Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
ГлавнаяРезультаты поиска
Статья; ОбзорИскать документыПерейти к записи. 2024; Т. 9, № 1: 112–123. DOI:10.23946/2500-0764-2024-9-1-112-123
Роль кишечной микробиоты в диагностике колоректального рака
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1,2]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Аффилированные организации
[1]Искать документыПерейти к записи
[2]Искать документыПерейти к записи
Аннотация

Колоректальный рак (КРР) является одной из наиболее распространенных форм онкологической патологии в мире. Целью настоящего обзора литературы является оценка роли микроорганизмов в развитии рака толстой кишки. В статье также обсуждаются возможности использования обнаружения отдельных таксонов микроорганизмов в качестве биомаркеров для скрининга колоректального рака. При развитии рака устанавливается сложное взаимодействие между микробиомом кишечника, микроокружением опухоли и иммунной системой. Фекальный микробиом у пациентов с КРР характеризуется изменениями таксономического состава со снижением представленности микроорганизмов с протективными функциями (Clostridiales, Roseburia, Feacalibacterium) наряду с повышенным содержанием потенциально канцерогенных таксонов (Bacteroides, Fusobacterium, Campylobacter, Escherichia, Porphyromonas, Prevotella nigrescens, Thermanaerovibrio acidaminovorans). Результаты последних исследований с использованием метагеномного секвенирования образцов кала, биоптатов опухолей свидетельствуют о повышенной представленности бактерий – патобионтов ротовой полости в составе кишечного микробиома у пациентов с КРР по сравнению с контрольной группой, что может указывать на их потенциальную этиологическую роль в развитии КРР. Обнаружение вышеуказанных таксонов может использоваться для дифференциации лиц с раком толстой кишки от здоровых лиц.

Перспективы дальнейших исследований связаны с выявлением и подтверждением в проспективных эпидемиологических исследованиях микробных маркеров КРР, применимых для неинвазивного метода скрининга данной патологии.

Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Злокачественные новообразования в России в 2021 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2022.

Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71(3):209-249. https://doi.org/10.3322/caac.21660.
DOI: 10.3322/caac.21660

Wu C.X., Gu K., Gong Y.M., Zheng R., Wang S., Chen R., Zhang S., Shi Y., Wei W., Fu Ch., He J. Analysis of incidence and mortality of colorectal cancer in China. China Oncology. 2020;30(04):241‐245. https://doi.org/10.19401/j.cnki.1007-3639.2020.04.001.
DOI: 10.19401/j.cnki.1007-3639.2020.04.001

Siegel R.L., Miller K.D., Fedewa S.A., Ahnen D.J., Meester R.G.S., Barzi A., Jemal A. Colorectal cancer statistics, 2017. CA Cancer J. Clin. 2017;67(3):177-193. https://doi.org/10.3322/caac.21395.
DOI: 10.3322/caac.21395

Scott A.J., Alexander J.L., Merrifield C.A., Cunningham D., Jobin C., Brown R., Alverdy J., O’Keefe S.J., Gaskins H.R., Teare J., Yu J., Hughes D.J., Verstraelen H., Burton J., O’Toole P.W., Rosenberg D.W., Marchesi J.R., Kinross J.M. International Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis. Gut. 2019;68(9):1624-1632. https://doi.org/10.1136/gutjnl-2019-318556.
DOI: 10.1136/gutjnl-2019-318556

Lloyd-Price J., Mahurkar A., Rahnavard G., Crabtree J., Orvis J., Hall A.B., Brady A., Creasy H.H., McCracken C., Giglio M.G., McDonald D., Franzosa E.A., Knight R., White O., Huttenhower C. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature. 2017;550(7674):61-66. https://doi.org/10.1038/nature23889.
DOI: 10.1038/nature23889

Grenham S., Clarke G., Cryan J.F., Dinan T.G. Brain-gut-microbe communication in health and disease. Front. Physiol. 2011;2:94. https://doi.org/10.3389/fphys.2011.00094.
DOI: 10.3389/fphys.2011.00094

Zackular J.P., Rogers M.A., Ruffin M.T., Schloss P.D. The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev. Res. (Phila). 2014;7(11):1112-1121. https://doi.org/10.1158/1940-6207.CAPR-14-0129.
DOI: 10.1158/1940-6207.CAPR-14-0129

Sanapareddy N., Legge R.M., Jovov B., McCoy A., Burcal L., Araujo-Perez F., Randall T.A., Galanko J., Benson A., Sandler R.S., Rawls J.F., Abdo Z., Fodor A.A., Keku T.O. Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans. ISME J. 2012;6(10):1858-1868. https://doi.org/10.1038/ismej.2012.43.
DOI: 10.1038/ismej.2012.43

Ahn J., Sinha R., Pei Z., Dominianni C., Wu J., Shi J., Goedert J.J., Hayes R.B., Yang L. Human gut microbiome and risk for colorectal cancer. J. Natl. Cancer Inst. 2013;105(24):1907-1911. https://doi.org/10.1093/jnci/djt300.
DOI: 10.1093/jnci/djt300

Ahn J., Sinha R., Pei Z., Dominianni C., Wu J., Shi J., Goedert J.J., Hayes R.B., Yang L. Human gut microbiome and risk for colorectal cancer. J. Natl. Cancer Inst. 2013;105(24):1907-1911. https://doi.org/10.1093/jnci/djt300.
DOI: 0.1093/jnci/djt300

Kostic A.D., Gevers D., Pedamallu C.S., Michaud M., Duke F., Earl A.M., Ojesina A.I., Jung J., Bass A.J., Tabernero J., Baselga J., Liu C., Shivdasani R.A., Ogino S., Birren B.W., Huttenhower C., Garrett W.S., Meyerson M. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22(2):292-298. https://doi.org/10.1101/gr.126573.111.
DOI: 10.1101/gr.126573.111

Obuya S., Elkholy A., Avuthu N., Behring M., Bajpai P., Agarwal S., Kim H.G., El-Nikhely N., Akinyi P., Orwa J., Afaq F., Abdalla M., Michael A., Farouk M., Bateman L.B., Fouad M., Saleh M., Guda C., Manne U., Arafat W. A signature of Prevotella copri and Faecalibacterium prausnitzii depletion, and a link with bacterial glutamate degradation in the Kenyan colorectal cancer patients. J. Gastrointest. Oncol. 2022;13(5):2282-2292. https://doi.org/10.21037/jgo-22-116.
DOI: 10.21037/jgo-22-116

Zhou P., Yang D., Sun D., Zhou Y. Gut microbiome: New biomarkers in early screening of colorectal cancer. J. Clin. La.b Anal. 2022;36(5):e24359. https://doi.org/10.1002/jcla.24359.
DOI: 10.1002/jcla.24359

Obón-Santacana M., Mas-Lloret J., Bars-Cortina D., Criado-Mesas L., Carreras-Torres R., Díez-Villanueva A., Moratalla-Navarro F., Guinó E., Ibáñez-Sanz G., Rodríguez-Alonso L., Mulet-Margalef N., Mata A., García-Rodríguez A., Duell E.J., Pimenoff V.N., Moreno V. Meta-Analysis and Validation of a Colorectal Cancer Risk Prediction Model Using Deep Sequenced Fecal Metagenomes. Cancers (Basel). 2022;14(17):4214. https://doi.org/10.3390/cancers14174214.
DOI: 10.3390/cancers14174214

Duvallet C., Gibbons S.M., Gurry T., Irizarry R.A., Alm E.J. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 2017;8(1):1784. https://doi.org/10.1038/s41467-017-01973-8.
DOI: 10.1038/s41467-017-01973-8

Burns M.B., Lynch J., Starr T.K., Knights D., Blekhman R. Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment. Genome Med. 2015;7(1):55. https://doi.org/10.1186/s13073-015-0177-8.
DOI: 10.1186/s13073-015-0177-8

Dai Z., Coker O.O., Nakatsu G., Wu W.K.K., Zhao L., Chen Z., Chan F.K.L., Kristiansen K., Sung J.J.Y., Wong S.H., Yu J. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome. 2018;6(1):70. https://doi.org/10.1186/s40168-018-0451-2.
DOI: 10.1186/s40168-018-0451-2

Dai Z., Coker O.O., Nakatsu G., Wu W.K.K., Zhao L., Chen Z., Chan F.K.L., Kristiansen K., Sung J.J.Y., Wong S.H., Yu J. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome. 2018;6(1):70. https://doi.org/10.1186/s40168-018-0451-2.
DOI: 0.1186/s40168-018-0451-2

Thomas A.M., Manghi P., Asnicar F., Pasolli E., Armanini F., Zolfo M., Beghini F., Manara S., Karcher N., Pozzi C., Gandini S., Serrano D., Tarallo S., Francavilla A., Gallo G., Trompetto M., Ferrero G., Mizutani S., Shiroma H., Shiba S., Shibata T., Yachida S., Yamada T., Wirbel J., Schrotz-King P., Ulrich C.M., Brenner H., Arumugam M., Bork P., Zeller G., Cordero F., Dias-Neto E., Setubal J.C., Tett A., Pardini B., Rescigno M., Waldron L., Naccarati A., Segata N. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 2019;25(4):667- 678. https://doi.org/10.1038/s41591-019-0405-7.
DOI: 10.1038/s41591-019-0405-7

Flemer B., Warren R.D., Barrett M.P., Cisek K., Das A., Jeffery I.B., Hurley E., O’Riordain M., Shanahan F., O’Toole P.W. The oral microbiota in colorectal cancer is distinctive and predictive. Gut. 2018;67(8):1454- 1463. https://doi.org/10.1136/gutjnl-2017-314814.
DOI: 10.1136/gutjnl-2017-314814

Flemer B., Warren R.D., Barrett M.P., Cisek K., Das A., Jeffery I.B., Hurley E., O’Riordain M., Shanahan F., O’Toole P.W. The oral microbiota in colorectal cancer is distinctive and predictive. Gut. 2018;67(8):1454- 1463. https://doi.org/10.1136/gutjnl-2017-314814.
DOI: 10.1038/ncomms9727

Nakatsu G., Li X., Zhou H., Sheng J., Wong S.H., Wu W.K., Ng S.C., Tsoi H., Dong Y., Zhang N., He Y., Kang Q., Cao L., Wang K., Zhang J., Liang Q., Yu J., Sung J.J. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat. Commun. 2015;6:8727. https://doi.org/10.1038/ncomms9727.
DOI: 10.1038/ncomms9727

Nakatsu G., Li X., Zhou H., Sheng J., Wong S.H., Wu W.K., Ng S.C., Tsoi H., Dong Y., Zhang N., He Y., Kang Q., Cao L., Wang K., Zhang J., Liang Q., Yu J., Sung J.J. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat. Commun. 2015;6:8727. https://doi.org/10.1038/ncomms9727.
DOI: 10.1136/gutjnl-2017-314814

Andrian E., Grenier D., Rouabhia M. Porphyromonas gingivalis-epithelial cell interactions in periodontitis. J. Dent. Res. 2006;85(5):392-403. https://doi.org/10.1177/154405910608500502.
DOI: 10.1177/154405910608500502

Hajishengallis G., Liang S., Payne M.A., Hashim A., Jotwani R., Eskan M.A., McIntosh M.L., Alsam A., Kirkwood K.L., Lambris J.D., Darveau R.P., Curtis M.A. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe. 2011;10(5):497-506. https://doi.org/10.1016/j.chom.2011.10.006.
DOI: 10.1016/j.chom.2011.10.006

Harris J.I., Russell R.R., Curtis M.A., Aduse-Opoku J., Taylor J.J. Molecular mediators of Porphyromonas gingivalis-induced T-cell apoptosis. Oral Microbiol. Immunol. 2002;17(4):224-230. https://doi.org/10.1034/j.1399-302x.2002.170404.x.
DOI: 10.1034/j.1399-302x.2002.170404.x

Katz J., Onate M.D., Pauley K.M., Bhattacharyya I., Cha S. Presence of Porphyromonas gingivalis in gingival squamous cell carcinoma. Int. J. Oral Sci. 2011;3(4):209-215. https://doi.org/10.4248/IJOS11075.
DOI: 10.4248/IJOS11075

Chen M.F., Lu M.S., Hsieh C.C., Chen W.C. Porphyromonas gingivalis promotes tumor progression in esophageal squamous cell carcinoma. Cell. Oncol. (Dordr). 2021;44(2):373-384. https://doi.org/10.1007/s13402-020-00573-x.
DOI: 10.1007/s13402-020-00573-x

Li R., Xiao L., Gong T., Liu J., Li Y., Zhou X., Li Y., Zheng X. Role of oral microbiome in oral oncogenesis, tumor progression, and metastasis. Mol. Oral Microbiol. 2023;38(1):9-22. https://doi.org/10.1111/omi.12403.
DOI: 10.1111/omi.12403

Ahn J., Segers S., Hayes R.B. Periodontal disease, Porphyromonas gingivalis serum antibody levels and orodigestive cancer mortality. Carcinogenesis. 2012;33(5):1055-1058. https://doi.org/10.1093/carcin/bgs112.
DOI: 10.1093/carcin/bgs112

Zhang S., Li C., Liu J., Geng F., Shi X., Li Q., Lu Z., Pan Y. Fusobacterium nucleatum promotes epithelial-mesenchymal transiton through regulation of the lncRNA MIR4435-2HG/miR-296-5p/Akt2/ SNAI1 signaling pathway. FEBS J. 2020;287(18):4032-4047. https://doi.org/10.1111/febs.15233.
DOI: 10.1111/febs.15233

Signat B., Roques C., Poulet P., Duffaut D. Fusobacterium nucleatum in periodontal health and disease. Curr. Issues Mol. Biol. 2011;13(2):25-36.

Russo E., Gloria L.D., Nannini G., Meoni G., Niccolai E., Ringressi M.N., Baldi S., Fani R., Tenori L., Taddei A., Ramazzotti M., Amedei A. From adenoma to CRC stages: the oral-gut microbiome axis as a source of potential microbial and metabolic biomarkers of malignancy. Neoplasia. 2023;40:100901. https://doi.org/10.1016/j.neo.2023.100901.
DOI: 10.1016/j.neo.2023.100901

Abed J., Emgård J.E., Zamir G., Faroja M., Almogy G., Grenov A., Sol A., Naor R., Pikarsky E., Atlan K.A., Mellul A., Chaushu S., Manson A.L., Earl A.M., Ou N., Brennan C.A., Garrett W.S., Bachrach G. Fap2 Mediates Fusobacterium nucleatum Colorectal Adenocarcinoma Enrichment by Binding to Tumor-Expressed Gal-GalNAc. Cell Host Microbe. 2016;20(2):215-225. https://doi.org/10.1016/j.chom.2016.07.006.
DOI: 10.1016/j.chom.2016.07.006

Kostic A.D., Chun E., Robertson L., Glickman J.N., Gallini C.A., Michaud M., Clancy T.E., Chung D.C., Lochhead P., Hold G.L., El-Omar E.M., Brenner D., Fuchs C.S., Meyerson M., Garrett W.S. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumorimmune microenvironment. Cell Host Microbe. 2013;14(2):207-215. https://doi.org/10.1016/j.chom.2013.07.007.
DOI: 10.1016/j.chom.2013.07.007

Park S.R., Kim D.J., Han S.H., Kang M.J., Lee J.Y., Jeong Y.J., Lee S.J., Kim T.H., Ahn S.G., Yoon J.H., Park J.H. Diverse Toll-like receptors mediate cytokine production by Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in macrophages. Infect. Immun. 2014;82(5):1914-1920. https://doi.org/10.1128/IAI.01226-13.
DOI: 10.1128/IAI.01226-13

Lee J., Roberts J.S., Atanasova K.R., Chowdhury N., Han K., Yilmaz Ö. Human Primary Epithelial Cells Acquire an Epithelial-MesenchymalTransition Phenotype during Long-Term Infection by the Oral Opportunistic Pathogen, Porphyromonas gingivalis. Front. Cell. Infect. Microbiol. 2017;7:493. https://doi.org/10.3389/fcimb.2017.00493.
DOI: 10.3389/fcimb.2017.00493

Yachida S., Mizutani S., Shiroma H., Shiba S., Nakajima T., Sakamoto T., Watanabe H., Masuda K., Nishimoto Y., Kubo M., Hosoda F., Rokutan H., Matsumoto M., Takamaru H., Yamada M., Matsuda T., Iwasaki M., Yamaji T., Yachida T., Soga T., Kurokawa K., Toyoda A., Ogura Y., Hayashi T., Hatakeyama M., Nakagama H., Saito Y., Fukuda S., Shibata T., Yamada T. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 2019;25(6):968-976. https://doi.org/10.1038/s41591-019-0458-7.
DOI: 10.1038/s41591-019-0458-7

Flanagan L., Schmid J., Ebert M., Soucek P., Kunicka T., Liska V., Bruha J., Neary P., Dezeeuw N., Tommasino M., Jenab M., Prehn J.H., Hughes D.J. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur. J. Clin. Microbiol. Infect. Dis. 2014;33(8):1381-1390. https://doi.org/10.1007/s10096-014-2081-3.
DOI: 10.1007/s10096-014-2081-3

Castellarin M., Warren R.L., Freeman J.D., Dreolini L., Krzywinski M., Strauss J., Barnes R., Watson P., Allen-Vercoe E., Moore R.A., Holt R.A. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22(2):299-306. https://doi.org/10.1101/gr.126516.111.
DOI: 10.1101/gr.126516.111

McCOY W.C., Mason J.M. Enterococcal endocarditis associated with carcinoma of the sigmoid; report of a case. J. Med. Assoc. State Ala. 1951;21(6):162-166.

Poyart C., Quesne G., Trieu-Cuot P. Taxonomic dissection of the Streptococcus bovis group by analysis of manganese-dependent superoxide dismutase gene (sodA) sequences: reclassification of ‘Streptococcus infantarius subsp. coli’ as Streptococcus lutetiensis sp. nov. and of Streptococcus bovis biotype 11.2 as Streptococcus pasteurianus sp. nov. Int. J. Syst. Evol. Microbiol. 2002;52(Pt 4):1247- 1255. https://doi.org/10.1099/00207713-52-4-1247.
DOI: 10.1099/00207713-52-4-1247

Sillanpää J., Nallapareddy S.R., Qin X., Singh K.V., Muzny D.M., Kovar C.L., Nazareth L.V., Gibbs R.A., Ferraro M.J., Steckelberg J.M., Weinstock G.M., Murray B.E. A collagen-binding adhesin, Acb, and ten other putative MSCRAMM and pilus family proteins of Streptococcus gallolyticus subsp. gallolyticus (Streptococcus bovis Group, biotype I). J. Bacteriol. 2009;191(21):6643-6653. https://doi.org/10.1128/JB.00909-09.
DOI: 10.1128/JB.00909-09

Dumke J., Vollmer T., Akkermann O., Knabbe C., Dreier J. Case-control study: Determination of potential risk factors for the colonization of healthy volunteers with Streptococcus gallolyticus subsp. gallolyticus. PLoS One. 2017;12(5):e0176515. https://doi.org/10.1371/journal.pone.0176515.
DOI: 10.1371/journal.pone.0176515

Périchon B., Lichtl-Häfele J., Bergsten E., Delage V., Trieu-Cuot P., Sansonetti P., Sobhani I., Dramsi S. Detection of Streptococcus gallolyticus and Four Other CRC-Associated Bacteria in Patient Stools Reveals a Potential “Driver” Role for Enterotoxigenic Bacteroides fragilis. Front. Cell. Infect. Microbiol. 2022;12:794391. https://doi.org/10.3389/fcimb.2022.794391.
DOI: 10.3389/fcimb.2022.794391

Kamali N., Talebi Bezmin Abadi A., Abadi B., Rahimi F., Forootan M. Identification of Streptococcus gallolyticus in tumor samples of Iranian patients diagnosed with colorectal cancer. BMC Res. Notes. 2022;15(1):316. https://doi.org/10.1186/s13104-022-06207-9.
DOI: 10.1186/s13104-022-06207-9

Johnson J.R., Johnston B., Kuskowski M.A., Nougayrede J.P., Oswald E. Molecular epidemiology and phylogenetic distribution of the Escherichia coli pks genomic island. J. Clin. Microbiol. 2008;46(12):3906-3911. https://doi.org/10.1128/JCM.00949-08.
DOI: 10.1128/JCM.00949-08

Dejea C.M., Fathi P., Craig J.M., Boleij A., Taddese R., Geis A.L., Wu X., DeStefano Shields C.E., Hechenbleikner E.M., Huso D.L., Anders R.A., Giardiello F.M., Wick E.C., Wang H., Wu S., Pardoll D.M., Housseau F., Sears C.L. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359(6375):592- 597. https://doi.org/10.1126/science.aah3648.
DOI: 10.1126/science.aah3648

Tjalsma H., Boleij A., Marchesi J.R., Dutilh B.E. A bacterial driverpassenger model for colorectal cancer: beyond the usual suspects. Nat. Rev. Microbiol. 2012;10(8):575-582. https://doi.org/10.1038/nrmicro2819.
DOI: 10.1038/nrmicro2819

Yu J., Feng Q., Wong S.H., Zhang D., Liang Q.Y., Qin Y., Tang L., Zhao H., Stenvang J., Li Y., Wang X., Xu X., Chen N., Wu W.K., AlAama J., Nielsen H.J., Kiilerich P., Jensen B.A., Yau T.O., Lan Z., Jia H., Li J., Xiao L., Lam T.Y., Ng S.C., Cheng A.S., Wong V.W., Chan F.K., Xu X., Yang H., Madsen L., Datz C., Tilg H., Wang J., Brünner N., Kristiansen K., Arumugam M., Sung J.J., Wang J. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2017;66(1):70-78. https://doi.org/10.1136/gutjnl-2015-309800.
DOI: 10.1136/gutjnl-2015-309800

Tarallo S., Ferrero G., Gallo G., Francavilla A., Clerico G., Realis Luc A., Manghi P., Thomas A.M., Vineis P., Segata N., Pardini B., Naccarati A., Cordero F. Altered Fecal Small RNA Profiles in Colorectal Cancer Reflect Gut Microbiome Composition in Stool Samples. mSystems. 2019;4(5):e00289-19. https://doi.org/10.1128/mSystems.00289-19.
DOI: 10.1128/mSystems.00289-19

Serrano D., Pozzi C., Guglietta S., Fosso B., Suppa M., Gnagnarella P., Corso F., Bellerba F., Macis D., Aristarco V., Manghi P., Segata N., Trovato C., Zampino M.G., Marzano M., Bonanni B., Rescigno M., Gandini S. Serrano D., Pozzi C., Guglietta S., Fosso B., Suppa M., Gnagnarella P., Corso F., Bellerba F., Macis D., Aristarco V., Manghi P., Segata N., Trovato C., Zampino M.G., Marzano M., Bonanni B., Rescigno M., Gandini S. Microbiome as Mediator of Diet on Colorectal Cancer Risk: The Role of Vitamin D, Markers of Inflammation and Adipokines. Nutrients. 2021;13(2):363. https://doi.org/10.3390/nu13020363.
DOI: 10.3390/nu13020363

Weir T.L., Manter D.K., Sheflin A.M., Barnett B.A., Heuberger A.L., Ryan E.P. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One. 2013;8(8):e70803. https://doi.org/10.1371/journal.pone.0070803.
DOI: 10.1371/journal.pone.0070803

Khannous-Lleiffe O., Willis J.R., Saus E., Moreno V., Castellví-Bel S., Gabaldón T., On Behalf Of The Criprev Consortium. Microbiome Profiling from Fecal Immunochemical Test Reveals Microbial Signatures with Potential for Colorectal Cancer Screening. Cancers (Basel). 2022;15(1):120. https://doi.org/10.3390/cancers15010120.
DOI: 10.3390/cancers15010120

Mira-Pascual L., Cabrera-Rubio R., Ocon S., Costales P., Parra A., Suarez A., Moris F., Rodrigo L., Mira A., Collado M.C. Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. J. Gastroenterol. 2015;50(2):167-179. https://doi.org/10.1007/s00535-014-0963-x.
DOI: 10.1007/s00535-014-0963-x

Depommier C., Everard A., Druart C., Plovier H., Van Hul M., Vieira-Silva S., Falony G., Raes J., Maiter D., Delzenne N.M., de Barsy M., Loumaye A., Hermans M.P., Thissen J.P., de Vos W.M., Cani P.D. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 2019;25(7):1096-1103. https://doi.org/10.1038/s41591-019-0495-2.
DOI: 10.1038/s41591-019-0495-2

Depommier C., Everard A., Druart C., Maiter D., Thissen J.P., Loumaye A., Hermans M.P., Delzenne N.M., de Vos W.M., Cani P.D. Serum metabolite profiling yields insights into health promoting effect of A. muciniphila in human volunteers with a metabolic syndrome. Gut. Microbes. 2021;13(1):1994270. https://doi.org/10.1080/19490976.2021.1994270.
DOI: 10.1080/19490976.2021.1994270

Baxter N.T., Zackular J.P., Chen G.Y., Schloss P.D. Structure of the gut microbiome following colonization with human feces determines colonic tumor burden. Microbiome. 2014;2:20. https://doi.org/10.1186/2049-2618-2-20.
DOI: 10.1186/2049-2618-2-20

Qu S., Zheng Y., Huang Y., Feng Y., Xu K., Zhang W., Wang Y., Nie K., Qin M. Excessive consumption of mucin by over-colonized Akkermansia muciniphila promotes intestinal barrier damage during malignant intestinal environment. Front. Microbiol. 2023;14:1111911. https://doi.org/10.3389/fmicb.2023.1111911.
DOI: 10.3389/fmicb.2023.1111911

Zeller G., Tap J., Voigt A.Y., Sunagawa S., Kultima J.R., Costea P.I., Amiot A., Böhm J., Brunetti F., Habermann N., Hercog R., Koch M., Luciani A., Mende D.R., Schneider M.A., Schrotz-King P., Tournigand C., Tran Van Nhieu J., Yamada T., Zimmermann J., Benes V., Kloor M., Ulrich C.M., von Knebel Doeberitz M., Sobhani I., Bork P. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol. Syst. Biol. 2014;10(11):766. https://doi.org/10.15252/msb.20145645.
DOI: 10.15252/msb.20145645

Liang J.Q., Li T., Nakatsu G., Chen Y.X., Yau T.O., Chu E., Wong S., Szeto C.H., Ng S.C., Chan F.K.L., Fang J.Y., Sung J.J.Y., Yu J. A novel faecal Lachnoclostridium marker for the non-invasive diagnosis of colorectal adenoma and cancer. Gut. 2020;69(7):1248-1257. https://doi.org/10.1136/gutjnl-2019-318532.
DOI: 10.1136/gutjnl-2019-318532

Mottawea W., Chiang C.K., Mühlbauer M., Starr A.E., Butcher J., Abujamel T., Deeke S.A., Brandel A., Zhou H., Shokralla S., Hajibabaei M., Singleton R., Benchimol E.I., Jobin C., Mack D.R., Figeys D., Stintzi A. Altered intestinal microbiota-host mitochondria crosstalk in new onset Crohn’s disease. Nat. Commun. 2016;7:13419. https://doi.org/10.1038/ncomms13419.
DOI: 10.1038/ncomms13419

Könönen E., Wade W.G. Actinomyces and related organisms in human infections. Clin. Microbiol. Rev. 2015;28(2):419-442. https://doi.org/10.1128/CMR.00100-14.
DOI: 10.1128/CMR.00100-14

Iadsee N., Chuaypen N., Techawiwattanaboon T., Jinato T., Patcharatrakul T., Malakorn S., Petchlorlian A., Praditpornsilpa K., Patarakul K. Identification of a novel gut microbiota signature associated with colorectal cancer in Thai population. Sci Rep. 2023;13(1):6702. https://doi.org/10.1038/s41598-023-33794-9.
DOI: 10.1038/s41598-023-33794-9

Milosavljevic M.N., Kostic M., Milovanovic J., Zaric R.Z., Stojadinovic M., Jankovic S.M., Stefanovic S.M. Antimicrobial treatment of Erysipelatoclostridium ramosum invasive infections: a systematic review. Rev. Inst. Med. Trop. Sao Paulo. 2021;63:e30. https://doi.org/10.1590/S1678-9946202163030.
DOI: 10.1590/S1678-9946202163030

Kosowska K., Reinholdt J., Rasmussen L.K., Sabat A., Potempa J., Kilian M., Poulsen K. The Clostridium ramosum IgA proteinase represents a novel type of metalloendopeptidase. J. Biol. Chem. 2002;277(14):11987- 11994. https://doi.org/10.1074/jbc.M110883200.
DOI: 10.1074/jbc.M110883200

Lee J.K., Liles E.G., Bent S., Levin T.R., Corley D.A. Accuracy of fecal immunochemical tests for colorectal cancer: systematic review and meta-analysis. Ann. Intern. Med. 2014;160(3):171. https://doi.org/10.7326/M13-1484.
DOI: 10.7326/M13-1484

Imperiale T.F., Ransohoff D.F., Itzkowitz S.H., Levin T.R., Lavin P., Lidgard G.P., Ahlquist D.A., Berger B.M. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 2014;370(14):1287- 1297. https://doi.org/10.1056/NEJMoa1311194.
DOI: 10.1056/NEJMoa1311194

Baxter N.T., Ruffin M.T., Rogers M.A., Schloss P.D. Microbiotabased model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Med. 2016;8(1):37. https://doi.org/10.1186/s13073-016-0290-3.
DOI: 10.1186/s13073-016-0290-3

Дополнительная информация
Язык текста: Русский
ISSN: 2500-0764
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4e432d46434d2d41525449434c452d323032342d392d312d302d3131322d313233/