Зайцев А.А., Чернов С.А., Крюков Е.В., и др. Практический опыт ведения пациентов с новой коронавирусной инфекцией COVID-19 в стационаре (предварительные итоги и рекомендации) // Лечащий Врач. 2020. № 6. С. 74–79. DOI: 10.26295/OS.2020.41.94.014.
DOI: 10.26295/OS.2020.41.94.014
Cenko E., Badimon L., Bugiardini R., et al. Cardiovascular disease and COVID-19: a consensus paper from the ESC Working Group on Coronary Pathophysiology and Microcirculation, ESC Working Group on Thrombosis and the Association for Acute CardioVascular Care (ACVC), in collaboration with the European Heart Rhythm Association (EHRA) // Cardiovasc Res. 2021. Vol. 117, No. 14. P. 2705–2729. DOI: 10.1093/cvr/cvab298.
DOI: 10.1093/cvr/cvab298
Aleksova A., Fluca A.L., Gagno G., et al. Long-term effect of SARS-CoV-2 infection on cardiovascular outcomes and all-cause mortality // Life Sci. 2022. Vol. 310. ID 121018. DOI: 10.1016/j.lfs.2022.121018.
DOI: 10.1016/j.lfs.2022.121018
Morrow A.J., Sykes R., McIntosh A., et al. A multisystem, cardio-renal investigation of post-COVID-19 illness // Nat Med. 2022. Vol. 28, No. 6. Р. 1303–1313. DOI: 10.1038/s41591-022-01837-9.
DOI: 10.1038/s41591-022-01837-9
Doeblin P., Steinbeis F., Scannell C.M., et al. Brief research report: quantitative analysis of potential coronary microvascular disease in suspected long-COVID syndrome // Front Cardiovasc Med. 2022. Vol. 9. ID 877416. DOI: 10.3389/fcvm.2022.877416.
DOI: 10.3389/fcvm.2022.877416
Guan W.-J., Ni Z.-y., Hu Y., et al. Clinical characteristics of Coronavirus disease 2019 in China // N Engl J Med. 2020. Vol. 382, No. 18. Р. 1708–1720. DOI: 10.1056/NEJMoa2002032.
DOI: 10.1056/NEJMoa2002032
Bryce C., Grimes Z., Pujadas E., et al. Pathophysiology of SARS-CoV-2: targeting of endothelial cells renders a complex disease with thrombotic microangiopathy and aberrant immune response. The Mount Sinai COVID-19 autopsy experience // Mod Pathol. 2021. Vol. 34, No. 8. Р. 1456–1467. DOI: 10.1038/s41379-021-00793-y.
DOI: 10.1038/s41379-021-00793-y
Ackermann M., Verleden S.E., Kuehnel M., et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19 // N Engl J Med. 2020. Vol. 383, No. 2. Р. 120–128. DOI: 10.1056/NEJMoa2015432.
DOI: 10.1056/NEJMoa2015432
Goshua G., Pine A.B., Meizlish M.L., et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study // Lancet Haematol. 2020. Vol. 7, No. 8. Р. e575–e582. DOI: 10.1016/S2352-3026(20)30216-7.
DOI: 10.1016/S2352-3026(20)30216-7
Giustino G., Pinney S.P., Lala A., et al. Coronavirus and cardiovascular disease, myocardial injury, and arrhythmia: JACC focus seminar // J Am Coll Cardiol. 2020. Vol. 76, No. 17. Р. 2011–2023. DOI: 10.1016/j.jacc.2020.08.059.
DOI: 10.1016/j.jacc.2020.08.059
Wu Q., Zhou L., Sun X., et al. Altered lipid metabolism in recovered SARS patients twelve years after infection // Sci Rep. 2017. Vol. 7, No. 1. ID 9110. DOI: 10.1038/s41598-017-09536-z.
DOI: 10.1038/s41598-017-09536-z
Zhang X.-J., Qin J.-J., Cheng X., et al. In-hospital use of statins is associated with a reduced risk of mortality among individuals with COVID-19 // Cell Metab. 2020. Vol. 32, No. 2. Р. 176–187.e4. DOI: 10.1016/j.cmet.2020.06.015.
DOI: 10.1016/j.cmet.2020.06.015
Hermida N., Balligand J.-L. Low-density lipoprotein-cholesterol-induced endothelial dysfunction and oxidative stress: the role of statins // Antioxid Redox Signal. 2014. Vol. 20, No. 8. Р. 1216–1237. DOI: 10.1089/ars.2013.5537.
DOI: 10.1089/ars.2013.5537
De Rosa S., Spaccarotella C., Basso C., et al. Reduction of hospitalizations for myocardial infarction in Italy in the COVID-19 era // Eur Heart J. 2020. Vol. 41, No. 22. Р. 2083–2088. DOI: 10.1093/eurheartj/ehaa409.
DOI: 10.1093/eurheartj/ehaa409
Garcia S., Albaghdadi M.S., Meraj P.M., et al. Reduction in ST-segment elevation cardiac catheterization laboratory activations in the United States during COVID-19 pandemic // J Am Coll Cardiol. 2020. Vol. 75, No. 22. Р. 2871–2872. DOI: 10.1016/j.jacc.2020.04.011.
DOI: 10.1016/j.jacc.2020.04.011
Xiang D., Xiang X., Zhang W., et al. Management and outcomes of patients with STEMI during the COVID-19 pandemic in China // J Am Coll Cardiol. 2020. Vol. 76, No. 11. Р. 1318–1324. DOI: 10.1016/j.jacc.2020.06.039.
DOI: 10.1016/j.jacc.2020.06.039
Ferreira E., Alves T.S., Mourilhe-Rocha R., et al. Safety of interventional cardiology procedures in chronic coronary syndrome during the COVID-19 pandemic // Arq Bras Cardiol. 2020. Vol. 115, No. 4. Р. 712–716. DOI: 10.36660/abc.20200704.
DOI: 10.36660/abc.20200704
Solomon M.D., McNulty E.J., Rana J.S., et al. The Covid-19 pandemic and the incidence of acute myocardial infarction // N Engl J Med. 2020. Vol. 383, No. 7. Р. 691–693. DOI: 10.1056/NEJMc2015630.
DOI: 10.1056/NEJMc2015630
Piccolo R., Bruzzese D., Mauro C., et al. Population Trends in rates of percutaneous coronary revascularization for acute coronary syndromes associated with the COVID-19 outbreak // Circulation. 2020. Vol. 141, No. 24. Р. 2035–2037. DOI: 10.1161/CIRCULATIONAHA.120.047457.
DOI: 10.1161/CIRCULATIONAHA.120.047457
Mafham M.M., Spata E., Goldacre R., et al. COVID-19 pandemic and admission rates for and management of acute coronary syndromes in England // Lancet. 2020. Vol. 396, No. 10248. Р. 381–389. DOI: 10.1016/S0140-6736(20)31356-8.
DOI: 10.1016/S0140-6736(20)31356-8
Schiavone M., Gobbi C., Biondi-Zoccai G., et al. Acute coronary syndromes and Covid-19: exploring the uncertainties // J Clin Med. 2020. Vol. 9, No. 6. ID 1683. DOI: 10.3390/jcm9061683.
DOI: 10.3390/jcm9061683
Pérez-González A., Araújo-Ameijeiras A., Alberto Fernández-Villar A., et al. Cohort COVID-19 of the Galicia Sur Health Research Institute Long COVID in hospitalized and non-hospitalized patients in a large cohort in Northwest Spain, a prospective cohort study // Sci Rep. 2022. Vol. 12, No. 1. ID 3369. DOI: 10.1038/s41598-022-07414-x.
DOI: 10.1038/s41598-022-07414-x
Dennis A., Wamil M., Kapur S., et al. Multiorgan impairment in low-risk individuals with long COVID // BMJ. 2021. Vol. 11, No. 3. ID e048391. DOI: 10.1136/bmjopen-2020-048391.
DOI: 10.1136/bmjopen-2020-048391
Kini A., Cao D., Nardin M., et al. Types of myocardial injury and mid-term outcomes in patients with COVID-19 // Eur Heart J Qual Care Clin Outcomes. 2021. Vol. 7, No. 5. Р. 438–446. DOI: 10.1093/ehjqcco/qcab053.
DOI: 10.1093/ehjqcco/qcab053
Rivera-Izquierdo M., Láinez-Ramos-Bossini A.J., de Alba I.G., et al. Long COVID 12 months after discharge: persistent symptoms in patients hospitalised due to COVID-19 and patients hospitalised due to other causes-a multicentre cohort study // BMC Med. 2022. Vol. 20, No. 1. ID 92. DOI: 10.1186/s12916-022-02292-6.
DOI: 10.1186/s12916-022-02292-6
Ayoubkhani D., Khunti K., Nafilyan V., et al. Post-COVID syndrome in individuals admitted to hospital with COVID-19: retrospective cohort study // BMJ. 2021. Vol. 372. ID n693. DOI: 10.1136/bmj.n693.
DOI: 10.1136/bmj.n693
Kotecha T., Knight D.S., Razvi Y., et al. Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance // Eur Heart J. 2021. Vol. 42, No. 19. Р. 1866–1878. DOI: 10.1093/eurheartj/ehab075.
DOI: 10.1093/eurheartj/ehab075
Italia L., Ingallina G., Napolano A., et al. Subclinical myocardial dysfunction in patients recovered from COVID-19 // Echocardiography. 2021. Vol. 38, No. 10. Р. 1778–1786. DOI: 10.1111/echo.15215.
DOI: 10.1111/echo.15215
Al-Aly Z., Xie Y., Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19 // Nature. 2021. Vol. 594, No. 7862. Р. 259–264. DOI: 10.1038/s41586-021-03553-9.
DOI: 10.1038/s41586-021-03553-9
Daugherty S.E., Guo Y., Heath K., et al. Risk of clinical sequelae after the acute phase of SARS-CoV-2 infection: retrospective cohort study // BMJ. 2021. Vol. 373. ID n1098. DOI: 10.1136/bmj.n1098.
DOI: 10.1136/bmj.n1098
Zhou M., Wong C.-K., Un K.-C., et al. Cardiovascular sequalae in uncomplicated COVID-19 survivors // PLoS One. 2021. Vol. 16, No. 2. ID e0246732. DOI: 10.1371/journal.pone.0246732.
DOI: 10.1371/journal.pone.0246732
Xiong Q., Xu M., Li J., et al. Clinical sequelae of COVID-19 survivors in Wuhan, China: a single-centre longitudinal study // Clin Microbiol Infect. 2021. Vol. 27, No. 1. Р. 89–95. DOI: 10.1016/j.cmi.2020.09.023.
DOI: 10.1016/j.cmi.2020.09.023
Ingul C.B., Grimsmo J., Mecinaj A., et al. Cardiac dysfunction and arrhythmias 3 months after hospitalization for COVID-19 // J Am Heart Assoc. 2022. Vol. 11, No. 3. ID e023473. DOI: 10.1161/JAHA.121.023473.
DOI: 10.1161/JAHA.121.023473
Maestre-Muñiz M.M., Arias Á., Mata-Vázquez E., et al. Long-term outcomes of patients with coronavirus disease 2019 at one year after hospital discharge // J Clin Med. 2021. Vol. 10, No. 13. ID 2945. DOI: 10.3390/jcm10132945.
DOI: 10.3390/jcm10132945
Evans R.A., McAuley H., Harrison E.M., et al. Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): a UK multicentre, prospective cohort study // Lancet Respir Med. 2021. Vol. 9, No. 11. Р. 1275–1287. DOI: 10.1016/S2213-2600(21)00383-0.
DOI: 10.1016/S2213-2600(21)00383-0
Moody W.E., Liu B., Mahmoud-Elsayed H.M., et al. Persisting adverse ventricular remodeling in COVID-19 survivors: a longitudinal echocardiographic study // J Am Soc Echocardiogr. 2021. Vol. 34, No. 5. Р. 562–566. DOI: 10.1016/j.echo.2021.01.020.
DOI: 10.1016/j.echo.2021.01.020
Sonnweber T., Sahanic S., Pizzini A., et al. Cardiopulmonary recovery after COVID-19: an observational prospective multicentre trial // Eur Respir J. 2021. Vol. 57, No. 4. ID 2003481. DOI: 10.1183/13993003.03481-2020.
DOI: 10.1183/13993003.03481-2020
Li X., Wang H., Zhao R., et al. Elevated extracellular volume fraction and reduced global longitudinal strains in participants recovered from COVID-19 without clinical cardiac findings // Radiology. 2021. Vol. 299, No. 2. Р. e230–e240. DOI: 10.1148/radiol.2021203998.
DOI: 10.1148/radiol.2021203998
Широков Н.Е., Ярославская Е.И., Криночкин Д.В., Осокина Н.А. Скрытая систолическая дисфункция правого желудочка у пациентов с повышением легочного сосудистого сопротивления через 3 мес после COVID-19-пневмонии // Кардиология. 2022. Т. 62, № 3. С. 16–20. DOI: 10.18087//cardio.2022.3.n1743.
DOI: 10.18087//cardio.2022.3.n1743
Pelà G., Goldoni M., Cavalli C., et al. Long-term cardiac sequelae in patients referred into a diagnostic post-COVID-19 pathway: the different impacts on the right and left ventricles // Diagnostics. 2021. Vol. 11, No. 11. ID 2059. DOI: 10.3390/diagnostics11112059.
DOI: 10.3390/diagnostics11112059
Dennis A., Wamil M., Alberts J., et al. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: a prospective, community-based study // BMJ Open. 2021. Vol. 11, No. 3. ID e048391. DOI: 10.1136/bmjopen-2020-048391.
DOI: 10.1136/bmjopen-2020-048391
Dweck M.R., Bularga A., Hahn R.T., et al. Global evaluation of echocardiography in patients with COVID-19 // Eur Heart J Cardiovasc Imaging. 2020. Vol. 21, No. 9. Р. 949–958. DOI: 10.1093/ehjci/jeaa178.
DOI: 10.1093/ehjci/jeaa178
Крюков Е.В., Савушкина О.И., Малашенко М.М., и др. Влияние комплексной медицинской реабилитации на функциональные показатели системы дыхания и качество жизни у больных, перенесших COVID-19 // Бюллетень физиологии и патологии дыхания. 2020. № 78. С. 84–91. DOI: 10.36604/1998-5029-2020-78-84-91.
DOI: 10.36604/1998-5029-2020-78-84-91
Haskiah F., Jbara R., Minha S., et al. The impact of COVID-19 pandemic on cardiac rehabilitation of patients following acute coronary syndrome // PLoS One. 2022. Vol. 17, No. 12. ID e0276106. DOI: 10.1371/journal.pone.0276106.
DOI: 10.1371/journal.pone.0276106
Haimovich A.D., Ravindra N.G., Stoytchev S., et al. Development and validation of the quick COVID-19 severity index: A prognostic tool for early clinical decompensation // Ann Emerg Med. 2020. Vol. 76, No. 4. Р. 442–453. DOI: 10.1016/j.annemergmed.2020.07.022.
DOI: 10.1016/j.annemergmed.2020.07.022
Liang W., Liang H., Ou L., et al. Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with COVID-19 // JAMA Intern Med. 2020. Vol. 180, No. 8. Р. 1081–1089. DOI: 10.1001/jamainternmed.2020.2033.
DOI: 10.1001/jamainternmed.2020.2033
Knight S.R., Ho A., Pius R., et al. Risk stratification of patients admitted to hospital with COVID-19 using the ISARIC WHO Clinical Cha racterisation Protocol: development and validation of the 4C Mortality Score // BMJ. 2020. Vol. 370. ID m3339. DOI: 10.1136/bmj.m3339.
DOI: 10.1136/bmj.m3339
Galloway J.B., Norton S., Barker R.D., et al. A clinical risk score to identify patients with COVID-19 at high risk of critical care admission or death: an observational cohort study // J Infect. 2020. Vol. 81, No. 2. Р. 282–288. DOI: 10.1016/j.jinf.2020.05.064.
DOI: 10.1016/j.jinf.2020.05.064
King J.T. Jr., Yoon J.S., Rentsch C.T., et al. Development and validation of a 30-day mortality index based on pre-existing medical administrative data from 13,323 COVID-19 patients: the Veterans Health Administration COVID-19 (VACO) Index // PLoS One. 2020. Vol. 15, No. 11. ID e0241825. DOI: 10.1371/journal.pone.0241825.
DOI: 10.1371/journal.pone.0241825
Fox K.A.A., Eagle K.A., Gore J.M., et al. The global registry of acute coronary events, 1999 to 2009-GRACE // Heart. 2010. Vol. 96, No. 14. Р. 1095–1101. DOI: 10.1136/hrt.2009.190827.
DOI: 10.1136/hrt.2009.190827
Lip G.Y.H., Nieuwlaat R., Pisters R., et al. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation // Chest. 2010. Vol. 137, No. 2. Р. 263–272. DOI: 10.1378/chest.09-1584.
DOI: 10.1378/chest.09-1584
Droppa M., Tschernow D., Müller K.A.L., et al. Evaluation of clinical risk factors to predict high on-treatment platelet reactivity and outcome in patients with stable coronary artery disease (PREDICT-STABLE) // PLoS One. 2015. Vol. 10, No. 3. ID e0121620. DOI: 10.1371/journal.pone.0121620.
DOI: 10.1371/journal.pone.0121620
Baber U., Mehran R., Giustino G., et al. Coronary thrombosis and major bleeding after PCI with drug-eluting stents risk scores from Paris // J Am Coll Cardiol. 2016. Vol. 67, No. 19. Р. 2224–2234. DOI: 10.1016/j.jacc.2016.02.064.
DOI: 10.1016/j.jacc.2016.02.064
Costa F., van Klaveren D., James S., et al. Derivation and validation of the predicting bleeding complications in patients undergoing stent implantation and subsequent dual antiplatelet therapy (PRECISE-DAPT) score: a pooled analysis of individual-patient datasets from clinical trials // Lancet. 2017. Vol. 389, No. 10073. Р. 1025–1034. DOI: 10.1016/S0140-6736(17)30397-5.
DOI: 10.1016/S0140-6736(17)30397-5
Pisters R., Lane D.A., Nieuwlaat R., et al. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey // Chest. 2010. Vol. 138, No. 5. Р. 1093–1100. DOI: 10.1378/chest.10-0134.
DOI: 10.1378/chest.10-0134
Zdanyte M., Martus P., Nestele J., et al. Risk assessment in COVID-19: Prognostic importance of cardiovascular parameters // Clin Cardiol. 2022. Vol. 45, No. 9. Р. 943–951. DOI: 10.1002/clc.23883.
DOI: 10.1002/clc.23883
Rizvi Z.A., Dalal R., Sadhu S., et al. Golden Syrian hamster as a model to study cardiovascular complications associated with SARS-CoV-2 infection // Elife. 2022. Vol. 11. ID e73522. DOI: 10.7554/eLife.73522.
DOI: 10.7554/eLife.73522