Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30(9):1234–1248. doi: https://doi.org/10.1016/j.mri.2012.06.010.
DOI: 10.1016/j.mri.2012.06.010
Choi SH, Kim SY, Park SH, et al. Diagnostic performance of CT, gadoxetate disodium-enhanced MRI, and PET/CT for the diagnosis of colorectal liver metastasis: Systematic review and meta-analysis. J Magn Reson Imaging. 2018;47(5):1237–1250. doi: https://doi.org/10.1002/jmri.25852.
DOI: 10.1002/jmri.25852
Roberts LR, Sirlin CB, Zaiem F, et al. Imaging for the diagnosis of hepatocellular carcinoma: A systematic review and meta-analysis. Hepatology. 2018;67(1):401–421. doi: https://doi.org/10.1002/hep.29487.
DOI: 10.1002/hep.29487
Andreucci M. Side effects of radiographic contrast media. Biomed Res Int. 2014;2014:872574. doi: https://doi.org/10.1155/2014/872574.
DOI: 10.1155/2014/872574
Maeda T, Oda M, Kito S, et al. Can the lower rate of CT- or MRI-related adverse drug reactions to contrast media due to stricter limitations on patients undergoing contrast-enhanced CT or MRI? Dentomaxillofac Radiol. 2020;49(2):20190214. doi: https://doi.org/10.1259/dmfr.20190214.
DOI: 10.1259/dmfr.20190214
Гальчина Ю.С., Кармазановский Г.Г., Калинин Д.В., и др. Критерии диагностики «мягкой» поджелудочной железы и их влияние на возникновение панкреатического свища после панкреатодуоденальной резекции // Анналы хирургической гепатологии. — 2020. — Т. 25. — № 2. — С. 113–123. [Galchina YuS, Kаrmаzаnovsky GG, Kalinin DV, et al. Diagnostic criteria for a “soft” pancreas and their influence on the occurrence of pancreatic fistula after pancreatoduodenal. Annaly khirurgicheskoy gepatologii = Annals of HPB Surgery. 2020;25(2):113–123. (In Russ.)] doi: https://doi.org/10.16931/1995-5464.20202113-123.
DOI: 10.16931/1995-5464.20202113-123
Vreugdenburg TD, Ma N, Duncan JK, et al. Comparative diagnostic accuracy of hepatocyte-specific gadoxetic acid (Gd–EOB–DTPA) enhanced MR imaging and contrast enhanced CT for the detection of liver metastases: a systematic review and meta-analysis. Int J Colorectal Dis. 2016;31(11):1739–1749. doi: https://doi.org/10.1007/s00384-016-2664-9.
DOI: 10.1007/s00384-016-2664-9
McInnes MD, Hibbert RM, Inácio JR, et al. Focal Nodular Hyperplasia and Hepatocellular Adenoma: Accuracy of Gadoxetic Acid-enhanced MR Imaging — A Systematic Review. Radiology. 2015;277(2):413–423. doi: https://doi.org/10.1148/radiol.2015142986.
DOI: 10.1148/radiol.2015142986
Vernuccio F, Gagliano DS, Cannella R, et al. Spectrum of liver lesions hyperintense on hepatobiliary phase: an approach by clinical setting. Insights Imaging. 2021;12(1):8. doi: https://doi.org/10.1186/s13244-020-00928-w.
DOI: 10.1186/s13244-020-00928-w
Kudo M, Matsui O, Izumi N, et al. Liver Cancer Study Group of Japan. JSH consensus-based clinical practice guidelines for the management of hepatocellular carcinoma: 2014 update by the Liver Cancer Study Group of Japan. Liver Cancer. 2014;3(3–4):458–468. doi: https://doi.org/10.1159/000343875.
DOI: 10.1159/000343875
Kitao A, Matsui O, Yoneda N, et al. The uptake transporter OATP8 expression decreases during multistep hepatocarcinogenesis: correlation with gadoxetic acid enhanced MR imaging. Eur Radiol. 2011;21(10):2056–2066. doi: https://doi.org/10.1007/s00330-011-2165-8.
DOI: 10.1007/s00330-011-2165-8
Ba-Ssalamah A, Antunes C, Feier D, et al. Morphologic and molecular features of hepatocellular adenoma with gadoxetic acid-enhanced MR imaging. Radiology. 2015;277(1):104–113. doi: https://doi.org/10.1148/radiol.2015142366.
DOI: 10.1148/radiol.2015142366
Holzapfel K, Bruegel M, Eiber M, et al. Characterization of small (≤10 mm) focal liver lesions: value of respiratory-triggered echo-planar diffusion-weighted MR imaging. Eur J Radiol. 2010;76(1):89–95. doi: https://doi.org/10.1016/j.ejrad.2009.05.014.
DOI: 10.1016/j.ejrad.2009.05.014
Вдовенко В.С., Карельская Н.А., Кондратьев Е.В., и др. Криодеструкция злокачественных образований печени: предварительные результаты МРТ-мониторинга на этапах лечения // Медицинская визуализация. — 2019. — № 1. — С. 8–18. [Vdovenko VS, Кагеlsкауа NA, Kondratyev EV, et al. Сryodestruсtion of m8lign8nt liver lesions: MRI monitoring of trestment, preliminsry results. Medical Visualization. 2019;1:8–18. (In Russ.)] doi: https://doi.org/10.24835/1607-0763-2019-1-8-18.
DOI: 10.24835/1607-0763-2019-1-8-18
Ломовцева К.Х. Дифференциальная диагностика образований печени солидной структуры: роль диффузионно-взвешенных изображений и гепатоспецифичных контрастных средств: автореф. дис. ... канд. мед. наук. — М., 2019. — 24 с. [Lomovceva KH. Differencial’naya diagnostika obrazovanij pecheni solidnoj struktury: rol’ diffuzionno-vzveshennyh izobrazhenij i gepatospecifichnyh kontrastnyh sredstv: avtoref. dis. ... kand. med. nauk. Moscow; 2019. 24 s. (In Russ.)] Available from: https://www.sechenov.ru/upload/medialibrary/49e/AVTOREFERAT-v-pechat.pdfhttps://www.sechenov.ru/upload/medialibrary/49e/AVTOREFERAT-v-pechat.pdf
Jeong WK, Jamshidi N, Felker ER, et al. Radiomics and radiogenomics of primary liver cancers. Clin Mol Hepatol. 2019;25(1):21–29. doi: https://doi.org/10.3350/cmh.2018.100.
DOI: 10.3350/cmh.2018.100
Raman SP, Schroeder JL, Huang P, et al. Preliminary data using computed tomography texture analysis for the classification of hypervascular liver lesions: generation of a predictive model on the basis of quantitative spatial frequency measurements — a work in progress. J Comput Assist Tomogr. 2015;39(3):383–395. doi: https://doi.org/10.1097/RCT.0000000000000217.
DOI: 10.1097/RCT.0000000000000217
Stocker D, Marquez HP, Wagner MW, et al. MRI texture analysis for differentiation of malignant and benign hepatocellular tumors in the non-cirrhotic liver. Heliyon. 2018;4(11):e00987. doi: https://doi.org/10.1016/j.heliyon.2018.e00987.
DOI: 10.1016/j.heliyon.2018.e00987
Martins-Filho SN, Paiva C, Azevedo RS, et al. Histological Grading of Hepatocellular Carcinoma-A Systematic Review of Literature. Front Med (Lausanne). 2017;4:193. doi: https://doi.org/10.3389/fmed.2017.00193.
DOI: 10.3389/fmed.2017.00193
Chen W, Zhang T, Xu L, et al. Radiomics Analysis of Contrast-Enhanced CT for Hepatocellular Carcinoma Grading. Front Oncol. 2021;11:660509. doi: https://doi.org/10.3389/fonc.2021.660509.
DOI: 10.3389/fonc.2021.660509
Chang N, Cui L, Luo Y, et al. Development and multicenter validation of a CT-based radiomics signature for discriminating histological grades of pancreatic ductal adenocarcinoma. Quant Imaging Med Surg. 2020;10(3):692–702. doi: https://doi.org/10.21037/qims.2020.02.21.
DOI: 10.21037/qims.2020.02.21
Qiu W, Duan N, Chen X, et al. Pancreatic Ductal Adenocarcinoma: Machine Learning-Based Quantitative Computed Tomography Texture Analysis For Prediction Of Histopathological Grade. Cancer Manag Res. 2019;11:9253–9264. doi: https://doi.org/10.2147/CMAR.S218414.
DOI: 10.2147/CMAR.S218414
Yamashita R, Perrin T, Chakraborty J, et al. Radiomic feature reproducibility in contrast-enhanced CT of the pancreas is affected by variabilities in scan parameters and manual segmentation. Eur Radiol. 2020;30(1):195–205. doi: https://doi.org/10.1007/s00330-019-06381-8.
DOI: 10.1007/s00330-019-06381-8
Тихонова В.С., Кармазановский Г.Г., Кондратьев Е.В., и др. Влияние параметров низкодозового протокола сканирования на результаты текстурного анализа протоковой аденокарциномы поджелудочной железы // Анналы хирургической гепатологии. — 2021. — Т. 26. — № 1. — С. 25–33. [Tikhonova VS, Karmazanovsky GG, Kondratyev EV, et al. Influence of the low-dose CE-MDCT scanning protocol parameters on the results of pancreatic ductal adenocarcinoma radiomic analysis. Annaly khirurgicheskoy gepatologii = Annals of HPB Surgery. 2021;26(1):25–33. (In Russ.)] doi: https://doi.org/10.16931/1995-5464.2021125-33.
DOI: 10.16931/1995-5464.2021125-33
Eilaghi A, Baig S, Zhang Y, et al. CT texture features are associated with overall survival in pancreatic ductal adenocarcinoma — a quantitative analysis. BMC Med Imaging. 2017;17(1):38. doi: https://doi.org/10.1186/s12880-017-0209-5.
DOI: 10.1186/s12880-017-0209-5
Sandrasegaran K, Lin Y, Asare-Sawiri M, et al. CT texture analysis of pancreatic cancer. Eur Radiol. 2019;29(3):1067–1073. doi: https://doi.org/10.1007/s00330-018-5662-1.
DOI: 10.1007/s00330-018-5662-1
Kulkarni A, Carrion-Martinez I, Jiang NN, et al. Hypovascular pancreas head adenocarcinoma: CT texture analysis for assessment of resection margin status and high-risk features. Eur Radiol. 2020;30(5):2853–2860. doi: https://doi.org/10.1007/s00330-019-06583-0.
DOI: 10.1007/s00330-019-06583-0
Yun G, Kim YH, Lee YJ, et al. Tumor heterogeneity of pancreas head cancer assessed by CT texture analysis: association with survival outcomes after curative resection. Sci Rep. 2018;8(1):7226. doi: https://doi.org/10.1038/s41598-018-25627-x.
DOI: 10.1038/s41598-018-25627-x
Fang WH, Li XD, Zhu H, et al. Resectable pancreatic ductal adenocarcinoma: association between preoperative CT texture features and metastatic nodal involvement. Cancer Imaging. 2020;20(1):17. doi: https://doi.org/10.1186/s40644-020-0296-3.
DOI: 10.1186/s40644-020-0296-3
Park S, Chu LC, Hruban RH, et al. Differentiating autoimmune pancreatitis from pancreatic ductal adenocarcinoma with CT radiomics features. Diagn Interv Imaging. 2020;101(9):555–564. doi: https://doi.org/10.1016/j.diii.2020.03.002.
DOI: 10.1016/j.diii.2020.03.002
Zaheer A, Singh VK, Akshintala VS, et al. Differentiating autoimmune pancreatitis from pancreatic adenocarcinoma using dual-phase computed tomography. J Comput Assist Tomogr. 2014;38(1):146–152. doi: https://doi.org/10.1097/RCT.0b013e3182a9a431.
DOI: 10.1097/RCT.0b013e3182a9a431
Zhang JJ, Li QZ, Wang JH, et al. Contrast-enhanced CT and texture analysis of mass-forming pancreatitis and cancer in the pancreatic head. Zhonghua Yi Xue Za Zhi. 2019;99(33):2575–2580. Chinese. doi: https://doi.org/10.3760/cma.j.issn.0376-2491.2019.33.004.
DOI: 10.3760/cma.j.issn.0376-2491.2019.33.004
Wolske KM, Ponnatapura J, Kolokythas O, et al. Chronic Pancreatitis or Pancreatic Tumor? A Problem-solving Approach. Radiographics. 2019;39(7):1965–1982. doi: https://doi.org/10.1148/rg.2019190011.
DOI: 10.1148/rg.2019190011
Ren S, Zhao R, Zhang J, et al. Diagnostic accuracy of unenhanced CT texture analysis to differentiate mass-forming pancreatitis from pancreatic ductal adenocarcinoma. Abdom Radiol (NY). 2020;45(5):1524–1533. doi: https://doi.org/10.1007/s00261-020-02506-6.
DOI: 10.1007/s00261-020-02506-6
Ren S, Zhao R, Zhang J, et al. Diagnostic accuracy of unenhanced CT texture analysis to differentiate mass-forming pancreatitis from pancreatic ductal adenocarcinoma. Abdom Radiol (NY). 2020;45(5):1524–1533. doi: https://doi.org/10.1007/s00261-020-02506-6.
DOI: 10.1007/s00261-020-02506-6
Ciaravino V, Cardobi N, De Robertis R, et al. CT Texture Analysis of Ductal Adenocarcinoma Downstaged After Chemotherapy. Anticancer Res. 2018;38(8):4889–4895. doi: https://doi.org/10.21873/anticanres.12803.
DOI: 10.21873/anticanres.12803
Gruzdev IS, Zamyatina KA, Tikhonova VS, et al. Reproducibility of CT texture features of pancreatic neuroendocrine neoplasms. Eur J Radiol. 2020;133:109371. doi: https://doi.org/10.1016/j.ejrad.2020.109371.
DOI: 10.1016/j.ejrad.2020.109371
Zhao B, Tan Y, Tsai WY, et al. Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep. 2016;6:23428. doi: https://doi.org/10.1038/srep23428.
DOI: 10.1038/srep23428
Pavic M, Bogowicz M, Würms X, et al. Influence of inter-observer delineation variability on radiomics stability in different tumor sites. Acta Oncol. 2018;57(8):1070–1074. doi: https://doi.org/10.1080/0284186X.2018.1445283.
DOI: 10.1080/0284186X.2018.1445283
Белоусова Е.Л., Кармазановский Г.Г., Кубышкин В.А., и др. КТ-признаки, позволяющие определить оптимальную тактику лечения при нейроэндокринных опухолях поджелудочной железы // Медицинская визуализация. — 2015. — № 5. — С. 73–82. [Belousova EL, Karmazanovsky GG, Kubyshkin VA, et al. CT Features Predict the Optimal Therapeutic Approach for Pancreatic Neuroendocrine Neoplasms. Medical Visualization. 2015;5:73–82. (In Russ.)] Available from: https://medvis.vidar.ru/jour/article/view/231https://medvis.vidar.ru/jour/article/view/231
Belousova E, Karmazanovsky G, Kriger A, et al. Contrast-enhanced MDCT in patients with pancreatic neuroendocrine tumours: correlation with histological findings and diagnostic performance in differentiation between tumour grades. Clin Radiol. 2017;72(2):150–158. doi: https://doi.org/10.1016/j.crad.2016.10.021.
DOI: 10.1016/j.crad.2016.10.021
Груздев И.С., Тихонова В.С., Замятина К.А., и др. Компьютерная томография в прогнозировании степени дифференцировки гиперваскулярных нейроэндокринных опухолей поджелудочной железы: текстурный анализ и характеристики контрастирования // REJR. — 2021. — Т. 11. — № 4. — С. 105–114. [Gruzdev IS, Tikhonova VS, Zamyatina KA, et al. Computed tomography in prediction of hypervascular pancreatic neuroendocrine tumors grade: texture analysis and contrast enhancement features. REJR. 2021;11(4):105–114. (In Russ.)] doi: https://doi.org/10.21569/2222-7415-2021-11-4-105-114.
DOI: 10.21569/2222-7415-2021-11-4-105-114
Lin X, Xu L, Wu A, et al. Differentiation of intrapancreatic accessory spleen from small hypervascular neuroendocrine tumor of the pancreas: textural analysis on contrast-enhanced computed tomography. Acta Radiol. 2019;60(5):553–560. doi: https://doi.org/10.1177/0284185118788895.
DOI: 10.1177/0284185118788895
Van der Pol CB, Lee S, Tsai S, et al. Differentiation of pancreatic neuroendocrine tumors from pancreas renal cell carcinoma metastases on CT using qualitative and quantitative features. Abdom Radiol (NY). 2019;44(3):992–999. doi: https://doi.org/10.1007/s00261-018-01889-x.
DOI: 10.1007/s00261-018-01889-x
Liu KL, Wu T, Chen PT, et al. Deep learning to distinguish pancreatic cancer tissue from non-cancerous pancreatic tissue: a retrospective study with cross-racial external validation. Lancet Digit Health. 2020;2(6):e303–e313. doi: https://doi.org/10.1016/S2589-7500(20)30078-9.
DOI: 10.1016/S2589-7500(20)30078-9
Chan HP, Samala RK, Hadjiiski LM, et al. Deep Learning in Medical Image Analysis. Adv Exp Med Biol. 2020;1213:3–21. doi: https://doi.org/10.1007/978-3-030-33128-3_1.
DOI: 10.1007/978-3-030-33128-3_1
Yasaka K, Abe O. Deep learning and artificial intelligence in radiology: Current applications and future directions. PLoS Med. 2018;15(11):e1002707. doi: https://doi.org/10.1371/journal.pmed.1002707.
DOI: 10.1371/journal.pmed.1002707
Yasaka K, Akai H, Abe O, et al. Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study. Radiology. 2018;286(3):887–896. doi: https://doi.org/10.1148/radiol.2017170706.
DOI: 10.1148/radiol.2017170706
Kim K, Kim S, Han K, et al. Diagnostic Performance of Deep Learning-Based Lesion Detection Algorithm in CT for Detecting Hepatic Metastasis from Colorectal Cancer. Korean J Radiol. 2021;22(6):912–921. doi: https://doi.org/10.3348/kjr.2020.0447.
DOI: 10.3348/kjr.2020.0447