Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
Главная / Результаты поиска
СтатьяИскать документыПерейти к записи. 2024; Т. 4, № 4: 26–33. DOI:10.52667/2712-9179-2024-4-4-26-33
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Аннотация
Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Dorsey, E.R.; Constantinescu, R.; Thompson, J.P.; et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007, 68(5):384-386. https://doi.org/10.1212/01.wnl.0000254770.21326.28..
DOI: 10.1212/01.wnl.0000254770.21326.28

Liu, B.; Gao, H.M.; Hong, J.S. Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation. Environ Health Perspect. 2003, 111(8):1065-1073. https://doi.org/10.1289/ehp.6361..
DOI: 10.1289/ehp.6361

GBD 2016 Parkinson's Disease Collaborators. Global, regional, and national burden of Parkinson's disease, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018, 17(11):939-953. https://doi.org/10.1016/S1474-4422(18)30295-3..
DOI: 10.1016/S1474-4422(18)30295-3

Moustafa, A.A.; Chakravarthy, S.; Phillips, J.R.; et al. Motor symptoms in Parkinson's disease: A unified framework. Neurosci Biobehav Rev. 2016, 68:727-740. https://doi.org/10.1016/j.neubiorev.2016.07.010..
DOI: 10.1016/j.neubiorev.2016.07.010

Schapira, A.H.; Chaudhuri, K.R.; Jenner, P. Non-motor features of Parkinson disease. Nat Rev Neurosci. 2017, 18(8):509. https://doi.org/10.1038/nrn.2017.91..
DOI: 10.1038/nrn.2017.91

Mahlknecht, P.; Seppi, K.; Poewe, W. The concept of prodromal Parkinson's disease. J Parkinsons Dis. 2015, 5(4):681-697. https://doi.org/10.3233/JPD-150685..
DOI: 10.3233/JPD-150685

Schilder, B.M.; Navarro, E.; Raj, T. Multi-omic insights into Parkinson's Disease: From genetic associations to functional mechanisms. Neurobiol Dis. 2022, 163:105580. https://doi.org/10.1016/j.nbd.2021.105580..
DOI: 10.1016/j.nbd.2021.105580

Heneka, M.T.; Carson, M.J.; El Khoury, J.; et al. Neuroinflammation in Alzheimer's disease. Lancet Neurol. 2015, 14(4):388-405. https://doi.org/10.1016/S1474-4422(15)70016-5..
DOI: 10.1016/S1474-4422(15)70016-5

Li, Q.; Barres, B.A. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018, 18(4):225-242. https://doi.org/10.1038/nri.2017.125..
DOI: 10.1038/nri.2017.125

Bachiller, S.; Jiménez-Ferrer, I.; Paulus, A.; et al. Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Front Cell Neurosci. 2018, 12:488. https://doi.org/10.3389/fncel.2018.00488..
DOI: 10.3389/fncel.2018.00488

Ho, M.S. Microglia in Parkinson's disease. Adv Exp Med Biol. 2019, 1175:335-353. https://doi.org/10.1007/978-981-13-9913-8_13..
DOI: 10.1007/978-981-13-9913-8_13

Tan, Y.L.; Yuan, Y.; Tian, L. Microglial regional heterogeneity and its role in the brain. Mol Psychiatry. 2020, 25(2):351-367. https://doi.org/10.1038/s41380-019-0609-8..
DOI: 10.1038/s41380-019-0609-8

Esin, R.G.; Safina, D.R.; Hakimova, A.R.; Esin, O.R. Neuroinflammation and neuropathology. Journal of Neurology and Psychiatry named after S.S. Korsakov. 2021, 121(4):107‑112.

Hanisch, U.K. Microglia as a source and target of cytokines. Glia. 2002, 40(2):140-155. https://doi.org/10.1002/glia.10161..
DOI: 10.1002/glia.10161

Colonna, M.; Butovsky, O. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol. 2017, 35:441-468. https://doi.org/10.1146/annurev-immunol-051116-052358.Sawada.
DOI: 10.1146/annurev-immunol-051116-052358.Sawada

M, Imamura K, Nagatsu T. Role of cytokines in inflammatory process in Parkinson's disease. J Neural Transm Suppl. 2006; (70):373-81. https://doi.org/10.1007/978-3-211-45295-0_57..
DOI: 10.1007/978-3-211-45295-0_57

De Lella Ezcurra, A.L.; Chertoff, M.; Ferrari, C.; et al. Chronic expression of low levels of tumor necrosis factor-alpha in the substantia nigra elicits progressive neurodegeneration, delayed motor symptoms and micro-glia/macrophage activation. Neurobiol Dis. 2010, 37(3):630-640. https://doi.org/10.1016/j.nbd.2009.11.018..
DOI: 10.1016/j.nbd.2009.11.018

Loane, C.; Politis, M. Positron emission tomography neuroimaging in Parkinson's disease. Am J Transl Res. 2011, 3(4):323-341.

Cerami, C.; Iaccarino, L.; Perani, D. Molecular imaging of neuroinflammation in neurodegenerative dementias: the role of in vivo PET imaging. Int J Mol Sci. 2017, 18(5):993. https://doi.org/10.3390/ijms18050993..
DOI: 10.3390/ijms18050993

Orr, C.F.; Rowe, D.B.; Mizuno, Y.; et al. A possible role for humoral immunity in the pathogenesis of Parkinson's disease. Brain. 2005, 128(Pt 11):2665-2674. https://doi.org/10.1093/brain/awh625..
DOI: 10.1093/brain/awh625

Marogianni, C.; Sokratous, M.; Dardiotis, E.; et al. Neurodegeneration and inflammation—an interesting interplay in Parkinson's disease. Int J Mol Sci. 2020, 21(22):8421. https://doi.org/10.3390/ijms21228421..
DOI: 10.3390/ijms21228421

Atik, A.; Stewart, T.; Zhang, J. Alpha-synuclein as a biomarker for Parkinson's disease. Brain Pathol. 2016, 26(3):410-418. https://doi.org/10.1111/bpa.12370..
DOI: 10.1111/bpa.12370

Lindestam Arlehamn, C.S.; Dhanwani, R.; Pham, J.; et al. α-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson's disease. Nat Commun. 2020, 11(1):1875. https://doi.org/10.1038/s41467-020-15626-w..
DOI: 10.1038/s41467-020-15626-w

Mollenhauer, B.; Locascio, J.J.; Schulz-Schaeffer, W.; et al. α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol. 2011, 10(3):230-240. https://doi.org/10.1016/S1474-4422(11)70014-X..
DOI: 10.1016/S1474-4422(11)70014-X

Baba, Y.; Kuroiwa, A.; Uitti, R.J.; Wszolek, Z.K.; Yamada, T. Alterations of T-lymphocyte populations in Parkinson disease. Parkinsonism Relat Disord. 2005, 11(8):493-498. https://doi.org/10.1016/j.parkreldis.2005.07.005..
DOI: 10.1016/j.parkreldis.2005.07.005

Brochard, V.; Combadière, B.; Prigent, A.; et al. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest. 2009, 119(1):182-192. https://doi.org/10.1172/JCI36470..
DOI: 10.1172/JCI36470

Sulzer, D.; Alcalay, R.N.; Garretti, F.; et al. T cells from patients with Parkinson's disease recognize α-synuclein peptides. Nature. 2017, 546(7660):656-661. https://doi.org/10.1038/nature22815..
DOI: 10.1038/nature22815

Jiang, S.; Gao, H.; Luo, Q.; Wang, P.; Yang, X. The correlation of lymphocyte subsets, natural killer cell, and Parkinson's disease: a meta-analysis. Neurol Sci. 2017, 38(8):1373-1380. https://doi.org/10.1007/s10072-017-2988-4..
DOI: 10.1007/s10072-017-2988-4

Niwa, F.; Kuriyama, N.; Nakagawa, M.; Imanishi, J. Effects of peripheral lymphocyte subpopulations and the clinical correlation with Parkinson's disease. Geriatr Gerontol Int. 2012, 12(1):102-107. https://doi.org/10.1111/j.1447-0594.2011.00740.x..
DOI: 10.1111/j.1447-0594.2011.00740.x

Li, X.; Koudstaal, W.; Fletcher, L.; et al. Naturally occurring antibodies isolated from PD patients inhibit synuclein seeding in vitro and recognize Lewy pathology. Acta Neuropathol. 2019, 137(5):825-836. https://doi.org/10.1007/s00401-019-01974-5..
DOI: 10.1007/s00401-019-01974-5

Chiang, H.L.; Lin, C.H. Altered gut microbiome and intestinal pathology in Parkinson's disease. J Mov Disord. 2019, 12(2):67-83. https://doi.org/10.14802/jmd.18067..
DOI: 10.14802/jmd.18067

Singhania, A.; Pham, J.; Dhanwani, R.; et al. The TCR repertoire of α-synuclein-specific T cells in Parkinson's disease is surprisingly diverse. Sci Rep. 2021, 11(1):302. https://doi.org/10.1038/s41598-020-79726-9..
DOI: 10.1038/s41598-020-79726-9

Nuytemans, K.; Theuns, J.; Cruts, M.; Van Broeckhoven, C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat. 2010, 31(7):763-780. https://doi.org/10.1002/humu.21277..
DOI: 10.1002/humu.21277

Shutinoski, B.; Hakimi, M.; Harmsen, I.E.; et al. Lrrk2 alleles modulate inflammation during microbial infection of mice in a sex-dependent manner. Sci Transl Med. 2019, 11(511). https://doi.org/10.1126/scitranslmed.aas9292..
DOI: 10.1126/scitranslmed.aas9292

Kim, B.; Yang, M.S.; Choi, D.; et al. Impaired inflammatory responses in murine Lrrk2-knockdown brain microglia. PLoS One. 2012, 7(4). https://doi.org/10.1371/journal.pone.0034693..
DOI: 10.1371/journal.pone.0034693

Gardet, A.; Benita, Y.; Li, C.; et al. LRRK2 is involved in the IFN-gamma response and host response to pathogens. J Immunol. 2010, 185(9):5577-85. https://doi.org/10.4049/jimmunol.1000548..
DOI: 10.4049/jimmunol.1000548

Hui, K.Y.; Fernandez-Hernandez, H.; Hu, J.; et al. Functional variants in the LRRK2 gene confer shared effects on risk for Crohn's disease and Parkinson's disease. Sci Transl Med. 2018, 10(423). https://doi.org/10.1126/scitranslmed.aai7795..
DOI: 10.1126/scitranslmed.aai7795

Pridgeon, J.W.; Olzmann, J.A.; Chin, L.S.; Li, L. PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol. 2007, 5(7). https://doi.org/10.1371/journal.pbio.0050172..
DOI: 10.1371/journal.pbio.0050172

Kim, J.; Byun, J.W.; Choi, I.; et al. PINK1 deficiency enhances inflammatory cytokine release from acutely prepared brain slices. Exp Neurobiol. 2013, 22(1):38-44. https://doi.org/10.5607/en.2013.22.1.38..
DOI: 10.5607/en.2013.22.1.38

Frank-Cannon, T.C.; Tran, T.; Ruhn, K.A.; et al. Parkin deficiency increases vulnerability to inflammation-related nigral degeneration. J Neurosci. 2008, 28(43):10825-34. https://doi.org/10.1523/JNEUROSCI.3001-08.2008..
DOI: 10.1523/JNEUROSCI.3001-08.2008

Waak, J.; Weber, S.S.; Waldenmaier, A.; et al. Regulation of astrocyte inflammatory responses by the Parkinson's disease-associated gene DJ-1. FASEB J. 2009, 23(8):2478-89. https://doi.org/10.1096/fj.08-125153..
DOI: 10.1096/fj.08-125153

He, R.; Yan, X.; Guo, J.; et al. Recent advances in biomarkers for Parkinson's disease. Front Aging Neurosci. 2018, 10:305. https://doi.org/10.3389/fnagi.2018.00305..
DOI: 10.3389/fnagi.2018.00305

Karpenko, M.N.; Vasilishina, A.A.; Gromova, E.A.; et al. Interleukin-1β, interleukin-1 receptor antagonist, interleukin-6, interleukin-10, and tumor necrosis factor-α levels in CSF and serum in relation to the clinical diversity of Parkinson's disease. Cell Immunol. 2018, 327:77-82. https://doi.org/10.1016/j.cellimm.2018.02.011..
DOI: 10.1016/j.cellimm.2018.02.011

Imamura, K.; Hishikawa, N.; Ono, K.; et al. Cytokine production of activated microglia and decrease in neurotrophic factors of neurons in the hippocampus of Lewy body disease brains. Acta Neuropathol. 2005, 109(2):141-50. https://doi.org/10.1007/s00401-004-0919-y..
DOI: 10.1007/s00401-004-0919-y

McCoy, M.K.; Martinez, T.N.; Ruhn, K.A.; et al. Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson's disease. J Neurosci. 2006, 26(37):9365-75. https://doi.org/10.1523/JNEUROSCI.1504-06.2006..
DOI: 10.1523/JNEUROSCI.1504-06.2006

Elyaman, W.; Khoury, S.J. Th9 cells in the pathogenesis of EAE and multiple sclerosis. Semin Immunopathol. 2017, 39(1):79-87. https://doi.org/10.1007/s00281-016-0604-y..
DOI: 10.1007/s00281-016-0604-y

Elyaman, W.; Bradshaw, E.M.; Uyttenhove, C.; et al. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc Natl Acad Sci U S A. 2009, 106(31):12885-90. https://doi.org/10.1073/pnas.0812530106..
DOI: 10.1073/pnas.0812530106

Picca, A.; Guerra, F.; Calvani, R.; et al. Mitochondrial signatures in circulating extracellular vesicles of older adults with Parkinson's disease: Results from the EXosomes in PArkiNson's Disease (EXPAND) study. J Clin Med. 2020, 9(2):504. https://doi.org/10.3390/jcm9020504..
DOI: 10.3390/jcm9020504

Deleidi, M.; Gasser, T. The role of inflammation in sporadic and familial Parkinson's disease. Cell Mol Life Sci. 2013, 70(22):4259-73. https://doi.org/10.1007/s00018-013-1352-y..
DOI: 10.1007/s00018-013-1352-y

Collins, L.M.; Toulouse, A.; Connor, T.J.; Nolan, Y.M. Contributions of central and systemic inflammation to the pathophysiology of Parkinson's disease. Neuropharmacology. 2012, 62(7):2154-68. https://doi.org/10.1016/j.neuropharm.2012.01.028..
DOI: 10.1016/j.neuropharm.2012.01.028

Tang, P.; Chong, L.; Li, X.; et al. Correlation between serum RANTES levels and the severity of Parkinson's disease. Oxid Med Cell Longev. 2014, 2014:208408. https://doi.org/10.1155/2014/208408..
DOI: 10.1155/2014/208408

Teema, A.M.; Zaitone, S.A.; Moustafa, Y.M. Ibuprofen or piroxicam protects nigral neurons and delays the development of L-DOPA-induced dyskinesia in rats with experimental Parkinsonism: Influence on angiogenesis. Neuropharmacology. 2016, 107:432.

Poly, T.N.; Islam, M.M.R.; Yang, H.C.; Li, Y.J. Non-steroidal anti-inflammatory drugs and risk of Parkinson's disease in the elderly population: a meta-analysis. Eur J Clin Pharmacol. 2019, 75(1):99-108. https://doi.org/10.1007/s00228-018-2561-y..
DOI: 10.1007/s00228-018-2561-y

Rees, K.; Stowe, R.; Patel, S.; et al. Non-steroidal anti-inflammatory drugs as disease-modifying agents for Parkinson's disease: evidence from observational studies. Cochrane Database Syst Rev. 2011, (11). https://doi.org/10.1002/14651858.CD008454.pub2..
DOI: 10.1002/14651858.CD008454.pub2

Ferger, B.; Leng, A.; Mura, A.; Hengerer, B.; Feldon, J. Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J Neurochem. 2004, 89(4):822-33. https://doi.org/10.1111/j.1471-4159.2004.02399.x..
DOI: 10.1111/j.1471-4159.2004.02399.x

Tomás-Camardiel, M.; Rite, I.; Herrera, A.J.; et al. Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood-brain barrier, and damage in the nigral dopaminergic system. Neurobiol Dis. 2004, 16(1):190-201. https://doi.org/10.1016/j.nbd.2004.01.010..
DOI: 10.1016/j.nbd.2004.01.010

Peter, I.; Dubinsky, M.; Bressman, S.; et al. Anti-tumor necrosis factor therapy and incidence of Parkinson disease among patients with inflammatory bowel disease. JAMA Neurol. 2018, 75(8):939-946. https://doi.org/10.1001/jamaneurol.2018.0605..
DOI: 10.1001/jamaneurol.2018.0605

Jing, H.; Wang, S.; Wang, M.; et al. Isobavachalcone attenuates MPTP-induced Parkinson's disease in mice by inhibition of microglial activation through NF-κB pathway. PLoS One. 2017, 12(1). https://doi.org/10.1371/journal.pone.0169560..
DOI: 10.1371/journal.pone.0169560

Chatterjee, D.; Kordower, J.H. Immunotherapy in Parkinson's disease: Current status and future directions. Neurobiol Dis. 2019, 132:104587. https://doi.org/10.1016/j.nbd.2019.104587..
DOI: 10.1016/j.nbd.2019.104587

Mandler, M.; Valera, E.; Rockenstein, E.; et al. Next-generation active immunization approach for synucleinopathies: implications for Parkinson's disease clinical trials. Acta Neuropathol. 2014, 127(6):861-79. https://doi.org/10.1007/s00401-014-1256-4..
DOI: 10.1007/s00401-014-1256-4

Sanchez-Guajardo, V.; Annibali, A.; Jensen, P.H.; Romero-Ramos, M. α-Synuclein vaccination prevents the accumulation of Parkinson disease-like pathologic inclusions in striatum in association with regulatory T cell recruitment in a rat model. J Neuropathol Exp Neurol. 2013, 72(7):624-45. https://doi.org/10.1097/NEN.0b013e31829768d2..
DOI: 10.1097/NEN.0b013e31829768d2

Benner, E.J.; Mosley, R.L.; Destache, C.J.; et al. Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson's disease. Proc Natl Acad Sci U S A. 2004, 101(25):9435-40. https://doi.org/10.1073/pnas.0400569101..
DOI: 10.1073/pnas.0400569101

Дополнительная информация
Язык текста: Русский
ISSN: 2712-9179
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4e432d4a50504e2d41525449434c452d323032342d342d342d302d32362d3333/