Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
ГлавнаяРезультаты поиска
Статья; ОбзорИскать документыПерейти к записи. 2023; № 1: 7–14. DOI:10.37586/2949-4745-1-2023-7-14
Сенолитические препараты: возможность применения в клинической практике
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Аффилированные организации
[1]Искать документыПерейти к записи
Аннотация
Изучение механизмов старения — одна из важнейших целей современной науки. Благодаря фундаментальным исследованиям накоплен значительный объем данных о процессах, ассоциированных со снижением функциональной способности к регенерации, клеточной пролиферации и устойчивости к неблагоприятным факторам с возрастом. Целями обзора было изучить механизм действия препаратов с сенолитической активностью, определить основные мишени их воздействия на клеточном уровне, а также оценить перспективы их клинического применения. Актуальность данной темы подтверждается растущим числом клинических испытаний сенолитиков, многие из которых имеют неоднозначные результаты и требуют дальнейшего анализа и устранения выявленных сложностей и недостатков. Нами проведен обзор литературы на платформах Pubmed и Scopus за последние 10 лет с целью поиска информации о механизмах сенотерапии и возможности применения сенолитиков в клинической медицине. Основное внимание было сосредоточено на тех сенолитических препаратах, которые использовались в клинических исследованиях.
Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Dobrokhleb VG. When Society Ages. Her Russ Acad Sci. 2021;91(5):587-592. DOI:10.1134/S1019331621050026.
DOI: 10.1134/S1019331621050026

Moskalev A, Chernyagina E, Kudryavtseva A, Shaposhnikov M. Geroprotectors: A Unified Concept and Screening Approaches. Aging Dis. 2017 May 2;8(3):354-363. DOI: 10.14336/AD.2016.1022. PMID: 28580190; PMCID: PMC5440114..
DOI: 10.14336/AD.2016.1022

Lagoumtzi SM, Chondrogianni N. Senolytics and senomorphics: Natural and synthetic therapeutics in the treatment of aging and chronic diseases. Free Radic Biol Med. 2021 Aug 1;171:169-190. doi: 10.1016/j.freeradbiomed.2021.05.003. Epub 2021 May 12. PMID: 33989756..
DOI: 10.1016/j.freeradbiomed.2021.05.003. Epub 2021 May 12

Tchkonia T, Palmer AK, Kirkland JL. New Horizons: Novel Approaches to Enhance Healthspan Through Targeting Cellular Senescence and Related Aging Mechanisms. J Clin Endocrinol Metab. 2021 Mar 8;106(3):e1481-e1487. DOI: 10.1210/clinem/dgaa728.
DOI: 10.1210/clinem/dgaa728

Kirkland, James & Tchkonia, Tamara & Zhu, Yi & Niedernhofer, Laura & Robbins, Paul. (2017). The Clinical Potential of Senolytic Drugs. Journal of the American Geriatrics Society. 65. 10.1111/jgs.14969

Roger L, Tomas F, Gire V. Mechanisms and Regulation of Cellular Senescence. Int J Mol Sci. 2021;22(23):13173. Published 2021 Dec 6. DOI:10.3390/ijms222313173.
DOI: 10.3390/ijms222313173

Prieto LI, Baker DJ. Cellular Senescence and the Immune System in Cancer. Gerontology. 2019;65(5):505-512. DOI:10.1159/000500683.
DOI: 10.1159/000500683

Chandra A, Rajawat J. Skeletal Aging and Osteoporosis: Mechanisms and Therapeutics. Int J Mol Sci. 2021;22(7):3553. Published 2021 Mar 29. DOI:10.3390/ijms22073553.
DOI: 10.3390/ijms22073553

Almeida MI, Silva AM, Vasconcelos DM, et al. miR-195 in human primary mesenchymal stromal/stem cells regulates proliferation, osteogenesis and paracrine effect on angiogenesis. Oncotarget. 2016;7(1):7-22. DOI:10.18632/oncotarget.6589.
DOI: 10.18632/oncotarget.6589

Kudlova N, De Sanctis JB, Hajduch M. Cellular Senescence: Molecular Targets, Biomarkers, and Senolytic Drugs. Int J Mol Sci. 2022;23(8):4168. Published 2022 Apr 10. DOI:10.3390/ijms23084168.
DOI: 10.3390/ijms23084168

Khosla S, Farr JN, Tchkonia T, Kirkland JL. The role of cellular senescence in ageing and endocrine disease. Nat Rev Endocrinol. 2020;16(5):263-275. DOI:10.1038/s41574-020-0335-y.
DOI: 10.1038/s41574-020-0335-y

Amaya-Montoya M, Pérez-Londoño A, Guatibonza-García V, Vargas-Villanueva A, Mendivil CO. Cellular Senescence as a Therapeutic Target for Age-Related Diseases: A Review. Adv Ther. 2020;37(4):1407-1424. DOI:10.1007/s12325-020-01287-0.
DOI: 10.1007/s12325-020-01287-0

Meijnikman A.S., van Olden C.C., Aydin O., Herrema H., Kaminska D., Lappa D., et al. Hyperinsulinemia is highly associated with markers of hepatocytic senescence in two independent cohorts. Diabetes. 2022;71(9):1929–1936.

Wang L., Wang B., Gasek N.S., Zhou Y., Cohn R.L., Martin D.E., et al. Targeting p21(Cip1) highly expressing cells in adipose tissue alleviates insulin resistance in obesity. Cell Metabolism. 2022;34(1):186.

Palmer AK, Tchkonia T, Kirkland JL. Targeting cellular senescence in metabolic disease. Mol Metab. 2022;66:101601. DOI:10.1016/j.molmet.2022.101601.
DOI: 10.1016/j.molmet.2022.101601

Elsallabi O, Patruno A, Pesce M, Cataldi A, Carradori S, Gallorini M. Fisetin as a Senotherapeutic Agent: Biopharmaceutical Properties and Crosstalk between Cell Senescence and Neuroprotection. Molecules. 2022;27(3):738. Published 2022 Jan 23. DOI:10.3390/molecules27030738.
DOI: 10.3390/molecules27030738

Englund DA, Zhang X, Aversa Z, LeBrasseur NK. Skeletal muscle aging, cellular senescence, and senotherapeutics: Current knowledge and future directions. Mech Ageing Dev. 2021;200:111595. DOI:10.1016/j.mad.2021.111595.
DOI: 10.1016/j.mad.2021.111595

Partridge, L., Fuentealba, M. & Kennedy, B.K. The quest to slow ageing through drug discovery. Nat Rev Drug Discov 19, 513– 532 (2020). DOI:10.1038/s41573-020-0067-7.
DOI: 10.1038/s41573-020-0067-7

Zhavoronkov A. Geroprotective and senoremediative strategies to reduce the comorbidity, infection rates, severity, and lethality in gerophilic and gerolavic infections. Aging (Albany NY). 2020;12(8):6492-6510. DOI:10.18632/aging.102988.
DOI: 10.18632/aging.102988

Zhang L, Pitcher LE, Prahalad V, Niedernhofer LJ, Robbins PD. Targeting cellular senescence with senotherapeutics: senolytics and senomorphics [published online ahead of print, 2022 Jan 11]. FEBS J. 2022;10.1111/febs.16350. DOI:10.1111/febs.16350.
DOI: 10.1111/febs.16350

Niedernhofer, L., Robbins, P. Senotherapeutics for healthy ageing. Nat Rev Drug Discov17, 377 (2018). DOI:10.1038/nrd.2018.44.
DOI: 10.1038/nrd.2018.44

Carreno G, Guiho R, Martinez-Barbera JP. Cell senescence in neuropathology: A focus on neurodegeneration and tumours. Neuropathol Appl Neurobiol. 2021;47(3):359-378. DOI:10.1111/nan.12689.
DOI: 10.1111/nan.12689

Zhu Y, Tchkonia T, Pirtskhalava T, et al. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644-658. DOI:10.1111/acel.12344.
DOI: 10.1111/acel.12344

Justice J. N. et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study //EBioMedicine. — 2019. — Т. 40. — С. 554-563.

Shao Z, Wang B, Shi Y, et al. Senolytic agent Quercetin ameliorates intervertebral disc degeneration via the Nrf2/NF-κB axis. Osteoarthritis Cartilage. 2021;29(3):413-422. DOI:10.1016/j.joca.2020.11.006.
DOI: 10.1016/j.joca.2020.11.006

Song S, Tchkonia T, Jiang J, Kirkland JL, Sun Y. Targeting Senescent Cells for a Healthier Aging: Challenges and Opportunities. Adv Sci (Weinh). 2020 Oct 19;7(23):2002611. DOI: 10.1002/advs.202002611. PMID: 33304768; PMCID: PMC7709980..
DOI: 10.1002/advs.202002611

Kovacovicova K, Skolnaja M, Heinmaa M, et al. Senolytic Cocktail Dasatinib+Quercetin (D+Q) Does Not Enhance the Efficacy of Senescence-Inducing Chemotherapy in Liver Cancer. Front Oncol. 2018;8:459. Published 2018 Oct 30. DOI:10.3389/fonc.2018.00459.
DOI: 10.3389/fonc.2018.00459

Chang J, Wang Y, Shao L, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016;22(1):78-83. DOI:10.1038/nm.4010.
DOI: 10.1038/nm.4010

Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of antiapoptotic factors. Aging Cell. 2016;15(3):428-435. DOI:10.1111/acel.12445.
DOI: 10.1111/acel.12445

Harrison CN, Garcia JS, Somervaille TCP, Foran JM, Verstovsek S, Jamieson C, Mesa R, Ritchie EK, Tantravahi SK, Vachhani P, O'Connell CL, Komrokji RS, Harb J, Hutti JE, Holes L, Masud AA, Nuthalapati S, Potluri J, Pemmaraju N. Addition of Navitoclax to Ongoing Ruxolitinib Therapy for Patients With Myelofibrosis With Progression or Suboptimal Response: Phase II Safety and Efficacy. J Clin Oncol. 2022 May 20;40(15):1671-1680. DOI: 10.1200/JCO.21.02188. PMID: 35180010; PMCID: PMC9113204..
DOI: 10.1200/JCO.21.02188

Tse C., Shoemaker A.R., Adickes J., Anderson M.G., Chen J., Jin S. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008;68(9):3421–3428.

Schoenwaelder SM, Jarman KE, Gardiner EE, et al. Bcl-xLinhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood. 2011;118(6):1663-1674. DOI:10.1182/blood-2011-04-347849.
DOI: 10.1182/blood-2011-04-347849

National Center for Biotechnology Information. PubChem Compound Summary for CID 24978538, Navitoclax. https://pubchem.ncbi.nlm.nih.gov/compound/Navitoclax. Accessed May 23, 2023.https://pubchem.ncbi.nlm.nih.gov/compound/Navitoclax

Qi J., Liu Y., Yang P., et al. Heat shock protein 90 inhibition by 17-dimethylaminoethylamino-17-demethoxygeldanamycin protects blood-brain barrier integrity in cerebral ischemic stroke. American Journal of Translational Research. 2015;7(10):1826–1837

Vannas C, Andersson L, Dolatabadi S, et al. Different HSP90 Inhibitors Exert Divergent Effect on Myxoid Liposarcoma In Vitro and In Vivo. Biomedicines. 2022;10(3):624. Published 2022 Mar 7. DOI:10.3390/biomedicines10030624.
DOI: 10.3390/biomedicines10030624

Fuhrmann-Stroissnigg, H., Ling, Y.Y., Zhao, J. et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 8, 422 (2017). DOI:10.1038/s41467-017-00314-z.
DOI: 10.1038/s41467-017-00314-z

National Center for Biotechnology Information. PubChem Compound Summary for CID 53316138, 17-Dmag. https://pubchem.ncbi.nlm.nih.gov/compound/17-Dmag. Accessed May 23, 2023.https://pubchem.ncbi.nlm.nih.gov/compound/17-Dmag

Cherif H, Bisson DG, Mannarino M, Rabau O, Ouellet JA, Haglund L. Senotherapeutic drugs for human intervertebral disc degeneration and low back pain. Elife. 2020;9:e54693. Published 2020 Aug 21. DOI:10.7554/eLife.54693.
DOI: 10.7554/eLife.54693

Дятлова А. С., Дудков А., Линькова Н. С. и др. Молекулярные маркеры каспаза-зависимого митохондриального апоптоза: роль в развитии патологии и в процессах клеточного старения. // Успехи Современной Биологии 2018, №2, С. 126-137 [Dyatlova AS, Dudkov A, Lin’kova NS et al. Molekulyarnye markery kaspazazavisimogo mitokhondrial'nogo apoptoza: rol' v razvitii patologii i v protsessakh kletochnogo stareniya. Uspekhi Sovremennoy Biologii 2018;(2): 126-137 in RUSS] DOI:10.7868/s0042132418020023.
DOI: 10.7868/s0042132418020023

Ray-Coquard I, Blay JY, Italiano A, et al. Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol. 2012;13(11):1133-1140. DOI:10.1016/S1470-2045(12)70474-6.
DOI: 10.1016/S1470-2045(12)70474-6

National Center for Biotechnology Information. PubChem Compound Summary for CID 57406853. https://pubchem.ncbi.nlm.nih.gov/compound/rg7112. Accessed May 23, 2023.https://pubchem.ncbi.nlm.nih.gov/compound/rg7112

Ishige K, Schubert D, Sagara Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med. 2001;30(4):433-446. DOI:10.1016/s0891-5849(00)00498-6.
DOI: 10.1016/s0891-5849(00)00498-6

Zhu Y, Doornebal EJ, Pirtskhalava T, et al. New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging (Albany NY). 2017;9(3):955-963. DOI:10.18632/aging.101202.
DOI: 10.18632/aging.101202

Demaria M, Ohtani N, Youssef SA, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGFAA. Dev Cell. 2014;31(6):722-733. DOI:10.1016/j.devcel.2014.11.012.
DOI: 10.1016/j.devcel.2014.11.012

COVID-FISETIN: Pilot in SARS-CoV-2 of Fisetin to Alleviate Dysfunction and Inflammation. [Электронный ресурс]. [дата обраще- ния 09.04.2023]. URL:https://clinicaltrials.gov/ct2/show/NCT04476953https://clinicaltrials.gov/ct2/show/NCT04476953

National Center for Biotechnology Information. PubChem Compound Summary for CID 5281614, Fisetin. https://pubchem.ncbi.nlm.nih.gov/compound/Fisetin. Accessed May 23, 2023.https://pubchem.ncbi.nlm.nih.gov/compound/Fisetin

Valieva Y, Ivanova E, Fayzullin A, Kurkov A, Igrunkova A. Senescence-Associated β-Galactosidase Detection in Pathology. Diagnostics (Basel). 2022;12(10):2309. Published 2022 Sep 25. DOI:10.3390/diagnostics12102309.
DOI: 10.3390/diagnostics12102309

Shivarathri R, Jenull S, Stoiber A, et al. The Two-Component Response Regulator Ssk1 and the Mitogen-Activated Protein Kinase Hog1 Control Antifungal Drug Resistance and Cell Wall Architecture of Candida auris. mSphere. 2020;5(5):e00973-20. Published 2020 Oct 14. DOI:10.1128/mSphere.00973-20.
DOI: 10.1128/mSphere.00973-20

Cai, Y., Zhou, H., Zhu, Y. et al. Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res30, 574–589 (2020). DOI:10.1038/s41422-020-0314-9.
DOI: 10.1038/s41422-020-0314-9

Jiang KX, Liu QQ, Bai N, Zhu MC, Zhang KQ, Yang JK. AoSsk1, a Response Regulator Required for Mycelial Growth and Development, Stress Responses, Trap Formation, and the Secondary Metabolism in Arthrobotrys oligospora. J Fungi (Basel). 2022;8(3):260. Published 2022 Mar 3. DOI:10.3390/jof8030260.
DOI: 10.3390/jof8030260

National Center for Biotechnology Information. PubChem Compound Summary for CID 162642741. https://pubchem.ncbi.nlm.nih.gov/compound/162642741. Accessed May 24, 2023.https://pubchem.ncbi.nlm.nih.gov/compound/162642741

Дополнительная информация
Язык текста: Русский
ISSN: 2949-4745
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4e432d4745524f4e41554b412d41525449434c452d323032332d302d312d302d372d3134/