI: 10.1161/circinterventions.121.011664
Primhak RA, Jedeikin R, Ellis G, Makela SK, Gillan JE, Swyer PR, Rowe RD. Myocardial ischaemia in aphyxia neonatorum. Acta Paediatr Scand. 1985;74(4):595–600. DOI: 10.1111/j.1651-2227.1985.tb11036.x..
DOI: 10.1111/j.1651-2227.1985.tb11036.x
Farru O, Rizzardini M, Guzman N. Transient myocardial ischemia in newborn infants. Arch Mal Coeur Vaiss. 1986;79(5):633–638. PMID: 3092762.
Hernandorena X, Dehan M, Roset F, Bléhaut B, Boulley AM, Imbert MC, Gabilan JC. Heart disorders following perinatal anoxia (author's transl). Arch Fr Pediatr. 1982;39(2):101–104. PMID: 7073429.
Kilbride MH, Way GL, Merenstein GB, Winfield JM. Myocardial infarction in the neonate with normal heart and coronary arteries. Am J Dis Child. 1980;134(8):759–762. DOI: 10.1001/archpedi.1980.02130200029010..
DOI: 10.1001/archpedi.1980.02130200029010
Tometzki AJ, Pollock JC, Wilson N, Davis CF. Role of ECMO in neonatal myocardial infarction. Arch Dis Child Fetal Neonatal Ed. 1996;74(2):F143–F144.
Kabra SK, Saxena S, Sharma U. Myocardial dysfunction in birth asphyxia. Indian J Pediatr. 1988;55(3):416–419. DOI: 10.1007/BF02810364..
DOI: 10.1007/BF02810364
Ferns S, Khan M, Firmin R, Peek G, Bu’Lock F. Neonatal myocardial infarction and the role of extracorporeal membrane oxygenation. Arch Dis Child Fetal Neonatal Ed. 2009;94(1):F54–F57. DOI: 10.1136/adc.2006.113977..
DOI: 10.1136/adc.2006.113977
De Sa DJ. Myocardial changes in immature infants requiring prolonged ventilation. Arch Dis Child. 1977;52(2):138. DOI: 10.1136/adc.52.2.138..
DOI: 10.1136/adc.52.2.138
AlHarbi KM. Myocardial infarction in newborn infant: A case report. Medical Science. 2006;13(1):77–82. DOI: 10.4197/Med.13-1.7..
DOI: 10.4197/Med.13-1.7
Bernstein D, Finkbeiner WE, Soifer S, Teitel D. Perinatal myocardial infarction: A case report and review of the literature. Pediatr Cardiol. 1986;6(6):313–317. PMID: 3748837.
Li H, Hu J, Liu Y, Wang X, Tang S, Chen X, Wei Y. Effects of prenatal hypoxia on fetal sheep heart development and proteomics analysis. Int J Clin Exp Pathol. 2018;11(4):1909. PMID: 31938297.
Donnelly WH, Bucciarelli RL, Nelson RM. Ischemic papillary muscle necrosis in stressed newborn infants. J Pediatr. 1980;96(2):295–300. DOI: 10.1016/S0022-3476(80)80833-X..
DOI: 10.1016/S0022-3476(80)80833-X
Saha A, Roy S. Papillary muscles of left ventricle — morphological variations & it’s clinical relevance. Indian Heart J. 2018;70(6):894–900. DOI: 10.1016/j.ihj.2017.12.003..
DOI: 10.1016/j.ihj.2017.12.003
Kaulitz R, Haen S, Sieverding L, Ziemer G. Intrauterine rupture of anterior tricuspid valve papillary muscle: Tricuspid valve chordae replacement on the first day of life. J Thorac Cardiovasc Surg. 2012;143(1):241–243. DOI: 10.1016/j.jtcvs.2011.07.015..
DOI: 10.1016/j.jtcvs.2011.07.015
Min J, Kim ER, Yang CK, Kim WH, Jang WS, Cho S. Successful repair of critical tricuspid regurgitation secondary to a ruptured papillary muscle in a neonate. Korean J Thorac Cardiovasc Surg. 2014;47(4):398. DOI: 10.5090/kjtcs.2014.47.4.398..
DOI: 10.5090/kjtcs.2014.47.4.398
Benvenuti LA, Aiello VD, Cury AJ, Ebaid M. Post-ischemic rupture of the anterior papillary muscle of the right ventricle associated with persistent pulmonary hypertension of the newborn: A case report. Am J Cardiovasc Pathol. 1992;4:79–84. PMID: 1627331.
Trainini JC, Beraudo M, Wernicke M, Lowenstein J. Anatomical investigation of the cardiac apex. Rev Argent Cardiol. 2022;90:118–123. DOI: 10.7775/rac.v90.i2.20498..
DOI: 10.7775/rac.v90.i2.20498
Sanchez-Quintana D, Garcia-Martinez V, Climent V, Hurle JM. Morphological changes in the normal pattern of ventricular myoarchitecture in the developing human heart. Anat Rec. 1995;243:483–495. DOI: 10.1002/ar.1092430411..
DOI: 10.1002/ar.1092430411
Baptista CAC, DiDio LJA, Davis JT, Teofilovski-Parapid G. The cardiac apex and its superficial blood supply. Surg Radiol Anat. 1988;10:151–160. DOI: 10.1007/BF02307825..
DOI: 10.1007/BF02307825
Iribarren I, Hilario E, Álvarez A, Alonso-Alconada D. Neonatal multiple organ failure after perinatal asphyxia. An Pediatr (Engl Ed). 2022;97(4):280-e1. DOI: 10.1016/j.anpede.2022.08.010..
DOI: 10.1016/j.anpede.2022.08.010
Breatnach CR, Forman E, Foran A, Monteith C, McSweeney L, Malone F, El-Khuffash A. Left ventricular rotational mechanics in infants with hypoxic ischemic encephalopathy and preterm infants at 36 weeks postmenstrual age: A comparison with healthy term controls. Echocardiography. 2017;34(2):232–239. DOI: 10.1111/echo.13421..
DOI: 10.1111/echo.13421
Donnelly WH. Ischemic myocardial necrosis and papillary muscle dysfunction in infants and children. Am J Cardiovasc Pathol. 1987;1(2):173–188. PMID: 3333139.
Faa A, Xanthos T, Fanos V, Fanni D, Gerosa C, Pampaloni P, Iacovidou N. Hypoxia-induced endothelial damage and microthrombosis in myocardial vessels of newborn landrace/large white piglets. Biomed Res Int. 2014;201:619284–619284. DOI: 10.1155/2014/619284..
DOI: 10.1155/2014/619284
Karvonen R, Sipola M, Kiviniemi A, Tikanmäki M, Järvelin MR, Eriksson JG, Kajantie E. Cardiac autonomic function in adults born preterm. J Pediatr. 2019;208:96–103. DOI: 10.1016/j.jpeds.2018.12.061..
DOI: 10.1016/j.jpeds.2018.12.061
Симонова Л.В., Котлукова Н.П., Гайдукова Н.В. Постгипоксическая дезадаптация сердечно-сосудистой системы у новорождённых детей. Российский вестник перинатологии и педиатрии. 2001;(2):8–12.
Yee M, Cohen ED, Domm W, Porter GA Jr, McDavid AN, O'Reilly MA. Neonatal hyperoxia depletes pulmonary vein cardiomyocytes in adult mice via mitochondrial oxidation. Am J Physiol Lung Cell Mol Physiol. 2018;314(5):L846–L859. DOI: 10.1152/ajplung.00409.2017..
DOI: 10.1152/ajplung.00409.2017
Ravizzoni Dartora D, Flahault A, Pontes CN, He Y, Deprez A, Cloutier A, Nuyt AM. Cardiac left ventricle mitochondrial dysfunction after neonatal exposure to hyperoxia: Relevance for cardiomyopathy after preterm birth. Hypertension. 2022;79(3):575–587. DOI: 10.1161/HYPERTENSIONAHA.121.17979..
DOI: 10.1161/HYPERTENSIONAHA.121.17979
Hirose A, Khoo NS, Aziz K, Al-Rajaa N, van den Boom J, Savard W, Hornberger LK. Evolution of left ventricular function in the preterm infant. J Am Soc Echocardiogr. 2015;28(3):302–308. DOI: 10.1016/j.echo.2014.10.017..
DOI: 10.1016/j.echo.2014.10.017
Bavineni M, Wassenaar TM, Agnihotri K, Ussery DW, Lüscher TF, Mehta JL. Mechanisms linking preterm birth to onset of cardiovascular disease later in adulthood. Eur Heart J. 2019;40(14):1107–1112. DOI: 10.1093/eurheartj/ehz025..
DOI: 10.1093/eurheartj/ehz025
Park JJ, Park JB, Park JH, Cho GY. Global longitudinal strain to predict mortality in patients with acute heart failure. J Am Coll Cardiol. 2018;71(18):1947–1957. DOI: 10.1016/j.jacc.2018.02.064..
DOI: 10.1016/j.jacc.2018.02.064
Павлюкова Е.Н., Колосова М.В., Неклюдова Г.В., Карпов Р.С. Вихревые турбулентные потоки и скручивание левого желудочка у детей в возрасте от одного года до пяти лет, рождённых недоношенными с низкой, очень низкой и экстремально низкой массой тела. Ультразвуковая и функциональная диагностика. 2021;(4):38–56. DOI: 10.24835/1607-0771-2021-4-38-56..
DOI: 10.24835/1607-0771-2021-4-38-56