Каприн А.Д., Старинский В.В., Шахзадова А.О., Лисичникова И.В. Злокачественные новообразования в России в 2022 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2023. 275 с.
Потекаев Н.Н., Титов К.С., Маркин А.А., Кашурников А.Ю. Эпидемиология меланомы кожи в Российской Федерации и в городе Москве за 10 лет (2008–2018 гг.). Клиническая дерматология и венерология 2020;19(6):810–6. DOI: 10.17116/klinderma202019061810.
DOI: 10.17116/klinderma202019061810
Эркенова Ф.Д., Пузин С.Н. Статистика меланомы в России и странах Европы. Медико-социальная экспертиза и реабилитация 2020;23(1):44–52. DOI: 10.17816/MSER34259.
DOI: 10.17816/MSER34259
van den Berg J.H., Heemskerk B., van Rooij N. et al. Tumor infiltrating lymphocytes (TIL) therapy in metastatic melanoma: boosting of neoantigen-specific T cell reactivity and long-term follow-up. J Immunother Cancer 2020;8(2):e000848. DOI: 10.1136/jitc-2020-000848.
DOI: 10.1136/jitc-2020-000848
Mulder E.E.A.P., Dwarkasing J.T., Tempel D. et al. Validation of a clinicopathological and gene expression profile model for sentinel lymph node metastasis in primary cutaneous melanoma. Br J Dermatol 2021;184(5):944–51. DOI: 10.1111/bjd.19499.
DOI: 10.1111/bjd.19499
Khosravi H., Akabane A.L., Alloo A. et al. Metastatic melanoma with spontaneous complete regression of a thick primary lesion. JAAD Case Rep 2016;2(6):439–41. DOI: 10.1016/j.jdcr.2016.09.011.
DOI: 10.1016/j.jdcr.2016.09.011
Shah S., Al-Omari A., Cook K.W. et al. What do cancer-specific T cells ‘see’? Discov Immunol 2022;2(1):kyac011. DOI: 10.1093/discim/kyac011.
DOI: 10.1093/discim/kyac011
Motofei I.G. Melanoma and autoimmunity: spontaneous regressions as a possible model for new therapeutic approaches. Melanoma Res 2019;29(3):231–6. DOI: 10.1097/CMR.0000000000000573.
DOI: 10.1097/CMR.0000000000000573
Larkin J., Chiarion-Sileni V., Gonzales R. et al. Five-year survival with combined nivolumab and ipilimumab in advance melanoma. N Engl J Med 2019;381(16):1535–46. DOI: 10.1056/NEJMoa1910836.
DOI: 10.1056/NEJMoa1910836
Pan C., Shang J., Jiang H. et al. Transcriptome analysis reveals the molecular immunological characteristics of lesions in patients with halo nevi when compared to stable vitiligo, normal nevocytic nevi and cutaneous melanoma. J Inflamm Res 2021;14:4111–24. DOI: 10.2147/JIR.S321672.
DOI: 10.2147/JIR.S321672
Aung P.P., Nagarajan P., Prieto V.G. Regression in primary cutaneous melanoma: etiopathogenesis and clinical significance. Lab Investig 2017;97(6):657–68. DOI: 10.1038/labinvest.2017.8.
DOI: 10.1038/labinvest.2017.8
Osella-Abate S., Conti L., Annaratone L. et al. Phenotypic characterisation of immune cells associated with histological regression in cutaneous melanoma. Pathology 2019;51(5):487–93. DOI: 10.1016/j.pathol.2019.04.001.
DOI: 10.1016/j.pathol.2019.04.001
Blanc F., Bertho N., Piton G. et al. Deciphering the immune reaction leading to spontaneous melanoma regression: initial role of MHCII+ CD163– macrophages. Cancer Immunol Immunother 2023;72(11):3507–21. DOI: 10.1007/s00262-023-03503-6.
DOI: 10.1007/s00262-023-03503-6
Gauthier L., Morel A., Anceriz N. et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell 2019;177(7):1701–13. DOI: 10.1016/j.cell.2019.04.041.
DOI: 10.1016/j.cell.2019.04.041
Rahimi A., Malakoutikhah Z., Rahimmanesh I. et al. The nexus of natural killer cells and melanoma tumor microenvironment: crosstalk, chemotherapeutic potential, and innovative NK cell-based therapeutic strategies. Cancer Cell Int 2023;23(1):312. DOI: 10.1186/s12935-023-03134-y.
DOI: 10.1186/s12935-023-03134-y
Nakai Y., Ueki A., Yamanaka K. Progressive vitiligo induced by recurrent melanoma. Clin Case Rep 2022;10(1):e05290. DOI: 10.1002/ccr3.5290.
DOI: 10.1002/ccr3.5290
Paolino G., Pampena R., Di Ciaccio S.M. et al. Thin amelanotic and hypomelanotic melanoma: clinicopathological and dermoscopic features. Medicina (Kaunas) 2024;60(8):1239. DOI: 10.3390/medicina60081239.
DOI: 10.3390/medicina60081239
Ribero S., Moscarella E., Ferrara G. et al. Regression in cutaneous melanoma: a comprehensive review from diagnosis to prognosis. J Eur Acad Dermatol Venereol 2016;30(12):2030–7. DOI: 10.1111/jdv.13815.
DOI: 10.1111/jdv.13815
Cartron A.M., Aldana P.C., Khachemoune A. Reporting regression in primary cutaneous melanoma. Part 1: history, histological criteria and pathogenesis. Clin Exp Dermatol 2021;46(1):28–33. DOI: 10.1111/ced.14328.
DOI: 10.1111/ced.14328
Conde E., Casares N., Mancheño U. et al. FOXP3 expression diversifies the metabolic capacity and enhances the efficacy of CD8 T cells in adoptive immunotherapy of melanoma. Mol Ther 2023;31(1):48–65. DOI: 10.1016/j.ymthe.2022.08.017.
DOI: 10.1016/j.ymthe.2022.08.017
Maibach F., Sadozai H., Seyed Jafari S.M. et al. Tumorinfiltrating lymphocytes and their prognostic value in cutaneous melanoma. Front Immunol 2020;11:2105. DOI: 10.3389/fimmu.2020.02105.
DOI: 10.3389/fimmu.2020.02105
Camisaschi C., Vallacchi V., Castelli C. et al. Immune cells in the melanoma microenvironment hold information for prediction of the risk of recurrence and response to treatment. Expert Rev Mol Diagn 2014;14(6):643–6. DOI: 10.1586/14737159.2014.928206.
DOI: 10.1586/14737159.2014.928206
Taylor R.C., Patel A., Panageas K.S. et al. Tumor-infiltrating lymphocytes predict sentinel lymph node positivity in patients with cutaneous melanoma. J Clin Oncol 2007;25(7):869–75. DOI: 10.1200/JCO.2006.08.9755.
DOI: 10.1200/JCO.2006.08.9755
Жулай Г.А., Олейник Е.К. Регуляторные Т-лимфоциты CD4+CD25+FoxP3+. Перспективы применения в иммунотерапии. Труды Карельского научного центра Российской академии наук 2012;2:3–17.
Zhou Z., Xu J., Liu S. et al. Infiltrating treg reprogramming in the tumor immune microenvironment and its optimization for immunotherapy. Biomark Res 2024;12(1):97. DOI: 10.1186/s40364-024-00630-9.
DOI: 10.1186/s40364-024-00630-9
Бережная Н.М. Роль клеток системы иммунитета в микроокружении опухоли. Клетки и цитокины – участники воспаления. Онкология 2009;11(1):6–17.
Gerber A.L., Münst A., Schlapbach C. et al. High expression of FOXP3 in primary melanoma is associated with tumour progression. Br J Dermatol 2014;170(1):103–9. DOI: 10.1111/bjd.12641.
DOI: 10.1111/bjd.12641
Knol A.C., Nguyen J.M., Quéreux G. et al. Prognostic value of tumor-infiltrating Foxp3+ T-cell subpopulations in metastatic melanoma. Exp Dermatol 2011;20(5):430–4. DOI: 10.1111/j.1600-0625.2011.01260.
DOI: 10.1111/j.1600-0625.2011.01260
Fujii H., Arakawa A., Kitoh A. et al. Perturbations of both nonregulatory and regulatory FOXP3+ T cells in patients with malignant melanoma. J Dermatol 2011;164(5):1052–60. DOI: 10.1111/j.1365-2133.2010.10199.
DOI: 10.1111/j.1365-2133.2010.10199
Morrison S.L., Han G., Elenwa F. et al.; Sentinel Lymph Node Working Group. Is the presence of tumor-infiltrating lymphocytes predictive of outcomes in patients with melanoma? Cancer 2022;128(7):1418–28. DOI: 10.1002/cncr.34013.
DOI: 10.1002/cncr.34013
Grigore L.E., Ungureanu L., Bejinariu N. et al. Complete regression of primary melanoma associated with nevi involution under BRAF inhibitors: A case report and review of the literature. Oncol Lett 2019;17(5):4176–82. DOI: 10.3892/ol.2018.9738.
DOI: 10.3892/ol.2018.9738
Сергеев Ю.Ю., Мордовцева В.В. Меланома кожи с явлениями регресса: описание клинического случая и обзор литературы. Клиническая дерматология и венерология 2017;16(5):36–41. DOI: 10.17116/klinderma201716536-41.
DOI: 10.17116/klinderma201716536-41
Kocsis A., Karsko L., Kurgyis Z. et al. Is it necessary to perform sentinel lymph node biopsy in thin melanoma? A retrospective single center analysis. Pathol Oncol Res 2020;26(3):1861–8. DOI: 10.1007/s12253-019-00769-z.
DOI: 10.1007/s12253-019-00769-z
Vargas G.M., Shafique N., Xu X., Karakousis G. Tumorinfiltrating lymphocytes as a prognostic and predictive factor for melanoma. Expert Rev Mol Diagn 2024;24(4):299–310. DOI: 10.1080/14737159.2024.2312102.
DOI: 10.1080/14737159.2024.2312102
Bastian B.C. Hypothesis: a role for telomere crisis in spontaneous regression of melanoma. Arch Dermatol 2003;139(5):667–8. DOI: 10.1001/archderm.139.5.667.
DOI: 10.1001/archderm.139.5.667
Cartron A.M., Aldana P.C., Khachemoune A. Reporting regression in primary cutaneous melanoma. Part 2: prognosis, evaluation and management. Clin Exp Dermatol 2020;45(7):818–23. DOI: 10.1111/ced.14329.
DOI: 10.1111/ced.14329
Morris K.T., Busam K.J., Bero S. et al. Primary cutaneous melanoma with regression does not require a lower threshold for sentinel lymph node biopsy. Ann Surg Oncol 2008;15(1):316–22. DOI: 10.1245/s10434-007-9675-2.
DOI: 10.1245/s10434-007-9675-2
Rubinstein J.C., Han G., Jackson L. et al. Regression in thin melanoma is associated with nodal recurrence after a negative sentinel node biopsy. Cancer Med 2016;5(10):2832–40. DOI: 10.1002/cam4.922.
DOI: 10.1002/cam4.922
Aivazian K., Ahmed T., El Sharouni M.A. et al. Correction to: Histological regression in melanoma: impact on sentinel lymph node status and survival. Mod Pathol 2021;34(11):2091. DOI: 10.1038/s41379-021-00878-8.
DOI: 10.1038/s41379-021-00878-8
El Sharouni M., Aivazian K., Witkamp A.J. et al. Association of histologic regression with a favorable outcome in patients with stage 1 and stage 2 cutaneous melanoma. JAMA Dermatol 2021;157(2):166–73. DOI:10.1001/jamadermatol.2020.5032.
DOI: 10.1001/jamadermatol.2020.5032
Kaur C., Thomas R.J., Desai N. et al. The correlation of regression in primary melanoma with sentinel lymph node status. J Clin Pathol 2008;61(3):297–300. DOI: 10.1136/jcp.2007.049411.
DOI: 10.1136/jcp.2007.049411
Tas F., Erturk K. Presence of histological regression as a prognostic factor in cutaneous melanoma patients. Melanoma Res 2016;26(5):492–6. DOI: 10.1097/CMR.0000000000000277.
DOI: 10.1097/CMR.0000000000000277
Morrison S., Han G., Elenwa F. et al.; Sentinel Lymph Node Working Group. Is there a relationship between TILs and regression in melanoma? Ann Surg Oncol 2022;29(5):2854–66. DOI: 10.1245/s10434-021-11251-z.
DOI: 10.1245/s10434-021-11251-z