Puzio M., Moreton N., O’Connor J.J. Neuroprotective strategies for acute ischemic stroke: targeting oxidative stress and prolyl hydroxylase domain inhibition in synaptic signalling // Brain Disorders. 2022;5(5):100030. DOI: 10.1016/S1474-4422(16)00114-9..
DOI: 10.1016/S1474-4422(16)00114-9
GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019 // Lancet. Neurol. 2021;20(10):795-820. DOI: 10.1016/S1474-4422(21)00252-0..
DOI: 10.1016/S1474-4422(21)00252-0
Heller R.F., Langhorne P., James E. Improving stroke outcome: the benefits of increasing availability of technology // Bull. World Health Organ. 2000;78:1337-1343.
Игнатьева В.И., Вознюк И.А., Шамалов Н.А. и др. Социально-экономическое бремя инсульта в Российской Федерации // Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2023;123(8-2):5-15. DOI: 10.17116/jnevro20231230825..
DOI: 10.17116/jnevro20231230825
Игнатьева В.И., Вознюк И.А., Шамалов Н.А. и др. Социально-экономическое бремя инсульта в Российской Федерации // Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2023;123(8-2):5-15. DOI: 10.17116/jnevro20231230825..
DOI: 10.17116/jnevro20231230825. (In Russ.)
Anderson C.S., Carter K.N., Brownlee W.J. et al. Very long-term outcome after stroke in Auckland, New Zealand // Stroke. 2004;35(8):1920-1924. DOI: 10.1161/01.STR.0000133130.20322.9f..
DOI: 10.1161/01.STR.0000133130.20322.9f
Zhu L., Fratiglioni L., Guo Z. et al. Association of stroke with dementia, cognitive impairment, and functional disability in the very old: a populationbased study // Stroke. 1998;29(10):2094-2099. DOI: 10.1161/01.str.29.10.2094..
DOI: 10.1161/01.str.29.10.2094
Jiang X., Morgenstern L.B., Cigolle C.T. et al. Multiple chronic conditions and functional outcome after ischemic stroke: a systematic review and meta-analysis // Neuroepidemiology. 2020;54(3):205-213. DOI: 10.1159/000503900..
DOI: 10.1159/000503900
Chang W.H., Sohn M.K., Lee J. et al. Predictors of functional level and quality of life at 6 months after a first-ever stroke: the KOSCO study // J. Neurol. 2016;263(6):1166- 1177. DOI: 10.1007/s00415-016-8119-y..
DOI: 10.1007/s00415-016-8119-y
Кулеш С.Д., Филина Н.А., Костиневич Т.М. и др. Долгосрочные исходы мозгового инсульта в крупной городской популяции Беларуси // Вестник Витебского государственного медицинского университета. 2011;10(3):93-101
Ntaios G., Lambrou D., Michel P. Blood pressure changes in acute ischemic stroke and outcome with respect to stroke etiology // Neurology. 2012;79(14):1440-1448. DOI: 10.1212/WNL.0b013e31826d5ed6..
DOI: 10.1212/WNL.0b013e31826d5ed6
Robinson T., Waddington A., Ward-Close S. et al. The predictive role of 24-hour compared to casual blood pressure levels on outcome following acute stroke // Cerebrovasc. Dis. 1997;7(5):264-272. DOI: 10.1159/000108206..
DOI: 10.1159/000108206
Tsivgoulis G., Spengos K., Zakopoulos N. et al. Twenty four hour pulse pressure predicts long term recurrence in acute stroke patients // J. Neurol. Neurosurg. Psychiatry. 2005;76(10):1360-1365. DOI: 10.1136/jnnp.2004.057265..
DOI: 10.1136/jnnp.2004.057265
Chen Y., Ma Y., Qin J. et al. Blood pressure variability predicts poor outcomes in acute stroke patients without thrombolysis: A systematic review and metaanalysis // J. Neurol. 2024;271(3):1160-1169. DOI: 10.1007/s00415-023-12054-w..
DOI: 10.1007/s00415-023-12054-w
Jia Q., Zhao X., Wang C. et al. Diabetes and poor outcomes within 6 months after acute ischemic stroke: the China National Stroke Registry // Stroke. 2011;42(10):2758-2762. DOI: 10.1161/STROKEAHA.111.621649..
DOI: 10.1161/STROKEAHA.111.621649
Tanaka R., Ueno Y., Miyamoto N. et al. Impact of diabetes and prediabetes on the short-term prognosis in patients with acute ischemic stroke // J. Neurol. Sci. 2013;332(1-2):45-50. DOI: 10.1016/j.jns.2013.06.010..
DOI: 10.1016/j.jns.2013.06.010
Tuttolomondo A., Pinto A., Salemi G. et al. Diabetic and non-diabetic subjects with ischemic stroke: differences, subtype distribution and outcome // Nutr. Metab. Cardiovasc. Dis. 2008;18(2):152-157. DOI: 10.1016/j.numecd.2007.02.003..
DOI: 10.1016/j.numecd.2007.02.003
Zhang L., Li X., Wolfe C.D.A. et al. Diabetes as an independent risk factor for stroke recurrence in ischemic stroke patients: an updated meta-analysis // Neuroepidemiology. 2021;55(6):427-435. DOI: 10.1159/000519327..
DOI: 10.1159/000519327
Olaiya M.T., Cadilhac D.A., Kim J. et al. Quality of care and one-year outcomes in patients with diabetes hospitalised for stroke or TIA: a linked registry study // J. Stroke Cerebrovasc. Dis. 2021;30(11):106083. DOI: 10.1016/j.jstrokecerebrovasdis.2021.106083..
DOI: 10.1016/j.jstrokecerebrovasdis.2021.106083
Echouffo-Tcheugui J.B., Xu H., Matsouaka R.A. et al. Diabetes and long-term outcomes of ischaemic stroke: findings from Get With The Guidelines-Stroke // Eur. Heart J. 2018;39(25):2376-2386. DOI: 10.1093/eurheartj/ehy036..
DOI: 10.1093/eurheartj/ehy036
Fonarow G.C., Reeves M.J., Zhao X. et al. Age-related differences in characteristics, performance measures, treatment trends, and outcomes in patients with ischemic stroke // Circulation. 2010;121(7):879-891. DOI: 10.1161/CIRCULATIONAHA.109.892497..
DOI: 10.1161/CIRCULATIONAHA.109.892497
Palnum K.D., Petersen P., Sørensen H.T. et al. Older patients with acute stroke in Denmark: quality of care and short-term mortality. A nationwide followup study // Age Ageing. 2008;37(1):90-95. DOI: 10.1093/ageing/afm134..
DOI: 10.1093/ageing/afm134
Yoo J.W., Hong B.Y., Jo L. et al. Effects of age on longterm functional recovery in patients with stroke // Medicina (Kaunas). 2020;56(9):451. DOI: 10.3390/medicina56090451..
DOI: 10.3390/medicina56090451
Ohya Y., Matsuo R., Sato N. et al. Modification of the effects of age on clinical outcomes through management of lifestyle-related factors in patients with acute ischemic stroke // J. Neurol. Sci. 2023;446:120589. DOI: 10.1016/j.jns.2023.120589..
DOI: 10.1016/j.jns.2023.120589
Beuker C., Köppe J., Feld J. et al. Association of age with 1-year outcome in patients with acute ischaemic stroke treated with thrombectomy: real-world analysis in 18 506 patients // J. Neurol. Neurosurg. Psychiatry. 2023;94(8):631-637. DOI: 10.1136/jnnp-2022-330506..
DOI: 10.1136/jnnp-2022-330506
Kimura K., Minematsu K., Yamaguchi T. Atrial fibrillation as a predictive factor for severe stroke and early death in 15 831 patients with acute ischaemic stroke // J. Neurol. Neurosurg. Psychiatry. 2005;76(5):679- 683. DOI: 10.1136/jnnp.2004.048827..
DOI: 10.1136/jnnp.2004.048827
Sandercock P., Bamford J., Dennis M. et al. Atrial fibrillation and stroke: prevalence in different types of stroke and influence on early and long term prognosis (Oxfordshire community stroke project) // BMJ. 1992;305(6867):1460-1465. DOI: 10.1136/bmj.305.6867.1460..
DOI: 10.1136/bmj.305.6867.1460
Lin H.J., Wolf P.A., Kelly-Hayes M. et al. Stroke severity in atrial fibrillation: the Framingham Study // Stroke. 1996;27(10):1760-1764. DOI: 10.1161/01.str.27.10.1760..
DOI: 10.1161/01.str.27.10.1760
Tracz J., Gorczyca-Głowacka I., Rosołowska A., Wożakowska-Kapłon B. Long-term outcomes after stroke in patients with atrial fibrillation: a single center study // Int. J. Environ. Res. Public Health. 2023;20(4):3491. DOI: 10.3390/ijerph20043491..
DOI: 10.3390/ijerph20043491
Tu H.T., Campbell B.C., Christensen S. et al. Worse stroke outcome in atrial fibrillation is explained by more severe hypoperfusion, infarct growth, and hemorrhagic transformation // Int. J. Stroke. 2015;10(4):534-540. DOI: 10.1111/ijs.12007..
DOI: 10.1111/ijs.12007
Adams H.P. Jr., Davis P.H., Leira E.C. et al. Baseline NIH Stroke Scale score strongly predicts outcome after stroke: A report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST) // Neurology. 1999;53(1):126-131. DOI: 10.1212/wnl.53.1.126..
DOI: 10.1212/wnl.53.1.126
Lyden P.D., Lu M., Levine S.R. et al. A modified National Institutes of Health Stroke Scale for use in stroke clinical trials: preliminary reliability and vali dity // Stroke. 2001;32(6):1310-1317. DOI: 10.1161/01.str.32.6.1310..
DOI: 10.1161/01.str.32.6.1310
Rost N.S., Bottle A., Lee J.M. et al. Stroke severity is a crucial predictor of outcome: An international prospective validation study // J. Am. Heart Assoc. 2016;5(1):e002433. DOI: 10.1161/ JAHA.115.002433..
DOI: 10.1161/ JAHA.115.002433
Rost N.S., Bottle A., Lee J.M. et al. Stroke severity is a crucial predictor of outcome: An international prospective validation study // J. Am. Heart Assoc. 2016;5(1):e002433. DOI: 10.1161/ JAHA.115.002433..
DOI: 10.1161/JAHA.115.002433
Du J., Wang Y., Che B. et al. The relationship between neurological function trajectory, assessed by repeated NIHSS measurement, and long-term cardiovascular events, recurrent stroke, and mortality after ischemic stroke // Int. J. Stroke. 2023;18(8):1005-1014. DOI: 10.1177/17474930231180446..
DOI: 10.1177/17474930231180446
Kasner S.E. Clinical interpretation and use of stroke scales // Lancet. Neurol. 2006;5(7):603-612. DOI: 10.1016/S1474-4422(06)70495-1..
DOI: 10.1016/S1474-4422(06)70495-1
Chung J.W., Park S.H., Kim N. et al. Trial of ORG 10172 in Acute Stroke Treatment (TOAST) classification and vascular territory of ischemic stroke lesions diagnosed by diffusion-weighted imaging // J. Am. Heart Assoc. 2014;3:e001119. DOI: 10.1161/JAHA.114.001119..
DOI: 10.1161/JAHA.114.001119
Woo D., Broderick J.P., Kothari R.U. et al. Does the National Institutes of Health Stroke Scale favor left hemisphere strokes? NINDS t-PA Stroke Study Group // Stroke. 1999;30(11):2355–2359. DOI: 10.1161/01.str.30.11.2355..
DOI: 10.1161/01.str.30.11.2355
Sato S., Toyoda K., Uehara T. et al. Baseline NIH Stroke Scale Score predicting outcome in anterior and posterior circulation strokes // Neurology. 2008;70(24 Pt 2):2371–2377. DOI: 10.1212/01.wnl.0000304346.14354.0b..
DOI: 10.1212/01.wnl.0000304346.14354.0b
Yang Y., Wang A., Zhao X. et al. The Oxfordshire Community Stroke Project classification system predicts clinical outcomes following intravenous thrombolysis: A prospective cohort study // Ther. Clin. Risk Manag. 2016;12:1049–1056. DOI: 10.2147/TCRM. S107053. PMID: 27418829..
DOI: 10.2147/TCRM. S107053
Fink J.N., Selim M.H., Kumar S. et al. Is the association of National Institutes of Health Stroke Scale scores and acute magnetic resonance imaging stroke volume equal for patients with right- and left-hemisphere ischemic stroke? // Stroke. 2002;33(4):954- 958. DOI: 10.1161/01.str.0000013069.24300.1d..
DOI: 10.1161/01.str.0000013069.24300.1d
Quinn T.J., Dawson J., Walters M.R., Lees K.R. Functional outcome measures in contemporary stroke trials // Int. J. Stroke. 2009;4(3):200-205. DOI: 10.1111/j.1747-4949.2009.00271.x..
DOI: 10.1111/j.1747-4949.2009.00271.x
Sangha H., Lipson D., Foley N. et al. A comparison of the Barthel Index and the Functional Independence Measure as outcome measures in stroke rehabilitation: patterns of disability scale usage in clinical trials // Int. J. Rehabil. Res. 2005;28(2):135-139. DOI: 10.1097/00004356-200506000-00006..
DOI: 10.1097/00004356-200506000-00006
Granger C.V., Hamilton B.B., Gresham G.E. The stroke rehabilitation outcome study – Part I: general description // Arch. Phys. Med. Rehabil. 1988;69(7):506-509.
Musa K.I., Keegan T.J. The change of Barthel Index scores from the time of discharge until 3-month post-discharge among acute stroke patients in Malaysia: A random intercept model // PLoS One. 2018;13(12):e0208594. DOI: 10.1371/journal.pone.0208594..
DOI: 10.1371/journal.pone.0208594
Nazzal M., Sa’adah M.A., Al-Ansari D. et al. Stroke rehabilitation: application and analysis of the modified Barthel index in an Arab community // Disabil. Rehabil. 2001;23(1):36-42. DOI: 10.1080/09638280150211284..
DOI: 10.1080/09638280150211284
van der Putten J.J., Hobart J.C., Freeman J.A., Thompson A.J. Measuring change in disability after inpatient rehabilitation: comparison of the responsiveness of the Barthel index and the Functional Independence Measure // J. Neurol. Neurosurg. Psychiatry. 1999;66(4):480-484. DOI: 10.1136/ jnnp.66.4.480..
DOI: 10.1136/ jnnp.66.4.480
van der Putten J.J., Hobart J.C., Freeman J.A., Thompson A.J. Measuring change in disability after inpatient rehabilitation: comparison of the responsiveness of the Barthel index and the Functional Independence Measure // J. Neurol. Neurosurg. Psychiatry. 1999;66(4):480-484. DOI: 10.1136/ jnnp.66.4.480..
DOI: 10.1136/jnnp.66.4.480
Koyama T., Matsumoto K., Okuno T., Domen K. Relationships between independence level of single motor-FIM items and FIM-motor scores in patients with hemiplegia after stroke: an ordinal logistic modelling study // J. Rehabil. Med. 2006;38(5):280-286. DOI: 10.1080/16501970600731420..
DOI: 10.1080/16501970600731420
Dromerick A.W., Edwards D.F., Diringer M.N. Sensitivity to changes in disability after stroke: a comparison of four scales useful in clinical trials // J. Rehabil. Res. Dev. 2003;40(1):1-8. DOI: 10.1682/jrrd.2003.01.0001..
DOI: 10.1682/jrrd.2003.01.0001
Wallace D., Duncan P.W., Lai S.M. Comparison of the responsiveness of the Barthel Index and the motor component of the Functional Independence Measure in stroke: the impact of using different methods for measuring responsiveness // J. Clin. Epidemiol. 2002;55(9):922-928. DOI: 10.1016/s0895-4356(02)00410-9..
DOI: 10.1016/s0895-4356(02)00410-9
Hsueh I.P., Lin J.H., Jeng J.S., Hsieh C.L. Comparison of the psychometric characteristics of the functional independence measure, 5 item Barthel index, and 10 item Barthel index in patients with stroke // J. Neurol. Neurosurg. Psychiatry. 2002;73(2):188- 190. DOI: 10.1136/jnnp.73.2.188..
DOI: 10.1136/jnnp.73.2.188
Chumney D., Nollinger K., Shesko K. et al. Ability of Functional Independence Measure to accurately predict functional outcome of stroke-specific population: systematic review // J. Rehabil. Res. Dev. 2010;47(1):17-29. DOI: 10.1682/jrrd.2009.08.0140..
DOI: 10.1682/jrrd.2009.08.0140
Wilson J.T., Hareendran A., Grant M. et al. Improving the assessment of outcomes in stroke: use of a structured interview to assign grades on the modified Rankin Scale // Stroke. 2002;33(9):2243-2246. DOI: 10.1161/01.str.0000027437.22450.bd..
DOI: 10.1161/01.str.0000027437.22450.bd
Wilson J.T., Hareendran A., Hendry A. et al. Reliability of the modified Rankin Scale across multiple raters: benefits of a structured interview // Stroke. 2005;36(4):777-781. DOI: 10.1161/01.STR.0000157596.13234.95..
DOI: 10.1161/01.STR.0000157596.13234.95
Wilson J.T., Hareendran A., Hendry A. et al. Reliability of the modified Rankin Scale across multiple raters: benefits of a structured interview // Stroke. 2005;36(4):777-781. DOI: 10.1161/01.STR.0000157596.13234.95..
DOI: 10.1161/01. STR.0000157596.13234.95
Demchuk A.M., Tanne D., Hill M.D. et al. Predictors of good outcome after intravenous tPA for acute ischemic stroke // Neurology. 2001;57(3):474-480. DOI: 10.1212/wnl.57.3.474..
DOI: 10.1212/wnl.57.3.474
Kwon S., Hartzema A.G., Duncan P.W., MinLai S. Disability measures in stroke: relationship among the Barthel Index, the Functional Independence Measure, and the Modified Rankin Scale // Stroke. 2004;35(4):918-923. DOI: 10.1161/01.STR.0000119385.56094.32..
DOI: 10.1161/01.STR.0000119385.56094.32
Chen S., You J., Yang X. et al. Machine learning is an effective method to predict the 90-day prognosis of patients with transient ischemic attack and minor stroke // BMC Med. Res. Methodol. 2022;22(1):195. DOI: 10.1186/s12874-022-01672-z..
DOI: 10.1186/s12874-022-01672-z
Zhang M.Y., Mlynash M., Sainani K.L. et al. Ordinal prediction model of 90-day modified Rankin scale in ischemic stroke // Front. Neurol. 2021;12:727171. DOI: 10.3389/fneur.2021.727171..
DOI: 10.3389/fneur.2021.727171
Rabinstein A.A. Update on treatment of acute ischemic stroke // Continuum (Minneap. Minn.). 2020;26(2):268-286. DOI: 10.1212/ CON.0000000000000840..
DOI: 10.1212/ CON.0000000000000840
Rabinstein A.A. Update on treatment of acute ischemic stroke // Continuum (Minneap. Minn.). 2020;26(2):268-286. DOI: 10.1212/ CON.0000000000000840..
DOI: 10.1212/CON.0000000000000840
Osama S., Zafar K., Sadiq M.U. Predicting clinical outcome in acute ischemic stroke using parallel multi-parametric feature embedded siamese network // Diagnostics (Basel). 2020;10(11):858. DOI: 10.3390/diagnostics10110858..
DOI: 10.3390/diagnostics10110858
Gatenby R.A., Grove O., Gillies R.J. Quantitative imaging in cancer evolution and ecology // Radiology. 2013;269(1):8-15. DOI: 10.1148/radiol.13122697..
DOI: 10.1148/radiol.13122697
Wong K.K., Cummock J.S., Li G. et al. Automatic segmentation in acute ischemic stroke: prognostic significance of topological stroke volumes on stroke outcome // Stroke. 2022;53(9):2896-2905. DOI: 10.1161/STROKEAHA.121.037982..
DOI: 10.1161/STROKEAHA.121.037982
Moulton E., Valabregue R., Piotin M. et al. Interpretable deep learning for the prognosis of longterm functional outcome post-stroke using acute diffusion weighted imaging // J. Cereb. Blood Flow Metab. 2023;43(2):198-209. DOI: 10.1177/0271678X221129230..
DOI: 10.1177/0271678X221129230
Yoo A.J., Barak E.R., Copen W.A. et al. Combining acute diffusion-weighted imaging and mean transmit time lesion volumes with National Institutes of Health Stroke Scale Score improves the prediction of acute stroke outcome // Stroke. 2010;41(8):1728- 1735. DOI: 10.1161/STROKEAHA.110.582874..
DOI: 10.1161/STROKEAHA.110.582874
Johnston K.C., Wagner D.P., Haley E.C. Jr. et al. Combined clinical and imaging information as an early stroke outcome measure // Stroke. 2002;33(2):466- 472. DOI: 10.1161/hs0202.102881..
DOI: 10.1161/hs0202.102881
Vogt G., Laage R., Shuaib A. et al. Initial lesion volume is an independent predictor of clinical stroke outcome at day 90: an analysis of the Virtual International Stroke Trials Archive (VISTA) database // Stroke. 2012;43(5):1266-1272. DOI: 10.1161/STROKEAHA.111.646570..
DOI: 10.1161/STROKEAHA.111.646570
Yoo A.J., Chaudhry Z.A., Nogueira R.G. et al. Infarct volume is a pivotal biomarker after intra-arterial stroke therapy // Stroke. 2012;43(5):1323-1330. DOI: 10.1161/STROKEAHA.111.639401..
DOI: 10.1161/STROKEAHA.111.639401
Yoo A.J., Chaudhry Z.A., Nogueira R.G. et al. Infarct volume is a pivotal biomarker after intra-arterial stroke therapy // Stroke. 2012;43(5):1323-1330. DOI: 10.1161/STROKEAHA.111.639401..
DOI: 10.1161/STROKEAHA.111.639401.66
Beare R., Chen J., Phan T.G. et al. Googling stroke ASPECTS to determine disability: exploratory analysis from VISTA-acute Collaboration // PLoS One. 2015;10(5):e0125687. DOI: 10.1371/journal.pone.0125687..
DOI: 10.1371/journal.pone.0125687
Menon B.K., Puetz V., Kochar P., Demchuk A.M. ASPECTS and other neuroimaging scores in the triage and prediction of outcome in acute stroke patients // Neuroimaging Clin. N. Am. 2011;21(2):407-423. DOI: 10.1016/j.nic.2011.01.007..
DOI: 10.1016/j.nic.2011.01.007
Phan T.G., Demchuk A., Srikanth V. et al. Proof of concept study: relating infarct location to stroke disability in the NINDS rt-PA trial // Cerebrovasc. Dis. 2013;35(6):560-565. DOI: 10.1159/000351147..
DOI: 10.1159/000351147
Rangaraju S., Streib C., Aghaebrahim A. et al. Relationship between lesion topology and clinical outcome in anterior circulation large vessel occlusions // Stroke. 2015;46(7):1787-1792. DOI: 10.1161/STROKEAHA.115.009908..
DOI: 10.1161/STROKEAHA.115.009908
Goto A., Okuda S., Ito S. et al. Locomotion outcome in hemiplegic patients with middle cerebral artery infarction: the difference between right- and left-sided lesions // J. Stroke Cerebrovasc. Dis. 2009;18(1):60-67. DOI: 10.1016/j.jstrokecerebrovasdis.2008.09.003..
DOI: 10.1016/j.jstrokecerebrovasdis.2008.09.003
Johnston K.C., Wagner D.P., Wang X.Q. et al. Validation of an acute ischemic stroke model: does diffusion-weighted imaging lesion volume offer a clinically significant improvement in prediction of outcome? // Stroke. 2007;38(6):1820-1825. DOI: 10.1161/STROKEAHA.106.479154..
DOI: 10.1161/STROKEAHA.106.479154
Puig J., Pedraza S., Blasco G. et al. Acute damage to the posterior limb of the internal capsule on diffusion tensor tractography as an early imaging predictor of motor outcome after stroke // AJNR Am. J. Neuroradiol. 2011;32(5):857-863. DOI: 10.3174/ajnr.A2400..
DOI: 10.3174/ajnr.A2400
Lansberg M.G., O’Brien M.W., Tong D.C. et al. Evolution of cerebral infarct volume assessed by diffusion-weighted magnetic resonance imaging // Arch. Neurol. 2001;58(4):613-617. DOI: 10.1001/archneur.58.4.613..
DOI: 10.1001/archneur.58.4.613
Lu W.Z., Lin H.A., Bai C.H., Lin S.F. Posterior circulation acute stroke prognosis early CT scores in predicting functional outcomes: A meta-analysis // PLoS One. 2021;16(2):e0246906. DOI: 10.1371/journal.pone.0246906..
DOI: 10.1371/journal.pone.0246906
Lin S.F., Chen C.I., Hu H.H., Bai C.H. Predicting functional outcomes of posterior circulation acute ischemic stroke in first 36 h of stroke onset // J. Neurol. 2018;265(4):926-932. DOI: 10.1007/s00415-018-8746-6..
DOI: 10.1007/s00415-018-8746-6
Castellanos M., Leira R., Serena J. et al. Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke // Stroke. 2003;34(1):40-46.
Foerch C., Otto B., Singer O.C. et al. Serum S100B predicts a malignant course of infarction in patients with acute middle cerebral artery occlusion // Stroke. 2004;35(9):2160-2164. DOI: 10.1161/01. STR.0000138730.03264.ac..
DOI: 10.1161/01. STR.0000138730.03264.ac
Thanvi B., Treadwell S., Robinson T. Early neurological deterioration in acute ischaemic stroke: predictors, mechanisms and management // Postgrad. Med. J. 2008; 84(994):412-417. DOI: 10.1136/pgmj.2007.066118..
DOI: 10.1136/pgmj.2007.066118
Castillo J. Deteriorating stroke: Diagnostic criteria, predictors, mechanisms and treatment // Cerebrovasc. Dis. 1999;9 Suppl. 3:1-8. DOI: 10.1159/000047548..
DOI: 10.1159/000047548
Castellanos M., Sobrino T., Pedraza S. et al. High plasma glutamate concentrations are associated with infarct growth in acute ischemic stroke // Neurology. 2008;71(23):1862-1868. DOI: 10.1212/01.wnl.0000326064.42186.7e..
DOI: 10.1212/01.wnl.0000326064.42186.7e
Dávalos A., Castillo J., Marrugat J. et al. Body iron stores and early neurologic deterioration in acute cerebral infarction // Neurology. 2000;54(8):1568- 1574. DOI: 10.1212/wnl.54.8.1568..
DOI: 10.1212/wnl.54.8.1568
Castellanos M., Castillo J., García M.M. et al. Inflammation-mediated damage in progressing lacunar infarctions: a potential therapeutic target // Stroke. 2002;33(4):982-987. DOI: 10.1161/hs0402.105339..
DOI: 10.1161/hs0402.105339
Woodward M., Lowe G.D., Campbell D.J. et al. Associations of inflammatory and hemostatic variables with the risk of recurrent stroke // Stroke. 2005;36(10):2143-2147. DOI: 10.1161/01. STR.0000181754.38408.4c..
DOI: 10.1161/01. STR.0000181754.38408.4c
Woodward M., Lowe G.D., Campbell D.J. et al. Associations of inflammatory and hemostatic variables with the risk of recurrent stroke // Stroke. 2005;36(10):2143-2147. DOI: 10.1161/01. STR.0000181754.38408.4c..
DOI: 10.1161/01.STR.0000181754.38408.4c
Elkind M.S., Luna J.M., McClure L.A. et al. C-reactive protein as a prognostic marker after lacunar stroke: levels of inflammatory markers in the treatment of stroke study // Stroke. 2014;45(3):707-716. DOI: 10.1161/STROKEAHA.113.004562..
DOI: 10.1161/STROKEAHA.113.004562
Welsh P., Lowe G.D., Chalmers J. et al. Associations of proinflammatory cytokines with the risk of recurrent stroke // Stroke. 2008;39(8):2226-2230. DOI: 10.1161/STROKEAHA.107.504498..
DOI: 10.1161/STROKEAHA.107.504498
Elkind M.S., Tai W., Coates K. et al. Lipoprotein-associated phospholipase A2 activity and risk of recurrent stroke // Cerebrovasc. Dis. 2009;27(1):42-50. DOI: 10.1159/000172633..
DOI: 10.1159/000172633
Ganz P., Amarenco P., Goldstein L.B. et al. Association of osteopontin, neopterin, and myeloperoxidase with stroke risk in patients with prior stroke or transient ischemic attacks: results of an analysis of 13 biomarkers from the Stroke Prevention by Aggressive Reduction in Cholesterol Levels Trial // Stroke. 2017;48(12):3223-3231. DOI: 10.1161/STROKEAHA.117.017965..
DOI: 10.1161/STROKEAHA.117.017965
Ganz P., Amarenco P., Goldstein L.B. et al. Association of osteopontin, neopterin, and myeloperoxidase with stroke risk in patients with prior stroke or transient ischemic attacks: results of an analysis of 13 biomarkers from the Stroke Prevention by Aggressive Reduction in Cholesterol Levels Trial // Stroke. 2017;48(12):3223-3231. DOI: 10.1161/STROKEAHA.117.017965..
DOI: 10.1161/ STROKEAHA.117.017965
Zhang Z.G., Wang C., Wang J. et al. Prognostic value of mannose-binding lectin: 90-day outcome in patients with acute ischemic stroke // Mol. Neurobiol. 2015;51(1):230-239. DOI: 10.1007/s12035-014-8682-0..
DOI: 10.1007/s12035-014-8682-0
Tu W.J., Zhao S.J., Xu D.J., Chen H. Serum 25-hydroxyvitamin D predicts the short-term outcomes of Chinese patients with acute ischaemic stroke // Clin. Sci. (Lond.). 2014;126(5):339-346. DOI: 10.1042/CS20130284..
DOI: 10.1042/CS20130284
Lattuca B., Sy V., Nguyen L.S. et al. Copeptin as a prognostic biomarker in acute myocardial infarction // Int. J. Cardiol. 2019;274:337-341. DOI: 10.1016/j.ijcard.2018.09.022..
DOI: 10.1016/j.ijcard.2018.09.022
Katan M., Fluri F., Morgenthaler N.G. et al. Copeptin: a novel, independent prognostic marker in patients with ischemic stroke // Ann. Neurol. 2009;66(6):799- 808. DOI: 10.1002/ana.21783..
DOI: 10.1002/ana.21783
De Marchis G.M., Katan M., Weck A. et al. Copeptin adds prognostic information after ischemic stroke: results from the CoRisk study // Neurology. 2013;80(14):1278-1286. DOI: 10.1212/WNL.0b013e3182887944..
DOI: 10.1212/WNL.0b013e3182887944
Xie S., Lu L., Liu L. et al. Progranulin and short-term outcome in patients with acute ischaemic stroke // Eur. J. Neurol. 2016;23(3):648-655. DOI: 10.1111/ene.12920..
DOI: 10.1111/ene.12920
Zhu Y.Y., Zhang J.L., Liu L. et al. Evaluation of serum retinol-binding protein-4 levels as a biomarker of poor short-term prognosis in ischemic stroke // Biosci. Rep. 2018;38(5):BSR20180786. DOI: 10.1042/BSR20180786. PMID: 30038059..
DOI: 10.1042/BSR20180786
Zhu Y.Y., Zhang J.L., Liu L. et al. Evaluation of serum retinol-binding protein-4 levels as a biomarker of poor short-term prognosis in ischemic stroke // Biosci. Rep. 2018;38(5):BSR20180786. DOI: 10.1042/BSR20180786. PMID: 30038059..
DOI: 10.1042/ BSR20180786
Wang H., Cheng Y., Chen S. et al. Impact of elevated hemoglobin A1c levels on functional outcome in patients with acute ischemic stroke // J. Stroke Cerebrovasc. Dis. 2019;28(2):470-476. DOI: 10.1016/j.jstrokecerebrovasdis.2018.10.026..
DOI: 10.1016/j.jstrokecerebrovasdis.2018.10.026
Tiedt S., Duering M., Barro C. et al. Serum neu rofilament light: A biomarker of neuroaxo nal injury after ischemic stroke // Neurology. 2018;91(14):e1338-e1347. DOI: 10.1212/WNL.0000000000006282..
DOI: 10.1212/WNL.0000000000006282
Oh S.H., Lee J.G., Na S.J. et al. Prediction of early clinical severity and extent of neuronal damage in anterior-circulation infarction using the initial serum neuron-specific enolase level // Arch. Neurol. 2003;60(1):37-41. DOI: 10.1001/archneur.60.1.37..
DOI: 10.1001/archneur.60.1.37
Goyal N., Tsivgoulis G., Chang J.J. et al. Admission neutrophil-to-lymphocyte ratio as a prognostic biomarker of outcomes in large vessel occlusion strokes // Stroke. 2018;49(8):1985-1987. DOI: 10.1161/STROKEAHA.118.021477. 99. Guo Z., Yu S., Xiao L. et al. Dynamic change of neutrophil to lymphocyte ratio and hemorrhagic transformation after thrombolysis in stroke // J. Neuroinflammation. 2016;13(1):199. DOI: 10.1186/s12974-016-0680-x..
DOI: 10.1186/s12974-016-0680-x
Goyal N., Tsivgoulis G., Chang J.J. et al. Admission neutrophil-to-lymphocyte ratio as a prognostic biomarker of outcomes in large vessel occlusion strokes // Stroke. 2018;49(8):1985-1987. DOI: 10.1161/STROKEAHA.118.021477. 99. Guo Z., Yu S., Xiao L. et al. Dynamic change of neutrophil to lymphocyte ratio and hemorrhagic transformation after thrombolysis in stroke // J. Neuroinflammation. 2016;13(1):199. DOI: 10.1186/s12974-016-0680-x..
DOI: 10.1161/STROKEAHA.118.021477
Lee M., Kim C.H., Kim Y. et al. High triglyceride glucose index is associated with poor outcomes in ischemic stroke patients after reperfusion therapy // Cerebrovasc. Dis. 2021;50(6):691-699. DOI: 10.1159/000516950..
DOI: 10.1159/000516950
Lee M., Kim C.H., Kim Y. et al. High triglyceride glucose index is associated with poor outcomes in ischemic stroke patients after reperfusion therapy // Cerebrovasc. Dis. 2021;50(6):691-699. DOI: 10.1159/000516950..
DOI: 10.1186/s12974-016-0680-x
Miao M., Bi Y., Hao L. et al. Triglyceride-glucose index and short-term functional outcome and inhospital mortality in patients with ischemic stroke // Nutr. Metab. Cardiovasc. Dis. 2023;33(2):399-407. DOI: 10.1016/j.numecd.2022.11.004..
DOI: 10.1016/j.numecd.2022.11.004
Miao M., Bi Y., Hao L. et al. Triglyceride-glucose index and short-term functional outcome and inhospital mortality in patients with ischemic stroke // Nutr. Metab. Cardiovasc. Dis. 2023;33(2):399-407. DOI: 10.1016/j.numecd.2022.11.004..
DOI: 10.1159/000516950
Евзельман М.А., Орлова А.Д., Лашхия Я.Б. и др. Прогностические маркеры исхода ишемического инсульта // Журнал неврологии и психиатрии им. С.С. Корсакова. 2018;118(12-2):50-53. DOI: 10.17116/jnevro201811812250..
DOI: 10.17116/jnevro201811812250
Евзельман М.А., Орлова А.Д., Лашхия Я.Б. и др. Прогностические маркеры исхода ишемического инсульта // Журнал неврологии и психиатрии им. С.С. Корсакова. 2018;118(12-2):50-53. DOI: 10.17116/jnevro201811812250..
DOI: 10.1016/j.numecd.2022.11.004
Flint A.C., Rao V.A., Chan S.L. et al. Improved ischemic stroke outcome prediction using model estimation of outcome probability: the THRIVE-c calculation // Int. J. Stroke. 2015;10(6):815-821. DOI: 10.1111/ijs.12529..
DOI: 10.1111/ijs.12529
Flint A.C., Rao V.A., Chan S.L. et al. Improved ischemic stroke outcome prediction using model estimation of outcome probability: the THRIVE-c calculation // Int. J. Stroke. 2015;10(6):815-821. DOI: 10.1111/ijs.12529..
DOI: 10.17116/jnevro201811812250. (In Russ.)
Myint P.K., Clark A.B., Kwok C.S. et al. The SOAR (Stroke subtype, Oxford Community Stroke Project classification, Age, prestroke modified Rankin) score strongly predicts early outcomes in acute stroke // Int. J. Stroke. 2014;9(3):278-283. DOI: 10.1111/ijs.12088..
DOI: 10.1111/ijs.12088
Myint P.K., Clark A.B., Kwok C.S. et al. The SOAR (Stroke subtype, Oxford Community Stroke Project classification, Age, prestroke modified Rankin) score strongly predicts early outcomes in acute stroke // Int. J. Stroke. 2014;9(3):278-283. DOI: 10.1111/ijs.12088..
DOI: 10.1111/ijs.12529
Yang Y., Guo Y. Ischemic stroke outcome prediction with diversity features from whole brain tissue using deep learning network // Front. Neurol. 2024;15:1394879. DOI: 10.3389/fneur.2024.1394879..
DOI: 10.3389/fneur.2024.1394879
Yang Y., Guo Y. Ischemic stroke outcome prediction with diversity features from whole brain tissue using deep learning network // Front. Neurol. 2024;15:1394879. DOI: 10.3389/fneur.2024.1394879..
DOI: 10.1111/ijs.12088