Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
ГлавнаяРезультаты поиска
СтатьяИскать документыПерейти к записи. 2024; Т. 30, № 6: 881–888. DOI:10.18019/1028-4427-2024-30-6-881-888
Локализация остеокальцина в процессе заживления костной ткани при местном применении коллагена и бета-трикальцийфосфата у крыс
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Аффилированные организации
[1]Искать документыПерейти к записи
Аннотация
Введение.Введение. Восстановление костной ткани — сложный и многогранный процесс, который происходит естественным образом, если не осложняется значительными дефектами кости. Бета-трикальцийфосфат (β-TCP) известен своими богатыми запасами кальция и фосфора, легко усваиваемыми организмом. Его  исключительная биосовместимость способствует формированию рассасывающейся структуры в зоне повреждения, активизируя процесс заживления.Цель работы — определение влияния скаффолда из коллагена/β-трикальцийфосфата (Coll/β-TCP) на формирование костной ткани для оценки возможности его дальнейшего использования в качестве вспомогательного средства для возмещения дефектов кости.Материалы и методы.Материалы и методы. Эксперимент проведен на 20 взрослых самцах крыс-альбиносов. У каждого животного в условиях операционной создано по два отверстия в каждой бедренной кости; два отверстия обрабатывали отдельно Coll или β-TCP, одно отверстие — их комбинацией. Необработанное отверстие служило контролем. Скарификацию животных проводили после двух- и четырехнедельного периода лечения (по 10 крыс на каждый). Проведен иммуногистохимический анализ стромальных клеток костного мозга, остеоцитов, остеобластов и остеокластов с помощью поликлональных антител к остеокальцину.Результаты.Результаты. Иммуногистохимические результаты выявили сильную положительную экспрессию остеокальцина при заживлении костей в комбинированной группе (β-TCP и коллаген) по сравнению с  другими группами. Высоко значимые различия были обнаружены между группой с комбинацией коллагена с β-TCP и контрольной группой на обоих сроках эксперимента.Обсуждение.Обсуждение. Маркер остеокальцина уникален для остеобластов, в частности для остеобластов, активно формирующих новый остеоид или ремоделирующих кость. Полученные результаты показали, что экспрессия остеокальцина была выше в опытных группах, чем в контрольной.Заключение.Заключение. Комбинация коллагена с β-TCP показала наибольшую эффективность ускорения заживления костной ткани и увеличения остеогенной способности за счет повышенной иммунореактивности остеокальцина.
Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Othman Jassim H, Al-Ghaban NMH. Effect of Eucommia Ulmoides on Healing of Bon Defect Using Histological and Histomorphometric Analysis in Rat: in vivo Study. Arch Razi Inst. 2023;78(2):651-657. doi: 10.22092/ARI.2022.359483.2434.
DOI: 10.22092/ARI.2022.359483.2434

Majeed SS, Ghani BA. Effect of topical application of flavonoids extract of Hibiscus sabdariffa on experimentally induced bone defect. J Bagh Coll Dent. 2018;30(1):33-38. doi: doi: 10.12816/0046309.
DOI: 10.12816/0046309

Mohamed IF, Ghani BA, Fatalla AA. Histological Evaluation of the Effect of Local Application of Punica granatum Seed Oil on Bone Healing. Int J Biomater. 2022;2022:4266589. doi: 10.1155/2022/4266589.
DOI: 10.1155/2022/4266589

Batool S, Liaqat U, Babar B, Hussain Z. Bone whitlockite: synthesis, applications, and future prospects. J. Korean Ceram. Soc. 2021;58(5):530-547. doi: 10.1007/s43207-021-00120-w.
DOI: 10.1007/s43207-021-00120-w

Mohseni M, Jahandideh A, Abedi G, et al Assessment of tricalcium phosphate/collagen (TCP/collagene) nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits. Artif Cells Nanomed Biotechnol. 2018;46(2):242-249. doi: 10.1080/21691401.2017.1324463.
DOI: 10.1080/21691401.2017.1324463

AL-Mashhadi ZAj, AL-Ghaban NMH. Local Evaluation of Chitosan and Β-Tricalcium Phosphate Alone and Combination in Bone Defect of Rabbit by Histological and Histomorphometric Analysis. J Res Med Dent Sci. 2022;10(9):171-178.

Rejab AF, Minwah BS, Ameen YA. Histological evaluation for the use of β-tricalcium phosphate as a bone substitute in accelerating bone healing: an experimental study on rabbits. Al-Rafidain Dental Journal. 2014;14(2):205-211. doi: 10.33899/RDEN.2014.160900.
DOI: 10.33899/RDEN.2014.160900

Gelse K, Pöschl E, Aigner T. Collagens-structure, function, and biosynthesis. Adv Drug Deliv Rev. 2003;55(12):15311546. doi: 10.1016/j.addr.2003.08.002.
DOI: 10.1016/j.addr.2003.08.002

Wang H. A Review of the Effects of Collagen Treatment in Clinical Studies. Polymers (Basel). 2021;13(22):3868. doi: 10.3390/polym13223868.
DOI: 10.3390/polym13223868

Klimek K, Ginalska G. Proteins and Peptides as Important Modifiers of the Polymer Scaffolds for Tissue Engineering Applications-A Review. Polymers (Basel). 2020;12(4):844. doi: 10.3390/polym12040844.
DOI: 10.3390/polym12040844

Kuroyanagi Y, Suzuki R, Kuroyanagi M. Design of Collagen-Based Sponge Device for Use in Oral Surgery. Open Journal of Regenerative Medicine. 2021;10(3):31-49. doi: 10.4236/ojrm.2021.103003.
DOI: 10.4236/ojrm.2021.103003

Ferron M, Lacombe J. Regulation of energy metabolism by the skeleton: osteocalcin and beyond. Arch Biochem Biophys. 2014;561:137-46. doi: 10.1016/j.abb.2014.05.022.
DOI: 10.1016/j.abb.2014.05.022

Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130(3):456-469. doi: 10.1016/j.cell.2007.05.047.
DOI: 10.1016/j.cell.2007.05.047

Pittas AG, Harris SS, Eliades M, et al. Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab. 2009;94(3):827-832. doi: 10.1210/jc.2008-1422.
DOI: 10.1210/jc.2008-1422

Lee AH, Huttenlocker AK, Padian K, Woodward HN. Analysis of Growth Rates. In: Padian K, Lamm E-T, eds. Bone histology of fossil tetrapods: advancing methods, analysis, and interpretation. Berkeley: University of California Press; 2013:217-251.

Smane L, Pilmane M. Osteopontin, osteocalcin, and osteoprotegerin expression in human tissue affected by cleft lip and palate. SHS Web Conf. 2016;30. doi: 10.1051/shsconf/20163000008.
DOI: 10.1051/shsconf/20163000008

Gao Q, Wang L, Wang S, et al. Bone Marrow Mesenchymal Stromal Cells: Identification, Classification, and Differentiation. Front Cell Dev Biol. 2022;9:787118. doi: 10.3389/fcell.2021.787118.
DOI: 10.3389/fcell.2021.787118

Wolock SL, Krishnan I, Tenen DE, et al. Mapping Distinct Bone Marrow Niche Populations and Their Differentiation Paths. Cell Rep. 2019;28(2):302-311.e5. doi: 10.1016/j.celrep.2019.06.031.
DOI: 10.1016/j.celrep.2019.06.031

Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363-408. doi: 10.1615/critrevbiomedeng.v40.i5.10.
DOI: 10.1615/critrevbiomedeng.v40.i5.10

Laranjeira P, Pedrosa M, Pedreiro S, et al. Effect of human bone marrow mesenchymal stromal cells on cytokine production by peripheral blood naive, memory, and effector T cells. Stem Cell Res Ther. 2015;6(1):3. doi: 10.1186/scrt537.
DOI: 10.1186/scrt537

Azadniv M, Myers JR, McMurray HR, et al. Bone marrow mesenchymal stromal cells from acute myelogenous leukemia patients demonstrate adipogenic differentiation propensity with implications for leukemia cell support. Leukemia. 2020;34(2):391-403. doi: 10.1038/s41375-019-0568-8.
DOI: 10.1038/s41375-019-0568-8

Tang X, Huang Y, Lei J, et al. The single-cell sequencing: new developments and medical applications. Cell Biosci. 2019;9:53. doi: 10.1186/s13578-019-0314-y.
DOI: 10.1186/s13578-019-0314-y

Fedchenko N, Reifenrath J. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue - a review. Diagn Pathol. 2014;9:221. doi: 10.1186/s13000-014-0221-9.
DOI: 10.1186/s13000-014-0221-9

Alsaeed MA, Al-Ghaban NMH. Chitosan Nanoparticle/Simvastatin for Experimental Maxillary Bony Defect Healing: A Histological and Histomorphometrical Study. Biomimetics (Basel). 2023;8(4):363. doi: 10.3390/biomimetics8040363.
DOI: 10.3390/biomimetics8040363

AL-Ghaban NMH, Jasem GH. Histomorphometric evaluation of the effects of local application of red clover oil (Trifolium pratense) on bone healing in rats. J Bagh College Dentistry. 2020;32(2):26-31. doi: 10.26477/jbcd.v32i2.2891.
DOI: 10.26477/jbcd.v32i2.2891

Alpan AL, Toker H, Ozer H. Ozone Therapy Enhances Osseous Healing in Rats With Diabetes With Calvarial Defects: A Morphometric and Immunohistochemical Study. J Periodontol. 2016;87(8):982-889. doi: 10.1902/jop.2016.160009.
DOI: 10.1902/jop.2016.160009

Sananta P, Dradjat RS, Rosandi RD, Sugiarto MA. Bone tissue engineering application on fracture healing with bone defect as assessed through osteocalcin and bone morphogenetic protein-2 (BMP-2) biomarker examination: experimental study on murine models. F1000Research. 2022;11:596. doi: 10.12688/f1000research.110867.1.
DOI: 10.12688/f1000research.110867.1

Al-Molla BH, Al-Ghaban NM, Taher A. In Vivo Immunohistochemical investigation of Bone Deposition at Amelogenin Coated Ti Implant Surface. Smile Dental Journal. 2014;9(1). doi: 10.12816/0008316.
DOI: 10.12816/0008316

Jassim HO, AL-Ghaban NMH. Evaluation of Local Application of Eucommia Ulmoides Extract on Bone Healing in Rats by Histomorphometrically and Immunohistochemical Study on Osteocalcin. Autoref. M.Sc. College of Dentistry, University of Baghdad. 2022. Available at: https://codental.uobaghdad.edu.iq/wp-content/uploads/sites/14/2022/11/[%]D8[%]AD[%]D9[%]8A[%]D8[%]AF[%]D8[%]B1-[%]D8[%]B9[%]D8[%]AB[%]D9[%]85[%]D8[%]A7[%]D9[%]86-[%]D8[%]AC[%]D8[%]A7[%]D8[%]B3[%]D9[%]85.pdf. Accessed Oct 15, 2024.https://codental.uobaghdad.edu.iq/wp-content/uploads/sites/14/2022/11/[%]D8[%]AD[%]D9[%]8A[%]D8[%]AF[%]D8[%]B1-[%]D8[%]B9[%]D8[%]AB[%]D9[%]85[%]D8[%]A7[%]D9[%]86-[%]D8[%]AC[%]D8[%]A7[%]D8[%]B3[%]D9[%]85.pdf

Jassim HO, AL-Ghaban NMH. Evaluation of Local Application of Eucommia Ulmoides Extract on Bone Healing in Rats by Histomorphometrically and Immunohistochemical Study on Osteocalcin. Autoref. M.Sc. College of Dentistry, University of Baghdad. 2022. Available at: https://codental.uobaghdad.edu.iq/wp-content/uploads/sites/14/2022/11/[%]D8[%]AD[%]D9[%]8A[%]D8[%]AF[%]D8[%]B1-[%]D8[%]B9[%]D8[%]AB[%]D9[%]85[%]D8[%]A7[%]D9[%]86-[%]D8[%]AC[%]D8[%]A7[%]D8[%]B3[%]D9[%]85.pdf. Accessed Oct 15, 2024.https://codental.uobaghdad.edu.iq/wp-content/uploads/sites/14/2022/11/[%]D8[%]AD[%]D9[%]8A[%]D8[%]AF[%]D8

Abeas KA, Al-Azawy AM. Immunohistochemical Evaluation of Osteocalcin Expression with Application of LIPUS During Relapse Phase of Orthodontic Therapy. J University of Babylon. 2017;25(2):620-629.

Ramalho-Ferreira G, Faverani LP, Momesso GAC, et al. Effect of antiresorptive drugs in the alveolar bone healing. A histometric and immunohistochemical study in ovariectomized rats. Clin Oral Investig. 2017;21(5):1485-1494. doi: 10.1007/s00784-016-1909-x.
DOI: 10.1007/s00784-016-1909-x

Al-Ghani B, Al-Hijazi A, AL-Zubaydi T. In vivo immunohistochemical investigation of bone deposition at collagencoated Ti implant surface. J Bagh Coll Dent. 2011;23:10-15. doi: 10.12816/0008316..
DOI: 10.12816/0008316

Дополнительная информация
Язык текста: Русский
ISSN: 1028-4427
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4e432d494c495a41524f562d41525449434c452d323032342d33302d362d302d3838312d383838/