Reginster J.L., Arden N.K., Haugen I.K., Rannou F., Cavalier E., Bruyère O., et al. Guidelines for the conduct of pharmacological clinical trials in hand osteoarthritis: Consensus of a Working Group of the European Society on Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Semin Arthritis Rheum. 2018;48(1):1–8. doi: 10.1016/j.semarthrit.2017.12.003..
DOI: 10.1016/j.semarthrit.2017.12.003
Hughes R., Carr A. A randomized, double-blind, placebo-controlled trial of glucosamine sulphate as an analgesic in osteoarthritis of the knee. Rheumatology. 2002;41(3):279–284. Available at: https://academic.oup.com/rheumatology/article/41/3/279/1784262.https://academic.oup.com/rheumatology/article/41/3/279/1784262
Rindone J.P., Hiller D., Collacott E., Nordhaugen N., Arriola G. Randomized, controlled trial of glucosamine for treating osteoarthritis of the knee. West J Med. 2000;172(2):91–94. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1070762/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1070762/
McAlindon T., Formica M., LaValley M., Lehmer M., Kabbara K. Effectiveness of glucosamine for symptoms of knee osteoarthritis: results from an internet-based randomized doubleblind controlled trial. Am J Med. 2004;117(9):643–649. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0002-9343(04)00477-2.https://linkinghub.elsevier.com/retrieve/pii/S0002-9343(04)00477-2
Leffler C.T., Philippi A.F., Leffler S.G., Mosure J.C., Kim P.D. Glucosamine, chondroitin, and manganese ascorbate for degenerative joint disease of the knee or low back: a randomized, double-blind, placebo-controlled pilot study. Mil Med. 1999;164(2):85–91. Available at: https://www.ncbi.nlm.nih.gov/pubmed/10050562.https://www.ncbi.nlm.nih.gov/pubmed/10050562
Houpt J.B., McMillan R., Wein C., Paget-Dellio S.D. Effect of glucosamine hydrochloride in the treatment of pain of osteoarthritis of the knee. J Rheumatol. 1999;26(11):2423–2430. Available at: https://www.ncbi.nlm.nih.gov/pubmed/10555905.https://www.ncbi.nlm.nih.gov/pubmed/10555905
Reginster J.-Y., Neuprez A., Lecart M.-P., Sarlet N., Bruyere O. Role of glucosamine in the treatment for osteoarthritis. Rheumatol Int. 2012;32(10):2959–2967. doi: 10.1007/s00296-012-2416-2..
DOI: 10.1007/s00296-012-2416-2
Bruyère O., Cooper C., Arden N., Branco J., Brandi M.L., Herrero-Beaumont G., et al. Can we identify patients with high risk of osteoarthritis progression who will respond to treatment? A focus on epidemiology and phenotype of osteoarthritis. Drugs Aging. 2015;32(3):179–187. doi: 10.1007/s40266-015-0243-3..
DOI: 10.1007/s40266-015-0243-3
Rovati L.C., Brambilla N., Blicharski T., Connell J., Vitalini C., Bonazzi A., et al. Efficacy and safety of the first-in-class imidazoline-2 receptor ligand CR4056 in pain from knee osteoarthritis and disease phenotypes: a randomized, double-blind, placebo-controlled phase 2 trial. Osteoarthritis and Cartilage. 2019. doi: 10.1016/j.joca.2019.09.002..
DOI: 10.1016/j.joca.2019.09.002
Karlsson M.K., Magnusson H., Cöster M.C., Vonschewelov T., Karlsson C., Rosengren B.E. Patients with hip osteoarthritis have a phenotype with high bone mass and low lean body mass. Clin Orthop Relat Res. 2014;472(4):1224–1229. DOI: 10.1007/s11999-013-3395-7..
DOI: 10.1007/s11999-013-3395-7
Deveza L.A., Nelson A.E., Loeser R.F. Phenotypes of osteoarthritis: current state and future implications. Clin Exp Rheumatol. 2019;37(5):0064– 0072. Available at: https://www.clinexprheumatol.org/abstract.asp?a = 14705.https://www.clinexprheumatol.org/abstract.asp?a
Carlesso L.C., Neogi T. Identifying pain susceptibility phenotypes in knee osteoarthritis. Clin Exp Rheumatol. 2019;37(5):0096–0099. Available at: https://www.clinexprheumatol.org/abstract.asp?a = 14704.https://www.clinexprheumatol.org/abstract.asp?a
Roemer F.W., Collins J., Kwoh C.K., Hannon M.J., Neogi T., Felson D.T., et al. MRI-based screening for structural definition of eligibility in clinical DMOAD trials: Rapid OsteoArthritis MRI Eligibility Score (ROAMES). Osteoarthritis and Cartilage. 2019;pii:S1063-4584(19)31192-6. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31513920.https://www.ncbi.nlm.nih.gov/pubmed/31513920
Кабалык М.А., Гнеденков С.В., Коваленко Т.С., Синенко А.А., Молдованова Л.М. Молекулярные подтипы остеоартрита. Тихоокеанский медицинский журнал. 2017;(4):40–44. doi: 10.17238/PmJ1609-1175.2017.4.40-44. Kabalyk M.A., Gnedenkov S.V., Kovalenko T.S., Sinenko A.A., Moldovanova L.M. Molecular subtypes of osteoarthritis. Tikhookeanskiy meditsinskiy zhurnal = Pacific Medical Journal. 2017;(4):40–44. (In Russ.) doi: 10.17238/PmJ1609-1175.2017.4.40-44..
DOI: 10.17238/PmJ1609-1175.2017.4.40-44
Millerand M., Berenbaum F., Jacques C. Danger signals and inflammaging in osteoarthritis. Clin Exp Rheumatol. 2019;37(5):0048–0056. Available at: https://www.clinexprheumatol.org/abstract.asp?a = 14559.https://www.clinexprheumatol.org/abstract.asp?a
Henrotin Y., Marty M., Mobasheri A. What is the current status of chondroitin sulfate and glucosamine for the treatment of knee osteoarthritis? Maturitas. 2014;78(3):184–187. doi. org/10.1016/j.maturitas.2014.04.015.
Terabe K., Ohashi Y., Tsuchiya S., Ishizuka S., Knudson C.B., Knudson W. Chondroprotective effects of 4-methylumbelliferone and hyaluronan synthase-2 overexpression involve changes in chondrocyte energy metabolism. J Biol Chem. 2019. 294:17799–17817. doi: 10.1074/jbc.RA119.009556..
DOI: 10.1074/jbc.RA119.009556
Navarro S.L., White E., Kantor E.D., Zhang Y., Rho J., Song X., et al. Randomized trial of glucosamine and chondroitin supplementation on inflammation and oxidative stress biomarkers and plasma proteomics profiles in healthy humans. PLoS One. 2015;10(2):e0117534. doi: 10.1371/journal.pone.0117534..
DOI: 10.1371/journal.pone.0117534
Pahl H.L. Activators and target genes of Rel/ NF-kappaB transcription factors. Oncogene. 1999;18(49):6853–6866. Available at: https://www.nature.com/articles/1203239.https://www.nature.com/articles/1203239
Кабалык М.А., Невзорова В.А., Коваленко Т.С., Суханова Г.И. Эндотелий-зависимые молекулярные механизмы ремоделирования суставного хряща и субхондральной кости в условиях сердечно-сосудистой коморбидности. Кардиоваскулярная терапия и профилактика. 2019;18(5):102–107. doi: 10.15829/1728-8800-2019-5-102-107. Kabalyk M.A., Nevzorova V.A., Kovalenko T.S., Sukhanova G.I. Endothelium-dependent molecular mechanisms of articular cartilage and subchondral bone remodeling in conditions of cardiovascular comorbidity. Kardiovaskulyarnaya terapiya i profilaktika = Cardiovascular Therapy and Prevention. 2019;18(5):102–107. (In Russ.) doi: 10.15829/1728-8800-2019-5-102-107..
DOI: 10.15829/1728-8800-2019-5-102-107
Kovács B., Vajda E., Nagy E.E. Regulatory Effects and Interactions of the Wnt and OPGRANKL- RANK Signaling at the Bone-Cartilage Interface in Osteoarthritis. Int J Mol Sci. 2019;20(18):46–53. doi: 10.3390/ijms20184653..
DOI: 10.3390/ijms20184653
Song Y.O., Kim M., Woo M., Baek J.M., Kang K.H., Kim S.H., et al. Chondroitin Sulfate-Rich Extract of Skate Cartilage Attenuates Lipopolysaccharide-Induced Liver Damage in Mice. Mar Drugs. 2017;15(6).pii: E178. doi: 10.3390/md15060178..
DOI: 10.3390/md15060178
Кабалык М.А., Невзорова В.А. Полиморфизмы генов окислительного стресса при остеоартрите с сердечно-сосудистой коморбидностью. Вестник Смоленской государственной медицинской академии. 2019;18(2):72–77. Режим доступа: https://cyberleninka.ru/article/n/18236195.https://cyberleninka.ru/article/n/18236195
Kabalyk M.A., Nevzorova V.A. Polymorphisms of genes for oxidative stress in osteoarthritis with cardiovascular comorbidity. Vestnik Smolenskoy gosudarstvennoy meditsinskoy akademii = Vestnik of the Smolensk State Medical Academy. 2019;18(2):72–77. (In Russ.) Available at: https://cyberleninka.ru/article/n/18236195.https://cyberleninka.ru/article/n/18236195
Bartsch H., Nair J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg. 2006;391(5):499–510. Available at: https://link.springer.com/article/10.1007[%]2Fs00423-006-0073-1.https://link.springer.com/article/10.1007[%]2Fs00423-006-0073-1
Nelson A.E., Fang F., Arbeeva L., Cleveland R.J., Schwartz T.A., Callahan L.F., et al. A machine learning approach to knee osteoarthritis phenotyping: data from the FNIH Biomarkers Consortium. Osteoarthritis and Cartilage. 2019;27(7):994–1001. doi: 10.1016/j.joca.2018.12.027..
DOI: 10.1016/j.joca.2018.12.027
Melgar-Lesmes P., Garcia-Polite F., Del-Rey- Puech P., Rosas E., Dreyfuss J.L., Montell E., et al. Treatment with chondroitin sulfate to modulate inflammation and atherogenesis in obesity. Atherosclerosis. 2016;245:82–87. doi: 10.1016/j.atherosclerosis.2015.12.016..
DOI: 10.1016/j.atherosclerosis.2015.12.016
Kabalyk M.A. Age-related aspects of the involvement of heat shock proteins in the pathogenesis of osteoarthritis. Adv Gerontol. 2017;30(3):341–346. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28849876.https://www.ncbi.nlm.nih.gov/pubmed/28849876
Jiang L., Jin Y., Wang H., Jiang Y., Dong J. Glucosamine protects nucleus pulposus cells and induces autophagy via the mTOR-dependent pathway. J Orthop Res. 2014;32(11):1532–1542. doi: 10.1002/jor.22699..
DOI: 10.1002/jor.22699
Ragni E., De Luca P., Perucca Orfei C., Colombini A., Viganò M., Lugano G., et al. Insights into Inflammatory Priming of Adipose-Derived Mesenchymal Stem Cells: Validation of Extracellular Vesicles-Embedded miRNA Reference Genes as A Crucial Step for Donor Selection. Cells. 2019;8(4):369. doi: 10.3390/cells8040369..
DOI: 10.3390/cells8040369
Taniguchi S., Ryu J., Seki M., Sumino T., Tokuhashi Y., Esumi M. Long-term oral administration of glucosamine or chondroitin sulfate reduces destruction of cartilage and upregulation of MMP-3 mRNA in a model of spontaneous osteoarthritis in Hartley guinea pigs. J Orthop Res. 2012;30(5):673–678. doi: 10.1002/jor.22003..
DOI: 10.1002/jor.22003