Guilliams M, Mildner A, Yona S. Developmental and Functional Heterogeneity of Monocytes. Immunity. 2018;49(4):595–613. doi:10.1016/j.immuni.2018.10.005.
DOI: 10.1016/j.immuni.2018.10.005
Grinberg MV, Lokhonina AV, Vishnyakova PA, Makarov AV, Kananykhina EY, Eremina IZ, Glinkina VV, Elchaninov AV, Fatkhudinov TK. Migration, proliferation and cell death of regenerating liver macrophages in an experimental model. RUDN Journal of Medicine. 2023;27(4):449–458. doi: 10.22363/2313-0245-2023-27-4-449-458.
DOI: 10.22363/2313-0245-2023-27-4-449-458
Patysheva M, Frolova A, Larionova I, Afanas’ev S, Tarasova A, Cherdyntseva N, Kzhyshkowska J. Monocyte programming by cancer therapy. Frontiers in immunology. 2022;13:994319. doi:10.3389/fimmu.2022.994319.
DOI: 10.3389/fimmu.2022.994319
Ugel S, Canè S, De Sanctis F, Bronte V. Monocytes in the Tumor Microenvironment. Annual review of pathology. 2021;16:93–122. doi:10.1146/annurev-pathmechdis-012418-013058.
DOI: 10.1146/annurev-pathmechdis-012418-013058
Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph GJ, Scherberich J, Schmitz J, Shortman K, Sozzani S, Strobl H, Zembala M, Austyn JM, Lutz MB. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116(16): e74–80. doi:10.1182/blood-2010-02-258558.
DOI: 10.1182/blood-2010-02-258558
Wong KL, Tai JJ, Wong WC, Han H, Sem X, Yeap WH, Kourilsky P, Wong SC. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011;118(5): e16–31. doi:10.1182/blood-2010-12-326355.
DOI: 10.1182/blood-2010-12-326355
Anbazhagan K, Duroux-Richard I, Jorgensen C, Apparailly F. Transcriptomic network support distinct roles of classical and non-classical monocytes in human. International reviews of immunology. 2014;33(6):470–89. doi:10.3109/08830185.2014.902453.
DOI: 10.3109/08830185.2014.902453
Buscher K, Marcovecchio P, Hedrick CC, Ley K. Patrolling Mechanics of Non-Classical Monocytes in Vascular Inflammation. Frontiers in cardiovascular medicine. 2017;4:80. doi:10.3389/fcvm.2017.00080.
DOI: 10.3389/fcvm.2017.00080
Olingy CE, Dinh HQ, Hedrick CC. Monocyte heterogeneity and functions in cancer. Journal of leukocyte biology. 2019;106(2):309–322. doi:10.1002/jlb.4ri0818-311r.
DOI: 10.1002/jlb.4ri0818-311r
Wang R, Bao W, Pal M, Liu Y, Yazdanbakhsh K, Zhong H. Intermediate monocytes induced by IFN-γ inhibit cancer metastasis by promoting NK cell activation through FOXO1 and interleukin‑27. Journal for immunotherapy of cancer. 2022;10(1) doi:10.1136/jitc-2021-003539.
DOI: 10.1136/jitc-2021-003539
Kiss M, Caro AA, Raes G, Laoui D. Systemic Reprogramming of Monocytes in Cancer. Frontiers in oncology. 2020;10:1399. doi:10.3389/fonc.2020.01399.
DOI: 10.3389/fonc.2020.01399
Gamrekelashvili J, Giagnorio R, Jussofie J, Soehnlein O, Duchene J, Briseño CG, Ramasamy SK, Krishnasamy K, Limbourg A, Kapanadze T, Ishifune C, Hinkel R, Radtke F, Strobl LJ, Zimber-Strobl U, Napp LC, Bauersachs J, Haller H, Yasutomo K, Kupatt C, Murphy KM, Adams RH, Weber C, Limbourg FP. Regulation of monocyte cell fate by blood vessels mediated by Notch signalling. Nature communications. 2016;7:12597. doi:10.1038/ncomms12597.
DOI: 10.1038/ncomms12597
Miyake K, Ito J, Takahashi K, Nakabayashi J, Brombacher F, Shichino S, Yoshikawa S, Miyake S, Karasuyama H. Single-cell transcriptomics identifies the differentiation trajectory from inflammatory monocytes to pro-resolving macrophages in a mouse skin allergy model. Nature communications. 2024;15(1):1666. doi:10.1038/s41467-024-46148-4.
DOI: 10.1038/s41467-024-46148-4
Narasimhan PB, Marcovecchio P, Hamers AAJ, Hedrick CC. Nonclassical Monocytes in Health and Disease. Annual review of immunology. 2019;37:439–456. doi:10.1146/annurev-immunol-042617-053119.
DOI: 10.1146/annurev-immunol-042617-053119
Ohkuma R, Fujimoto Y, Ieguchi K, Onishi N, Watanabe M, Takayanagi D, Goshima T, Horiike A, Hamada K, Ariizumi H, Hirasawa Y, Ishiguro T, Suzuki R, Iriguchi N, Tsurui T, Sasaki Y, Homma M, Yamochi T, Yoshimura K, Tsuji M, Kiuchi Y, Kobayashi S, Tsunoda T, Wada S. Monocyte subsets associated with the efficacy of anti-PD‑1 antibody monotherapy. Oncology letters. 2023;26(3):381. doi:10.3892/ol.2023.13967.
DOI: 10.3892/ol.2023.13967
Hanna RN, Cekic C, Sag D, Tacke R, Thomas GD, Nowyhed H, Herrley E, Rasquinha N, McArdle S, Wu R, Peluso E, Metzger D, Ichinose H, Shaked I, Chodaczek G, Biswas SK, Hedrick CC. Patrolling monocytes control tumor metastasis to the lung. Science (New York, NY). 2015;350(6263):985–90. doi:10.1126/science.aac9407.
DOI: 10.1126/science.aac9407
Hao Y, Stuart T, Kowalski MH, Choudhary S, Hoffman P, Hartman A, Srivastava A, Molla G, Madad S, Fernandez-Granda C, Satija R. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nature biotechnology. 2024;42(2):293–304. doi:10.1038/s41587-023-01767-y.
DOI: 10.1038/s41587-023-01767-y
Cannoodt R. Inferring, interpreting and visualising trajectories using a streamlined set of packages. March 29, 2019. https://dynverse.github.io/dyno. Accessed February 13, 2024.https://dynverse.github.io/dyno
Ożańska A, Szymczak D, Rybka J. Pattern of human monocyte subpopulations in health and disease. Scandinavian journal of immunology. 2020;92(1): e12883. doi:10.1111/sji.12883.
DOI: 10.1111/sji.12883
Schauer D, Starlinger P, Reiter C, Jahn N, Zajc P, Buchberger E, Bachleitner-Hofmann T, Bergmann M, Stift A, Gruenberger T, Brostjan C. Intermediate monocytes but not TIE2‑expressing monocytes are a sensitive diagnostic indicator for colorectal cancer. PloS one. 2012;7(9): e44450. doi:10.1371/journal.pone.0044450.
DOI: 10.1371/journal.pone.0044450
Subimerb C, Pinlaor S, Lulitanond V, Khuntikeo N, Okada S, McGrath MS, Wongkham S. Circulating CD14(+) CD16(+) monocyte levels predict tissue invasive character of cholangiocarcinoma. Clinical and experimental immunology. 2010;161(3):471–9. doi:10.1111/j.1365-2249.2010.04200.x.
DOI: 10.1111/j.1365-2249.2010.04200.x
Metcalf TU, Wilkinson PA, Cameron MJ, Ghneim K, Chiang C, Wertheimer AM, Hiscott JB, Nikolich-Zugich J, Haddad EK. Human Monocyte Subsets Are Transcriptionally and Functionally Altered in Aging in Response to Pattern Recognition Receptor Agonists. Journal of immunology (Baltimore, Md: 1950). 2017;199(4):1405–1417. doi:10.4049/jimmunol.1700148.
DOI: 10.4049/jimmunol.1700148
Ito Y, Nakahara F, Kagoya Y, Kurokawa M. CD62L expression level determines the cell fate of myeloid progenitors. Stem cell reports. 2021;16(12):2871–2886. doi:10.1016/j.stemcr.2021.10.012.
DOI: 10.1016/j.stemcr.2021.10.012
Patel AA, Zhang Y, Fullerton JN, Boelen L, Rongvaux A, Maini AA, Bigley V, Flavell RA, Gilroy DW, Asquith B, Macallan D, Yona S. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. The Journal of experimental medicine. 2017;214(7):1913–1923. doi:10.1084/jem.20170355.
DOI: 10.1084/jem.20170355
Geller MA, Bui-Nguyen TM, Rogers LM, Ramakrishnan S. Chemotherapy induces macrophage chemoattractant protein‑1 production in ovarian cancer. International journal of gynecological cancer: official journal of the International Gynecological Cancer Society. 2010;20(6):918–25. doi:10.1111/IGC.0b013e3181e5c442.
DOI: 10.1111/IGC.0b013e3181e5c442
Dijkgraaf EM, Heusinkveld M, Tummers B, Vogelpoel LT, Goedemans R, Jha V, Nortier JW, Welters MJ, Kroep JR, van der Burg SH. Chemotherapy alters monocyte differentiation to favor generation of cancer-supporting M2 macrophages in the tumor microenvironment. Cancer research. 2013;73(8):2480–92. doi:10.1158/0008-5472.can-12-3542.
DOI: 10.1158/0008-5472.can-12-3542
Valdés-Ferrada J, Muñoz-Durango N, Pérez-Sepulveda A, Muñiz S, Coronado-Arrázola I, Acevedo F, Soto JA, Bueno SM, Sánchez C, Kalergis AM. Peripheral Blood Classical Monocytes and Plasma Interleukin 10 Are Associated to Neoadjuvant Chemotherapy Response in Breast Cancer Patients. Frontiers in immunology. 2020;11:1413. doi:10.3389/fimmu.2020.01413.
DOI: 10.3389/fimmu.2020.01413
Friedlová N, Zavadil Kokáš F, Hupp TR, Vojtěšek B, Nekulová M. IFITM protein regulation and functions: Far beyond the fight against viruses. Frontiers in immunology. 2022;13:1042368. doi:10.3389/fimmu.2022.1042368.
DOI: 10.3389/fimmu.2022.1042368
Sheng G, Chu H, Duan H, Wang W, Tian N, Liu D, Sun H, Sun Z. LRRC25 Inhibits IFN-γ Secretion by Microglia to Negatively Regulate Anti-Tuberculosis Immunity in Mice. Microorganisms. 2023;11(10). doi:10.3390/microorganisms11102500.
DOI: 10.3390/microorganisms11102500
Juric V, Mayes E, Binnewies M, Lee T, Canaday P, Pollack JL, Rudolph J, Du X, Liu VM, Dash S, Palmer R, Jahchan NS, Ramoth Å J, Lacayo S, Mankikar S, Norng M, Brassell C, Pal A, Chan C, Lu E, Sriram V, Streuli M, Krummel MF, Baker KP, Liang L. TREM1 activation of myeloid cells promotes antitumor immunity. Science translational medicine. 2023;15(711): eadd9990. doi:10.1126/scitranslmed.add9990.
DOI: 10.1126/scitranslmed.add9990