The National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening // N Engl J Med. 2011. Vol. 365, N. 5. P. 395–409. doi: 10.1056/NEJMoa1102873.
DOI: 10.1056/NEJMoa1102873
MacMahon H., Naidich D.P., Goo J.M., et al. Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society. 2017 // Radiology 2017. Vol. 284, N. 1. P. 228–243. doi: 10.1148/radiol.2017161659.
DOI: 10.1148/radiol.2017161659
Callister M.E.J., Baldwin D.R., Akram A.R., et al. British Thoracic Society guidelines for the investigation and management of pulmonary nodules: accredited by NICE // Thorax. 2015. Vol. 70, Suppl. 2. P. ii1–ii54. doi: 10.1136/ thoraxjnl-2015-207168.
DOI: 10.1136/ thoraxjnl-2015-207168
Mets O.M., de Jong P.A., Chung K., et al. Fleischner recommendations for the management of subsolid pulmonary nodules: high awareness but limited conformance – a survey study // Eur Radiol. 2016. Vol. 26, N. 11. P. 3840–3849. doi: 10.1007/s00330-016-4249-y.
DOI: 10.1007/s00330-016-4249-y
Travis W.D., Brambilla E., Noguchi M, et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society: International Multidisciplinary Classification of Lung Adenocarcinoma: executive summary // Proc Am Thorac Soc. 2011. Vol. 8, N. 5. P. 381–385. doi: 10.1513/pats.201107-042ST.
DOI: 10.1513/pats.201107-042ST
Borczuk A.C., Qian F., Kazeros A., et al. Invasive size is an independent predictor of survival in pulmonary adenocarcinoma // Am J Surg Pathol. 2009. Vol. 33, N. 3. P. 462–469. doi: 10.1097/PAS.0b013e3181 90157c.
DOI: 10.1097/PAS.0b013e3181 90157c
Zhang J., Wu J., Tan Q., et al. Why do pathological stage IA lung adenocarcinomas vary from prognosis?: a clinicopathologic study of 176 patients with pathological stage IA lung adenocarcinoma based on the IASLC/ATS/ERS classification // J Thorac Oncol. 2013. Vol. 8, N. 9. P. 1196–1202. doi: 10.1097/JTO.0b013 e3182 9f09a7.
DOI: 10.1097/JTO.0b013 e3182 9f09a7
Ost D., Fein A. Evaluation and management of the solitary pulmonary nodule // Am J Respir Crit Care Med. 2000. Vol. 162, N. 3 (Pt. 1). P. 782–787. doi: 10.1164/ajrccm.162.3 . 9812152.
DOI: 10.1164/ajrccm.162.3 . 9812152
Causey J.L., Zhang J., Ma S., et al. Highly accurate model for prediction of lung nodule malignancy with CT scans // Sci Rep. 2018. Vol. 8, N. 1. P. 9286. doi: 10.1038/s41598-018-27569-w.
DOI: 10.1038/s41598-018-27569-w
Chae D., Park C.M., Park S.J., et al. Computerized texture analysis of persistent part-solid groundglass nodules: differentiation of preinvasive lesions from invasive pulmonary adenocarcinomas // Radiology. 2014. Vol. 273, N. 1. P. 285–293. doi: 10.1148/radiol.14132187.
DOI: 10.1148/radiol.14132187
Bi W.L., Hosny A., Schabath M.B., et al. Artificial intelligence in cancer imaging: clinical challenges and applications // CA Cancer J Clin. 2019. Vol. 69, N. 2. P. 127–157. doi: 10.3322/caac.21552.
DOI: 10.3322/caac.21552
Feng B., Chen X., Chen Y., et al. Solitary solid pulmonary nodules: a CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas // Eur Radiol. 2020. Vol. 30, N. 12. P. 6497–6507. doi: 10.1007/s00330-020-07024-z.
DOI: 10.1007/s00330-020-07024-z
Chen S., Qin J., Ji X., et al. Automatic scoring of multiple semantic attributes with multi-task feature leverage: a study on pulmonary nodules in CT images // IEEE Trans Med Imaging. 2017. Vol. 36, N. 3. P. 802–814. doi: 10.1109/TMI.2016.2629462.
DOI: 10.1109/TMI.2016.2629462
Lambin P., Rios-Velazquez E., Leijenaar R., et al. Radiomics: extracting more information from medical images using advanced feature analysis // Eur J Cancer. 2012. Vol. 48, N. 4. P. 441–446. doi: 10.1016/j.ejca.2011.11.036.
DOI: 10.1016/j.ejca.2011.11.036
Gillies R.J., Kinahan P.E., Hricak H. Radiomics: images are more than pictures, they are data // Radiology. 2016. Vol. 278, N. 2. P. 563–577. doi: 10.1148/radiol.2015151169.
DOI: 10.1148/radiol.2015151169
Yang L., Yang J., Zhou X., et al. Development of a radiomics nomogram based on the 2D and 3D CT features to predict the survival of non-small cell lung cancer patients // Eur Radiol. 2019. Vol. 29, N. 5. P. 2196–2206. doi: 10.1007/s00330-018-5770-y.
DOI: 10.1007/s00330-018-5770-y
Song S.H., Ahn J.H., Lee H.Y., et al. Prognostic impact of nomogram based on whole tumour size, tumour disappearance ratio on CT and SUVmax on PET in lung adenocarcinoma // Eur Radiol. 2016. Vol. 26, N. 6. P. 1538–1546. doi: 10.1007/s00330-015-4029-0.
DOI: 10.1007/s00330-015-4029-0
Beig N., Khorrami M., Alilou M., et al. Perinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomas // Radiology. 2019. Vol. 290, N. 3. P. 783–792. doi: 10.1148/radiol.2018180910.
DOI: 10.1148/radiol.2018180910
Banat G.A., Tretyn A., Pullamsetti S.S., et al. Immune and inflammatory cell composition of human lung cancer stroma // PLoS One. 2015. Vol. 10, N. 9. P. e0139073. doi: 10.1371/journal.pone.01390 73.
DOI: 10.1371/journal.pone.01390 73
Nishino M. Perinodular radiomic features to assess nodule microenvironment: does it help to distinguish malignant versus benign lung nodules? // Radiology. 2019. Vol. 290, N. 3. P. 793–795. doi: 10.1148/radiol.2018182619.
DOI: 10.1148/radiol.2018182619
Christiansen A., Detmar M. Lymphangiogenesis and cancer // Genes Cancer. 2011. Vol. 2, N. 12. P. 1146–1158. doi: 10 . 1177/19476 01911 423028.
DOI: 10 . 1177/19476 01911 423028
van Griethuysen J.J.M., Fedorov A., Parmar C., et al. Computational radiomics system to decode the radiographic phenotype // Cancer Res. 2017. Vol. 77, N. 21. P. e104–e107. doi: 10.1158/0008-5472.CAN-17-0339.
DOI: 10.1158/0008-5472.CAN-17-0339
Goldstraw P., Chansky K., Crowley J., et al. The IASLC Lung Cancer Staging Project: proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer // J Thorac Oncol. 2016. Vol. 11, N. 1. P. 39–51. doi: 10.1016/j.jtho.2015.09.009.
DOI: 10.1016/j.jtho.2015.09.009
Akaike H. Information theory and an extension of the maximum likelihood principle. In: Parzen E, Tanabe K, Kitagawa G, editors. Selected papers of Hirotugu Akaike. Springer Series in Statistics (Perspectives in Statistics); Springer, New York, NY; 1998. doi: 10.1007/978-1-4612-1694-0_15.
DOI: 10.1007/978-1-4612-1694-0_15
Vickers A.J., Elkin E.B. Decision curve analysis: a novel method for evaluating prediction models // Med Decis Making. 2006. Vol. 26, N. 6. P. 565–574. doi: 10.1177/0272989X06295361.
DOI: 10.1177/0272989X06295361
Luo T., Xu K., Zhang Z., et al. Radiomic features from computed tomography to differentiate invasive pulmonary adenocarcinomas from non-invasive pulmonary adenocarcinomas appearing as part-solid ground-glass nodules // Chin J Cancer Res. 2019. Vol. 31, N. 2. P. 329–338. doi: 10.21147/j.issn.1000-9604.2019.02.07.
DOI: 10.21147/j.issn.1000-9604.2019.02.07
Lee S.M., Park C.M., Goo J.M., et al. Invasive pulmonary adenocarcinomas versus preinvasive lesions appearing as ground-glass nodules: differentiation by using CT features // Radiology. 2013. Vol. 268, N. 1. P. 265–273. doi: 10.1148/radiol.13120949.
DOI: 10.1148/radiol.13120949
Li W., Wang X., Zhang Y., et al. Radiomic analysis of pulmonary ground-glass opacity nodules for distinction of preinvasive lesions, invasive pulmonary adenocarcinoma and minimally invasive adenocarcinoma based on quantitative texture analysis of CT // Chin J Cancer Res. 2018. Vol. 30, N. 4. P. 415–424. doi: 10.21147/j.issn.1000-9604.2018.04.04.
DOI: 10.21147/j.issn.1000-9604.2018.04.04
Tunali I., Hall L.O., Napel S., et al. Stability and reproducibility of computed tomography radiomic features extracted from peritumoral regions of lung cancer lesions // Med Phys. 2019. Vol. 46, N. 11. P. 5075–5085. doi: 10.1002/mp.13808.
DOI: 10.1002/mp.13808
She Y., Zhang L., Zhu H., et al. The predictive value of CTbased radiomics in differentiating indolent from invasive lung adenocarcinoma in patients with pulmonary nodules // Eur Radiol. 2018. Vol. 28, N. 12. P. 5121–5128. doi: 10.1007/s00330-018-5509-9.
DOI: 10.1007/s00330-018-5509-9
Wu L., Gao C., Xiang P., et al. CT-imaging based analysis of invasive lung adenocarcinoma presenting as ground glass nodules using peri- and intra-nodular radiomic features // Front Oncol. 2020. Vol. 10. P. 838. doi: 10.3389/fonc.2020.00838.
DOI: 10.3389/fonc.2020.00838
Naito M., Aokage K., Saruwatari K., et al. Microenvironmental changes in the progression from adenocarcinoma in situ to minimally invasive adenocarcinoma and invasive lepidic predominant adenocarcinoma of the lung // Lung Cancer. 2016. Vol. 100. P. 53–62. doi: 10.1016/j.lungcan.2016.07.024.
DOI: 10.1016/j.lungcan.2016.07.024
Patarroyo M., Tryggvason K., Virtanen I. Laminin isoforms in tumor invasion, angiogenesis and metastasis // Semin Cancer Biol. 2002. Vol. 12, N. 3. P. 197–207. doi: 10.1016/S1044-579X(02)00023-8.
DOI: 10.1016/S1044-579X(02)00023-8
Moriya Y., Niki T., Yamada T., et al. Increased expression of laminin-5 and its prognostic significance in lung adenocarcinomas of small size: an immunohistochemical analysis of 102 cases // Cancer. 2001. Vol. 91, N. 6. P. 1129–1141. doi: 10. 1002/1097-0142(20010315)91:6<1129::aid-cncr1109>3.0.co;2-c.
DOI: 10. 1002/1097-0142(20010315)91:6<1129::aid-cncr1109>3.0.co;2-c
Zhang C., Zhang J., Xu F.P., et al. Genomic landscape and immune microenvironment features of preinvasive and early invasive lung adenocarcinoma // J Thorac Oncol. 2019. Vol. 14, N. 11. P. 1912–1923. doi: 10.1016/j.jtho.2019.07.031.
DOI: 10.1016/j.jtho.2019.07.031
Yim J., Zhu L.C., Chiriboga L., et al. Histologic features are important prognostic indicators in early stages lung adenocarcinomas // Mod Pathol. 2007. Vol. 20, N. 2. P. 233–241. doi: 10.1038/modpathol.3800734.
DOI: 10.1038/modpathol.3800734
Nakanishi H., Matsumoto S., Iwakawa R., et al. Whole genome comparison of allelic imbalance between noninvasive and invasive small-sized lung adenocarcinomas // Cancer Res. 2009. Vol. 69, N. 4. P. 1615–1623. doi: 10.1158/0008-5472.CAN-08-3218.
DOI: 10.1158/0008-5472.CAN-08-3218
Braman N.M., Etesami M., Prasanna P., et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI // Breast Cancer Res. 2017. Vol. 19, N. 1. P. 1–14. doi: 10.1186/s13058-017-0846-1.
DOI: 10.1186/s13058-017-0846-1
Braman N., Prasanna P., Whitney J., et al. Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2 (ERBB2) – positive breast cancer // JAMA Netw Open. 2019. Vol. 2, N. 4. P. e192561. doi: 10.1001/jamanetworkopen.2019.2561.
DOI: 10.1001/jamanetworkopen.2019.2561
Wang X., Zhao X., Li Q., et al. Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT? // Eur Radiol. 2019. Vol. 29, N. 11. P. 6049–6058. doi: 10.1007/s00330-019-06084-0.
DOI: 10.1007/s00330-019-06084-0
Levman J.E.D., Martel A.L. A margin sharpness measurement for the diagnosis of breast cancer from magnetic resonance imaging examinations // Acad Radiol. 2011. Vol. 18, N. 12. P. 1577–1581. doi: 10.1016/j.acra.2011.08.004.
DOI: 10.1016/j.acra.2011.08.004
Uthoff J., Stephens M.J., Newell J.D., et al. Machine learning approach for distinguishing malignant and benign lung nodules utilizing standardized perinodular parenchymal features from CT // Med Phys. 2019. Vol. 46, N. 7. P. 3207–3216. doi: 10.1002/mp.13592.
DOI: 10.1002/mp.13592
Wu G., Woodruff H.C., Shen J., et al. Diagnosis of invasive lung adenocarcinoma based on chest CT radiomic features of part-solid pulmonary nodules: a multicenter study // Radiology. 2020. Vol. 297, N. 2. P. 451–458. doi: 10.1148/radiol.2020192431.
DOI: 10.1148/radiol.2020192431
Ferreira J.R., Oliveira M.C., de Azevedo-Marques P.M. Characterization of pulmonary nodules based on features of margin sharpness and texture // J Digit Imaging. 2018. Vol. 31, N. 4. P. 451–463. doi: 10.1007/s10278-017-0029-8.
DOI: 10.1007/s10278-017-0029-8