Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
ГлавнаяРезультаты поиска
СтатьяИскать документыПерейти к записи. 2020; № 20: 100–108. DOI:10.21518/2079-701X-2020-20-100-108
Кастрационный уровень тестостерона и гормональная резистентность рака предстательной железы при андрогенной депривации
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[2]
Искать документыПерейти к записи[2]
Искать документыПерейти к записи[1]
Аффилированные организации
[1]Искать документыПерейти к записи
[2]Искать документыПерейти к записи
Аннотация

В данной статье обсуждается влияние достижений в понимании механизмов развития рака предстательной железы (РПЖ) на определение и диагностику кастрационно-резистентного РПЖ (КРРПЖ), прогностические факторы прогрессирования РПЖ и стратегии лечения.

Более чувствительные анализы подтверждают, что при хирургической кастрации уровень сывороточного тестостерона (Т) снижается до < 20 нг/дл, а достижение Т < 20 нг/дл улучшает прогноз и увеличивает время до развития КРРПЖ. Регулярная оценка уровня Т позволяет понять, адекватно ли подавляется этот андроген в связи с потенциальным развитием КРРПЖ. Более совершенные методы визуализации и анализ биомаркеров позволяют раньше выявлять прогрессирование заболевания. Прогностически значимые факторы риска развития кастрационной резистентности включают балл по шкале Глисона, распространенность метастазов, наследственные факторы, такие как мутации генов, влияющих на амплификацию андрогеновых рецепторов (АР) или участвующих в репарации ДНК путем гомологичной рекомбинации, кинетику простат-специфического антигена (ПСА) и уровень биомаркеров. Сегодня варианты лечения КРРПЖ включают не только андроген-депривационную терапию (АДТ), но и терапию, которая блокирует синтез Т и/или подавляет активность АР. Перспективные направления включают терапию с использованием новых биологических мишеней, комбинаций лекарственных средств и персонифицированную терапию. Необходимо понимание различий фармакодинамики и фармакокинетики депо-форм препаратов для андрогендепривационной терапии, т к. эти показатели могут влиять на эффективность проводимой терапии.

Целью лечения распространенного РПЖ является увеличение времени до развития кастрационной резистентности и общей выживаемости больных. В связи с современным определением кастрационного уровня тестостерона и достижениями в понимании механизмов прогрессирования заболевания необходимо пересмотреть стратегии диагностики и лечения. АДТ, как основополагающий вектор лечения, необходимо продолжать даже при использовании новых методов лечения КРРПЖ.

Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Рубрики Mesh
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Каприн А.Д., Старинский В.В., Шахзадова А.О. (ред.) Состояние онколо­ гической помощи населению России в 2019 году. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2020. 239 с. Режим доступа: https://glavonco.ru/cancer_register/[%]D0[%]9F[%]D0[%]BE[%]D0[%]BC[%]D0[%]BE[%]D1[%]89[%]D1[%]8C[%]202019.pdf.https://glavonco.ru/cancer_register/[%]D0[%]9F[%]D0[%]BE[%]D0[%]BC[%]D0[%]BE[%]D1[%]89[%]D1[%]8C[%]202019.pdf

Каприн А.Д., Старинский В.В., Шахзадова А.О. (ред.) Состояние онколо­ гической помощи населению России в 2019 году. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2020. 239 с. Режим доступа: https://glavonco.ru/cancer_register/[%]D0[%]9F[%]D0[%]BE[%]D0[%]BC[%]D0[%]BE[%]D1[%]89[%]D1[%]8C[%]202019.pdf.https://glavonco.ru/cancer_register/[%]D0[%]9F[%]D0[%]BE[%]D0[%]BC[%]D0[%]BE[%]D1[%]89[%]D1[%]8C[%]202019.pdf

Каприн А.Д., Старинский В.В., Петрова Г.В. (ред.). Злокачественные ново­ образования в России в 2018 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2019. 250 с. Режим доступа: https://glavonco.ru/cancer_register/[%]D0[%]97[%]D0[%]B0[%]D0[%]B1[%]D0[%]BE[%]D0[%]BB_2018_[%]D0[%]AD[%]D0[%]BB[%]D0[%]B5[%]D0[%]BA[%]D1[%]82[%]D1[%]80.pdf.https://glavonco.ru/cancer_register/[%]D0[%]97[%]D0[%]B0[%]D0[%]B1[%]D0[%]BE[%]D0[%]BB_2018_[%]D0[%]AD[%]D0[%]BB[%]D0[%]B5[%]D0[%]BA[%]D1[%]82[%]D1[%]80.pdf

Каприн А.Д., Старинский В.В., Петрова Г.В. (ред.). Злокачественные ново­ образования в России в 2018 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2019. 250 с. Режим доступа: https://glavonco.ru/cancer_register/[%]D0[%]97[%]D0[%]B0[%]D0[%]B1[%]D0[%]BE[%]D0[%]BB_2018_[%]D0[%]AD[%]D0[%]BB[%]D0[%]B5[%]D0[%]BA[%]D1[%]82[%]D1[%]80.pdf.https://glavonco.ru/cancer_register/[%]D0[%]97[%]D0[%]B0[%]D0[%]B1[%]D0[%]BE[%]D0[%]BB_2018_[%]D0[%]AD[%]D0[%]BB[%]D0[%]B5[%]D0[%]BA[%]D1[%]82[%]D1[%]80.pdf

Arnold J.T., Isaacs J.T. Mechanisms involved in the progression of androgen-independent prostate cancers: it is not only the cancer cell’s fault. Endocr Relat Cancer. 2002;9(1):61–73. doi: 10.1677/erc.0.0090061..
DOI: 10.1677/erc.0.0090061

Cornford P., Bellmunt J., Bolla M., Briers E., De Santis M., Gross T. et al. EAUESTRO-SIOG Guidelines on Prostate Cancer. Part II: Treatment of Relapsing, Metastatic, and Castration-Resistant Prostate Cancer. Eur Urol. 2017;71(4):630–642. doi: 10.1016/j.eururo.2016.08.002..
DOI: 10.1016/j.eururo.2016.08.002

Hotte S.J., Saad F. Current management of castrate-resistant prostate cancer. Curr Oncol. 2010;17(Suppl 2):S72–S79. doi: 10.3747/co.v17i0.718..
DOI: 10.3747/co.v17i0.718

Scher H.I., Halabi S., Tannock I., Morris M., Sternberg C.N., Carducci M.A. et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol. 2008;26(7):1148–1159. doi: 10.1200/JCO.2007.12.4487..
DOI: 10.1200/JCO.2007.12.4487

Schrecengost R., Knudsen K.E. Molecular pathogenesis and progression of prostate cancer. Semin Oncol. 2013;40(3):244–258. doi: 10.1053/j.seminoncol.2013.04.001..
DOI: 10.1053/j.seminoncol.2013.04.001

Mizokami A., Izumi K., Konaka H., Kitagawa Y., Kadono Y., Narimoto K. et al. Understanding prostate-specific antigen dynamics in monitoring metastatic castration-resistant prostate cancer: implications for clinical practice. Asian J Androl. 2017;19(2):143–148. doi: 10.4103/1008-682X.179159..
DOI: 10.4103/1008-682X.179159

Nikolaou M., Pavlopoulou A., Georgakilas A.G., Kyrodimos E. The challenge of drug resistance in cancer treatment: a current overview. Clin Exp Metastasis. 2018;35:309–318. doi: 10.1007/s10585-018-9903-0..
DOI: 10.1007/s10585-018-9903-0

Rueff J., Rodrigues A.S. Cancer Drug Resistance: A Brief Overview from a Genetic Viewpoint. Methods Mol Biol. 2016;1395:1–18. doi: 10.1007/978-1-4939-3347-1_1..
DOI: 10.1007/978-1-4939-3347-1_1

Tamae D. Byrns M., Marck B., Mostaghel E.A., Nelson P.S., Lange P. et al. Development, validation and application of a stable isotope dilution liquid chromatography electrospray ionization/selected reaction monitoring/mass spectrometry (SID-LC/ESI/SRM/MS) method for quantification of ketoandrogens in human serum. J Steroid Biochem Mol Biol. 2013;138:281–289. doi: 10.1016/j.jsbmb.2013.06.014..
DOI: 10.1016/j.jsbmb.2013.06.014

Wang Y., Gay G.D., Botelho J.C., Caudill S.P., Vesper H.W. Total testosterone quantitative measurement in serum by LC-MS/MS. Clin Chim Acta. 2014;436:263–267. doi: 10.1016/j.cca.2014.06.009..
DOI: 10.1016/j.cca.2014.06.009

Oefelein M.G., Feng A., Scolieri M.J., Ricchiutti D., Resnick M.I. Reassessment of the definition of castrate levels of testosterone: implications for clinical decision making. Urology. 2000;56(6):1021–1024. doi: 10.1016/S0090-4295(00)00793-7..
DOI: 10.1016/S0090-4295(00)00793-7

Djavan B., Eastham J., Gomella L., Tombal B., Taneja S., Dianat S.S. et al. Testosterone in prostate cancer: the Bethesda consensus. BJU Int. 2012;110(6):344–352. doi: 10.1111/j.1464-410X.2011.10719.x..
DOI: 10.1111/j.1464-410X.2011.10719.x

Pickles T., Hamm J., Morris W.J., Schreiber W.E., Tyldesley S. Incomplete testosterone suppression with luteinizing hormone-releasing hormone agonists: does it happen and does it matter? BJU Int. 2012;110(11b):E500– E507. doi: 10.1111/j.1464-410X.2012.11190.x..
DOI: 10.1111/j.1464-410X.2012.11190.x

Klotz L., O’Callaghan C., Ding K., Toren P., Dearnaley D., Higano C.S. et al. Nadir testosterone within first year of androgen-deprivation therapy (ADT) predicts for time to castration-resistant progression: a secondary analysis of the PR-7 trial of intermittent versus continuous ADT. J Clin Oncol. 2015;33(10):1151–1156. doi: 10.1200/JCO.2014.58.2973..
DOI: 10.1200/JCO.2014.58.2973

Perachino M., Cavalli V., Bravi F. Testosterone levels in patients with metastatic prostate cancer treated with luteinizing hormone-releasing hormone therapy: prognostic significance? BJU Int. 2010;105(5):648–651. doi: 10.1111/j.1464-410X.2009.08814.x..
DOI: 10.1111/j.1464-410X.2009.08814.x

Morote J., Orsola A., Planas J., Trilla E., Raventós C.X., Cecchini L., Catalán R. Redefining clinically significant castration levels in patients with prostate cancer receiving continuous androgen deprivation therapy. J Urol. 2007;178(4):1290–1295. doi: 10.1016/j.juro.2007.05.129..
DOI: 10.1016/j.juro.2007.05.129

Klotz L., Breau R.H., Collins L.L., Gleave M.E., Pickles T., Pouliot F., Saad F. Maximal testosterone suppression in the management of recurrent and metastatic prostate cancer. Can Urol Assoc J. 2017;11(1–2):16–23. doi: 10.5489/cuaj.4303..
DOI: 10.5489/cuaj.4303

Hussain M., Tangen C.M., Higano C., Schelhammer P.F., Faulkner J., Crawford E.D. et al. Absolute prostate-specific antigen value after androgen deprivation is a strong independent predictor of survival in new metastatic prostate cancer: data from Southwest Oncology Group Trial 9346 (INT-0162). Clin Oncol. 2006;24(24):3984–3990. doi: 10.1200/JCO.2006.06.4246..
DOI: 10.1200/JCO.2006.06.4246

Abrahamsson P.A. Intermittent androgen deprivation therapy in patients with prostate cancer: Connecting the dots. Asian J Urol. 2017;4(4):208–222. doi: 10.1016/j.ajur.2017.04.001..
DOI: 10.1016/j.ajur.2017.04.001

Mottet N., Bastian P.J., Bellmunt J., van den Bergh R.C.N., Bolla M., van Casteren N.J. et al. Guidelines on Prostate Cancer. Prostate Cancer – Update April 2014: European Association of Urology; 2014. Available ar: https://uroweb.org/wp-content/uploads/PCProstate-Cancer_LR.pdf.https://uroweb.org/wp-content/uploads/PCProstate-Cancer_LR.pdf

Mottet N., Bastian P.J., Bellmunt J., van den Bergh R.C.N., Bolla M., van Casteren N.J. et al. Guidelines on Prostate Cancer. Prostate Cancer – Update April 2014: European Association of Urology; 2014. Available ar: https://uroweb.org/wp-content/uploads/PCProstate-Cancer_LR.pdf.https://uroweb.org/wp-content/uploads/PCProstate-Cancer_LR.pdf

Crawford E.D., Twardowski P.W., Concepcion R.S., Hafron J.M., Harris R.G., Moul J.W. et al. The Impact of Late Luteinizing Hormone-Releasing Hormone Agonist Dosing on Testosterone Suppression in Patients with Prostate Cancer: An Analysis of United States Clinical Data. J Urol. 2020;203(4):743–750. doi: 10.1097/JU.0000000000000577..
DOI: 10.1097/JU.0000000000000577

Koshkin V.S., Small E.J. Apalutamide in the treatment of castrate-resistant prostate cancer: evidence from clinical trials. Ther Adv Urol. 2018;10(12):445–454. doi: 10.1177/1756287218811450..
DOI: 10.1177/1756287218811450

Mateo J., Fizazi K., Gillessen S., Heidenreich A., Perez-Lopez R., Oyen W.J.G. et al. Managing Nonmetastatic Castration-resistant Prostate Cancer. Eur Urol. 2019;75(2):285–293. doi: 10.1016/j.eururo.2018.07.035..
DOI: 10.1016/j.eururo.2018.07.035

Saltzstein D., Shore N.D., Moul J.W., Chu F., Concepcion R., de la Motte S. et al. Pharmacokinetic and pharmacodynamic comparison of subcutaneous versus intramuscular leuprolide acetate formulations in male subjects. Ther Adv Urol. 2018;10(2):43–50. doi: 10.1177/1756287217738150..
DOI: 10.1177/1756287217738150

Crawford E.D., Sartor O., Chu F., Perez R., Karlin G., Garrett J.S. A 12-month clinical study of LA-2585 (45.0 mg): a new 6-month subcutaneous delivery system for leuprolide acetate for the treatment of prostate cancer. J Urol. 2006;175(2):533–536. doi: 10.1016/S0022-5347(05)00161-8..
DOI: 10.1016/S0022-5347(05)00161-8

Chu F.M., Jayson M., Dineen M.K., Perez R., Harkaway R., Tyler R.C. A clinical study of 22.5 mg. La-2550: A new subcutaneous depot delivery system for leuprolide acetate for the treatment of prostate cancer. J Urol. 2002;168(3):1199–1203. doi: 10.1097/01.ju.0000023895.95963.1b..
DOI: 10.1097/01.ju.0000023895.95963.1b

Perez-Marreno R., Chu F.M., Gleason D., Loizides E., Wachs B., Tyler R.C. A six-month, open-label study assessing a new formulation of leuprolide 7.5 mg for suppression of testosterone in patients with prostate cancer. Clin Ther. 2002;24(11):1902–1914. doi: 10.1016/S0149-2918(02)80087-X..
DOI: 10.1016/S0149-2918(02)80087-X

Sartor O., Dineen M.K., Perez-Marreno R., Chu F.M., Carron G.J., Tyler R.C. An eight-month clinical study of LA-2575 30.0 mg: a new 4-month, subcutaneous delivery system for leuprolide acetate in the treatment of prostate cancer. Urology. 2003;62(2):319–323. doi: 10.1016/S0090-4295(03)00330-3..
DOI: 10.1016/S0090-4295(03)00330-3

Persad R. Leuprorelin acetate in prostate cancer: a European update. Int J Clin Pract. 2002;56(5):389–96. Available at: https://pubmed.ncbi.nlm.nih.gov/12137449/35.https://pubmed.ncbi.nlm.nih.gov/12137449/35

Persad R. Leuprorelin acetate in prostate cancer: a European update. Int J Clin Pract. 2002;56(5):389–96. Available at: https://pubmed.ncbi.nlm.nih.gov/12137449/35.https://pubmed.ncbi.nlm.nih.gov/12137449/35

Spitz A., Gittelman M., Karsh L.I., Dragnic S., Soliman A.M., Lele A. et al. Intramuscular depot formulations of leuprolide acetate suppress testosterone levels below a 20 ng/dL threshold: a retrospective analysis of two Phase III studies. Res Rep Urol. 2016;8:159–164. doi: 10.2147/RRU.S111475..
DOI: 10.2147/RRU.S111475

Tombal B., Cornel E.B., Persad R., Stari A., Gómez Veiga F., Schulman C. Clinical Outcomes and Testosterone Levels Following Continuous Androgen Deprivation in Patients with Relapsing or Locally Advanced Prostate Cancer: A Post Hoc Analysis of the ICELAND Study. J Urol. 2017;198(5):1054–1060. doi: 10.1016/j.juro.2017.05.072..
DOI: 10.1016/j.juro.2017.05.072

Snelder N., Drenth H.J., Riber Bergmann K., Wood N.D., Hibberd M., Scott G. Population pharmacokinetic-pharmacodynamic modelling of the relationship between testosterone and prostate specific antigen in patients with prostate cancer during treatment with leuprorelin. Br J Clin Pharmacol. 2019;85(6):1247–1259. doi: 10.1111/bcp.13891..
DOI: 10.1111/bcp.13891

Isaacs J.T., D’Antonio J.M., Chen S., Antony L., Dalrymple S.P., Ndikuyeze G.H. et al. Adaptive auto-regulation of androgen receptor provides a paradigm shifting rationale for bipolar androgen therapy (BAT) for castrate resistant human prostate cancer. Prostate. 2012;72(14):1491–1505. doi: 10.1002/pros.22504..
DOI: 10.1002/pros.22504

Crawford E.D., Koo P.J., Shore N., Slovin S.F., Concepcion R.S., Freedland S.J. et al. A Clinician’s Guide to Next Generation Imaging in Patients With Advanced Prostate Cancer (RADAR III). J Urol. 2019;201(4):682–692. doi: 10.1016/j.juro.2018.05.164..
DOI: 10.1016/j.juro.2018.05.164

Murphy D.G., Padhani A.R., Ost P. Adding Colour to the Grey Zone of Advanced Prostate Cancer. Eur Urol Focus. 2019;5(2):123–124. doi: 10.1016/j.euf.2019.02.015..
DOI: 10.1016/j.euf.2019.02.015

Hofman M.S., Iravani A., Nzenza T., Murphy D.G. Advances in Urologic Imaging: Prostate-Specific Membrane Antigen Ligand PET Imaging. Urol Clin North Am. 2018;45(3):503–524. doi: 10.1016/j.ucl.2018.03.016..
DOI: 10.1016/j.ucl.2018.03.016

Ekmekcioglu Ö., Busstra M., Klass N.D., Verzijlbergen F. Bridging the Imaging Gap: PSMA PET/CT Has a High Impact on Treatment Planning in Prostate Cancer Patients with Biochemical Recurrence-A Narrative Review of the Literature. J Nucl Med. 2019;60(10):1394–1398. doi: 10.2967/jnumed.118.222885..
DOI: 10.2967/jnumed.118.222885

Lenzo N.P., Meyrick D., Turner J.H. Review of Gallium-68 PSMA PET/CT Imaging in the Management of Prostate Cancer. Diagnostics (Basel). 2018;8(1):16. doi: 10.3390/diagnostics8010016..
DOI: 10.3390/diagnostics8010016

Klotz L., Zhang L., Lam A., Nam R., Mamedov A., Loblaw A. Clinical results of long-term follow-up of a large, active surveillance cohort with localized prostate cancer. Clin Oncol. 2010;28(1):126–131. doi: 10.1200/jco.2009.24.2180..
DOI: 10.1200/jco.2009.24.2180

Bill-Axelson A., Holmberg L., Garmo H., Taari K., Busch C., Nordling S. et al. Radical Prostatectomy or Watchful Waiting in Prostate Cancer 29-Year Follow-up. N Engl J Med. 2018;379(24):2319–2329. doi: 10.1056/ NEJMoa1807801..
DOI: 10.1056/ NEJMoa1807801

Mansbridge M., Chung E., Rhee H. The Use of MRI and PET Imaging Studies for Prostate Cancer Management: Brief Update, Clinical Recommendations, and Technological Limitations. Med Sci (Basel). 2019;7(8):85. doi: 10.3390/medsci7080085..
DOI: 10.3390/medsci7080085

Epstein J.I., Partin A.W., Sauvageot J., Walsh P.C. Prediction of progression following radical prostatectomy. A multivariate analysis of 721 men with long-term follow-up. Am J Surg Pathol. 1996;20(3):286–292. doi: 10.1097/00000478-199603000-00004..
DOI: 10.1097/00000478-199603000-00004

Green G.A., Hanlon A.L., Al-Saleem T., Hanks G.E. A Gleason score of 7 predicts a worse outcome for prostate carcinoma patients treated with radiotherapy. Cancer. 1998;83(5):971–976. Available at: https://pubmed.ncbi.nlm.nih.gov/9731902.https://pubmed.ncbi.nlm.nih.gov/9731902

Green G.A., Hanlon A.L., Al-Saleem T., Hanks G.E. A Gleason score of 7 predicts a worse outcome for prostate carcinoma patients treated with radiotherapy. Cancer. 1998;83(5):971–976. Available at: https://pubmed.ncbi.nlm.nih.gov/9731902.https://pubmed.ncbi.nlm.nih.gov/9731902

Egevad L., Granfors T., Karlberg L., Bergh A., Stattin P. Prognostic value of the Gleason score in prostate cancer. BJU Int. 2002;89(6):538–542.doi: 10.1046/j.1464-410x.2002.02669.x..
DOI: 10.1046/j.1464-410x.2002.02669.x

Gravis G., Boher J.M., Joly F., Soulié M., Albiges L., Priou F. et al. Androgen Deprivation Therapy (ADT) Plus Docetaxel Versus ADT Alone in Metastatic Non castrate Prostate Cancer: Impact of Metastatic Burden and Long-term Survival Analysis of the Randomized Phase 3 GETUG-AFU15 Trial. Eur Urol. 2016;70(2):256–262. doi: 10.1016/j.eururo.2015.11.005..
DOI: 10.1016/j.eururo.2015.11.005

Gravis G., Boher J.M., Chen Y.H., Liu G., Fizazi K., Carducci M.A. et al. Burden of Metastatic Castrate Naive Prostate Cancer Patients, to Identify Men More Likely to Benefit from Early Docetaxel: Further Analyses of CHAARTED and GETUG-AFU15 Studies. Eur Urol. 2018;73(6):847–855. doi: 10.1016/j.eururo.2018.02.001..
DOI: 10.1016/j.eururo.2018.02.001

Francini E., Gray K.P., Xie W., Shaw G.K., Valença L., Bernard B. et al. Time of metastatic disease presentation and volume of disease are prognostic for metastatic hormone sensitive prostate cancer (mHSPC). Prostate. 2018;78(12):889–895. doi: 10.1002/pros.23645..
DOI: 10.1002/pros.23645

Feng Q., He B. Androgen Receptor Signaling in the Development of Castration-Resistant Prostate Cancer. Front Oncol. 2019;9:858. doi: 10.3389/fonc.2019.00858..
DOI: 10.3389/fonc.2019.00858

Martin T.J., Peer C.J., Figg W.D. Uncovering the genetic landscape driving castration-resistant prostate cancer. Cancer Biol Ther. 2013;14(5):399–400. doi: 10.4161/cbt.24426..
DOI: 10.4161/cbt.24426

Hart S.N., Ellingson M.S., Schahl K., Vedell P.T., Carlson R.E., Sinnwell J.P. et al. Determining the frequency of pathogenic germline variants from exome sequencing in patients with castrate-resistant prostate cancer. BMJ Open. 2016;6:e010332. doi: 10.1136/bmjopen-2015-010332..
DOI: 10.1136/bmjopen-2015-010332

Huang K.C., Alshalalfa M., Hegazy S.A., Dolph M., Donnelly B., Bismar T.A. The prognostic significance of combined ERG and androgen receptor expression in patients with prostate cancer managed by androgen deprivation therapy. Cancer Biol Ther. 2014;15(9):1120–1128. doi: 10.4161/cbt.29689..
DOI: 10.4161/cbt.29689

Cheng H.H., Plets M., Li H., Higano C.S., Tangen C.M., Agarwal N. et al. Circulating microRNAs and treatment response in the Phase II SWOG S0925 study for patients with new metastatic hormone-sensitive prostate cancer. Prostate. 2018;78(2):121–127. doi: 10.1002/pros.23452..
DOI: 10.1002/pros.23452

Health Quality Ontario. Prolaris Cell Cycle Progression Test for Localized Prostate Cancer: A Health Technology Assessment. Ont Health Technol Assess Ser. 2017;17(6):1–75. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451271.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451271

Health Quality Ontario. Prolaris Cell Cycle Progression Test for Localized Prostate Cancer: A Health Technology Assessment. Ont Health Technol Assess Ser. 2017;17(6):1–75. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451271.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451271

Kretschmer A., Tilki D. Biomarkers in prostate cancer – Current clinical utility and future perspectives. Crit Rev Oncol Hematol. 2017;120:180–193. doi: 10.1016/j.critrevonc.2017.11.007..
DOI: 10.1016/j.critrevonc.2017.11.007

Kohaar I., Petrovics G., Srivastava S. A Rich Array of Prostate Cancer Molecular Biomarkers: Opportunities and Challenges. Int J Mol Sci. 2019;20(8):1813. doi: 10.3390/ijms20081813..
DOI: 10.3390/ijms20081813

Eggener S.E., Rumble R.B., Armstrong A.J., Morgan T.M., Crispino T., Cornford P. et al. Molecular Biomarkers in Localized Prostate Cancer: ASCO Guideline. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. J Clin Oncol. 2020;38(13):1474–1494. doi: 10.1200/JCO.19.02768..
DOI: 10.1200/JCO.19.02768

Kuo K.F., Hunter-Merrill R., Gulati R., Hall S.P., Gambol T.E., Higano C.S., Evan Y.Yu. Relationships between times to testosterone and prostate-specific antigen rises during the first off-treatment interval of intermittent androgen deprivation are prognostic for castration resistance in men with nonmetastatic prostate cancer. Clin Genitourin Cancer. 2015;13(1):10–16. doi: 10.1016/j.clgc.2014.08.003..
DOI: 10.1016/j.clgc.2014.08.003

Sciarra A., Cattarino S., Gentilucci A., Alfarone A., Innocenzi M., Gentile V., Salciccia S. Predictors for response to intermittent androgen deprivation (IAD) in prostate cancer cases with biochemical progression after surgery. Urol Oncol. 2013;31(5):607–614. doi: 10.1016/j.urolonc.2011.05.005..
DOI: 10.1016/j.urolonc.2011.05.005

de Liano A.G., Reig O., Mellado B., Martin C., Rull E.U., Maroto J.P. Prognostic and predictive value of plasma testosterone levels in patients receiving first-line chemotherapy for metastatic castrate-resistant prostate cancer. Br J Cancer. 2014;110:2201–2208. doi: 10.1038/bjc.2014.189..
DOI: 10.1038/bjc.2014.189

van Soest R.J., Templeton A.J., Vera-Badillo F.E., Mercier F., Sonpavde G., Amir E. et al. Neutrophil-to-lymphocyte ratio as a prognostic biomarker for men with metastatic castration-resistant prostate cancer receiving first-line chemotherapy: data from two randomized phase III trials. Ann Oncol. 2015;26(4):743–749. doi: 10.1093/annonc/mdu569..
DOI: 10.1093/annonc/mdu569

Chi K.N., Kheoh T., Ryan C.J., Molina A., Bellmunt J., Vogelzang N.J. et al. A prognostic index model for predicting overall survival in patients with metastatic castration-resistant prostate cancer treated with abiraterone acetate after docetaxel. Ann Oncol. 2016;27(3):454–460. doi: 10.1093/annonc/mdv594..
DOI: 10.1093/annonc/mdv594

Kohli M., Li J., Du M., Hillman D.W., Dehm S.M., Tan W. et al. Prognostic association of plasma cell-free DNA-based androgen receptor amplification and circulating tumor cells in pre-chemotherapy metastatic castration-resistant prostate cancer patients. Prostate Cancer Prostatic Dis. 2018;21:411–418. doi: 10.1038/s41391-018-0043-z..
DOI: 10.1038/s41391-018-0043-z

Armstrong A.J., Anand A., Edenbrandt L., Bondesson E., Bjartell A., Widmark A. et al. Phase 3 Assessment of the Automated Bone Scan Index as a Prognostic Imaging Biomarker of Overall Survival in Men With Metastatic CastrationResistant Prostate Cancer: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol. 2018;4(7):944–951. doi: 10.1001/jamaoncol.2018.1093..
DOI: 10.1001/jamaoncol.2018.1093

Zacho H.D., Gade M., Mortensen J.C., Bertelsen H., Boldsen S.K., Barsi T., Petersen L.J. Bone Scan Index Is an Independent Predictor of Time to Castration-resistant Prostate Cancer in Newly Diagnosed Prostate Cancer: A Prospective Study. Urology. 2017;108:135–141. doi: 10.1016/j.urology.2017.05.058..
DOI: 10.1016/j.urology.2017.05.058

Rove K.O., Crawford E.D. Androgen annihilation as a new therapeutic paradigm in advanced prostate cancer. Curr Opin Urol. 2013;23(3):208–213. doi: 10.1097/MOU.0b013e32835fa889..
DOI: 10.1097/MOU.0b013e32835fa889

Scher H.I., Morris M.J., Stadler W.M., Higano C., Basch E., Fizazi K. et al. Trial Design and Objectives for Castration-Resistant Prostate Cancer: Updated Recommendations From the Prostate Cancer Clinical Trials Working Group 3. J Clin Oncol. 2016;3(12):1402–1418. doi: 10.1200/JCO.2015.64.2702..
DOI: 10.1200/JCO.2015.64.2702

Chandrasekar T., Yang J.C., Gao A.C., Evans C.P. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol. 2015;4(3):365–380. doi: 10.3978/j.issn.2223-4683.2015.05.02..
DOI: 10.3978/j.issn.2223-4683.2015.05.02

Sternberg C.N., Baskin-Bey E.S., Watson M., Worsfold A., Rider A., Tombal B. Treatment patterns and characteristics of European patients with castration-resistant prostate cancer. BMC Urol. 2013;13:58. doi: 10.1186/1471-2490-13-58..
DOI: 10.1186/1471-2490-13-58

Fizazi K., Shore N., Tammela T.L., Ulys A., Vjaters E., Polyakov S. et al. Darolutamide in Nonmetastatic, Castration-Resistant Prostate Cancer. N Engl J Med. 2019;380(12):1235–1246. doi: 10.1056/NEJMoa1815671..
DOI: 10.1056/NEJMoa1815671

Smith M.R., Saad F., Chowdhury S., Oudard S., Hadaschik B.A., Graff J.N. et al. Apalutamide Treatment and Metastasis-free Survival in Prostate Cancer. N Engl J Med. 2018;378(15):1408–1418. doi: 10.1056/NEJMoa1715546..
DOI: 10.1056/NEJMoa1715546

Hussain M., Fizazi K., Saad F., Rathenborg P., Shore N., Ferreira U. et al. Enzalutamide in Men with Nonmetastatic, Castration-Resistant Prostate Cancer. N Engl J Med. 2018;378(26):2465–2474. doi: 10.1056/NEJMoa1800536..
DOI: 10.1056/NEJMoa1800536

Nakazawa M., Paller C., Kyprianou N. Mechanisms of Therapeutic Resistance in Prostate Cancer. Curr Oncol Rep. 2017;19:13. doi: 10.1007/s11912-017-0568-7..
DOI: 10.1007/s11912-017-0568-7

de Wit R., de Bono J., Sternberg C.N., Fizazi K., Tombal B., Wülfing C. et al. Cabazitaxel versus Abiraterone or Enzalutamide in Metastatic Prostate Cancer. N Engl J Med. 2019;381(26):2506–2518. doi: 10.1056/NEJMoa1911206..
DOI: 10.1056/NEJMoa1911206

Smith M., Parker C., Saad F., Miller K., Tombal B., Ng Q.S. et al. Addition of radium-223 to abiraterone acetate and prednisone or prednisolone in patients with castration-resistant prostate cancer and bone metastases (ERA 223): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20(3):408–419. doi: 10.1016/s1470-2045(18)30860-x..
DOI: 10.1016/s1470-2045(18)30860-x

Tombal B.F., Loriot Y., Saad F., McDermott R.S., Elliott T., Rodriguez-Vida A. et al. Decreased fracture rate by mandating boneprotecting agents in the EORTC 1333/PEACE III trial comparing enzalutamide and Ra223 versus enzalutamide alone: An interim safety analysis. Clin Oncol. 2019;37(15_ Suppl.):5007–5007. Available at: https://ascopubs.org/doi/abs/10.1200/JCO.2019.37.15_suppl.5007.https://ascopubs.org/doi/abs/10.1200/JCO.2019.37.15_suppl.5007

Tombal B.F., Loriot Y., Saad F., McDermott R.S., Elliott T., Rodriguez-Vida A. et al. Decreased fracture rate by mandating boneprotecting agents in the EORTC 1333/PEACE III trial comparing enzalutamide and Ra223 versus enzalutamide alone: An interim safety analysis. Clin Oncol. 2019;37(15_ Suppl.):5007–5007. Available at: https://ascopubs.org/doi/abs/10.1200/JCO.2019.37.15_suppl.5007.https://ascopubs.org/doi/abs/10.1200/JCO.2019.37.15_suppl.5007

Дополнительная информация
Язык текста: Русский
ISSN: 2079-701X
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4e432d4d4544534f5645542d41525449434c452d323032302d302d32302d302d3130302d313038/