Virani S., Alonso A., Aparicio H., Benjamin E., Bittencourt M., Callaway C. et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation. 2021;143(8):e254–e743. https://doi.org/10.1161/CIR.0000000000000950..
DOI: 10.1161/CIR.0000000000000950
Wang X., Li Y., Fan H. The associations between screen time-based sedentary behavior and depression: a systematic review and meta-analysis. BMC Public Health. 2019;19(1):1524. https://doi.org/10.1186/s12889-019-7904-9..
DOI: 10.1186/s12889-019-7904-9
Lavie C., Ozemek C, Carbone S., Katzmarzyk P., Blair S. Sedentary Behavior, Exercise, and Cardiovascular Health. Circ Res. 2019;124(5):799–815. https://doi.org/10.1161/CIRCRESAHA.118.312669..
DOI: 10.1161/CIRCRESAHA.118.312669
Tilg H., Moschen A. Microbiota and diabetes: An evolving relationship. Gut. 2014;63(9):1513–1521. https://doi.org/10.1136/gutjnl-2014-306928..
DOI: 10.1136/gutjnl-2014-306928
Zhang L., Du J., Yano N., Wang H., Zhao Y., Dubielecka P. et al. Sodium Butyrate Protects-Against High Fat Diet-Induced Cardiac Dysfunction and Metabolic Disorders in Type II Diabetic Mice. J Cell Biochem. 2017;118(8):2395–2408. https://doi.org/10.1002/jcb.25902..
DOI: 10.1002/jcb.25902
Ардатская М.Д. Роль пищевых волокон в коррекции нарушений микробиоты и поддержании иммунитета. РМЖ. 2020;(12):24–29. Режим доступа: https://www.rmj.ru/articles/gastroenterologiya/Roly_pischevyh_volokon_v_korrekcii_narusheniy_mikrobioty_i_podderghanii_immuniteta.https://www.rmj.ru/articles/gastroenterologiya/Roly_pischevyh_volokon_v_korrekcii_narusheniy_mikrobioty_i_podderghanii_immuniteta
Ардатская М.Д. Роль пищевых волокон в коррекции нарушений микробиоты и поддержании иммунитета. РМЖ. 2020;(12):24–29. Режим доступа: https://www.rmj.ru/articles/gastroenterologiya/Roly_pischevyh_volokon_v_korrekcii_narusheniy_mikrobioty_i_podderghanii_immuniteta.https://www.rmj.ru/articles/gastroenterologiya/Roly_pischevyh_volokon_v_
Silva Y., Bernardi A., Frozza R. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front Endocrinol (Lausanne). 2020;11:25. https://doi.org/10.3389/fendo.2020.00025..
DOI: 10.3389/fendo.2020.00025
Ардатская М.Д. Пробиотики, пребиотики и метабиотики в коррекции микроэкологических нарушений кишечника. Медицинский совет. 2015;(13):94–99. Режим доступа: https://www.med-sovet.pro/jour/article/view/343.https://www.med-sovet.pro/jour/article/view/343
Ардатская М.Д. Пробиотики, пребиотики и метабиотики в коррекции микроэкологических нарушений кишечника. Медицинский совет. 2015;(13):94–99. Режим доступа: https://www.med-sovet.pro/jour/article/view/343.https://www.med-sovet.pro/jour/article/view/343
Ellis P., Wang Q., Rayment P., Ren Y., Ross-Murphy S. Guar gum: agricultural and botanical aspects, physiochemical and nutritional properties, and its use in the development of functional foods. In: Cho S., Dreher M. (eds.). Handbook of dietary fiber. New York: Marcel Dekker; 2001, p. 613. Available at: https://www.taylorfrancis.com/chapters/edit/10.1201/9780203904220-36/guar-gum-peterrory-ellis-qi-wang-phillippa-rayment-yilong-ren-simon-ross-murphy.https://www.taylorfrancis.com/chapters/edit/10.1201/9780203904220-36/guar-gum-peterrory-ellis-qi-wang-phillippa-rayment-yilong-ren-simon-ross-murphy
Ellis P., Wang Q., Rayment P., Ren Y., Ross-Murphy S. Guar gum: agricultural and botanical aspects, physiochemical and nutritional properties, and its use in the development of functional foods. In: Cho S., Dreher M. (eds.). Handbook of dietary fiber. New York: Marcel Dekker; 2001, p. 613. Available at: https://www.taylorfrancis.com/chapters/edit/10.1201/9780203904220-36/guar-gum-peterrory-ellis-qi-wang-phillippa-rayment-yilong-ren-simon-ross-murphy.https://www.taylorfrancis.com/chapters/edit/10.1201/9780203904220-36/guar-gum-peterrory-ellis-qi-wang-phillippa-rayment-yilong-ren-simon-ross-murphy
Greenberg N., Sellman D. Partially hydrolyzed guar gum as a source of fiber. Cereal Foods World. 1998;43(9):703–707. Available at: https://agris.fao.org/agris-search/search.do?recordID=US1997084241.https://agris.fao.org/agris-search/search.do?recordID=US1997084241
Greenberg N., Sellman D. Partially hydrolyzed guar gum as a source of fiber. Cereal Foods World. 1998;43(9):703–707. Available at: https://agris.fao.org/agris-search/search.do?recordID=US1997084241.https://agris.fao.org/agris-search/search.do?recordID=US1997084241
11. Yoon S., Chu D., Raj Juneja L. Chemical and physical properties, safety and application of partially hydrolized guar gum as dietary fiber. J Clin Biochem Nutr. 2008;42(1):1–7. https://doi.org/10.3164/jcbn.2008001..
DOI: 10.3164/jcbn.2008001
Yamada K., Tokunaga Y., Ikeda A., Ohkura K., Kaku-Ohkura S., Mamiya S. et al. Effect of dietary fiber on the lipid metabolism and immune function of aged Sprague-Dawley rats. Biosci Biotechnol Biochem. 2003;67(2):429–433. https://doi.org/10.1271/bbb.67.429..
DOI: 10.1271/bbb.67.429
Maenaka T., Yokawa T., Ishihara N., Okubo T., Chu D., Nishigaki E. et al. Effects of partially hydrolyzed guar gum on postprandial blood glucose level and disaccharidase. J Jpn Soc Med Use Func Foods. 2007;(4):195–201.
Gu Y., Yamashita T., Suzuki I., Juneja L., Yokawa T. Effect of enzyme hydrolyzed guar gum on the elevation of blood glucose levels after meal. Med Biol. 2003;142:19–24. Available at: https://www.researchgate.net/publication/304034095_Effect_of_enzyme_hydrolyzed_guar_gum_on_the_elevation_of_blood_glucose_levels_after_meal.https://www.researchgate.net/publication/304034095_Effect_of_enzyme_hydrolyzed_guar_gum_on_the_elevation_of_blood_glucose_levels_after_meal
Gu Y., Yamashita T., Suzuki I., Juneja L., Yokawa T. Effect of enzyme hydrolyzed guar gum on the elevation of blood glucose levels after meal. Med Biol. 2003;142:19–24. Available at: https://www.researchgate.net/publication/304034095_Effect_of_enzyme_hydrolyzed_guar_gum_on_the_elevation_of_blood_glucose_levels_after_meal.https://www.researchgate.net/publication/304034095_Effect_of_enzyme_hydrolyzed_guar_gum_on_the_elevation_of_blood_glucose_levels_after_meal
Golay A., Schneider H., Bloise D., Vadas L., Assal J. The effect of a liquid supplement containing guar gum and fructose on glucose tolerance in non–insulindependent diabetic patients. Nutr Metab Cardiovasc Dis. 1995;(5):141–148.
Takahashi T., Yokawa T., Ishihara N., Okubo T., Chu D.C., Nishigaki E. et al. Hydrolyzed guar gum decreases postprandial blood glucose and glucose absorption in the rat small intestine. Nutr Res. 2009;29(6):419–425. https://doi.org/10.1016/j.nutres.2009.05.013..
DOI: 10.1016/j.nutres.2009.05.013
Dall’Alba V., Silva F., Antonio J., Steemburgo T., Royer C., Almeida J. et al. Improvement of the metabolic syndrome profile by soluble fibre – guar gum – In patients with type 2 diabetes: a randomised clinical trial. Br J Nutr. 2013;110(9):1601–1610. https://doi.org/10.1017/S0007114513001025..
DOI: 10.1017/S0007114513001025
Aro A., Uusitupa M., Voutilainen E., Hersio K., Korhonen T., Siitonen O. Improved diabetic control and hypocholesterolaemic effect induced by longterm dietary supplementation with guar gum in type 2 (insulin-independent) diabetes. Diabetologia. 1981;21(1):29–33. https://doi.org/10.1007/BF03216219..
DOI: 10.1007/BF03216219
Velázquez M., Davies C., Marett R., Slavin J., Feirtag J. Effect of oligossaccharides and fibre substitutes on short-chain fatty acid production by human faecal microflora. Anaerobe. 2000;6(2):87–92. https://doi.org/10.1006/anae.1999.0318..
DOI: 10.1006/anae.1999.0318
Hu S., Kuwabara R., de Haan B., Smink A., de Vos P. Acetate and Butyrate Improve β-cell Metabolism and Mitochondrial Respiration under Oxidative Stress. Int J Mol Sci. 2020;21(4):1542. https://doi.org/10.3390/ijms21041542..
DOI: 10.3390/ijms21041542
Gao Z., Yin J., Zhang J., Ward R., Martin R., Lefevre M., Cefalu W. et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509–1517 https://doi.org/10.2337/db08-1637..
DOI: 10.2337/db08-1637
Yokozawa T., Nakagawa T., Oya T., Okubo T., Juneja L. Green tea polyphenols and dietary fibre protect against kidney damage in rats with diabetic nephropathy. J Pharm Pharmacol. 2009;57(6):773–780. https://doi.org/10.1211/0022357056154..
DOI: 10.1211/0022357056154
Simon L.A., Gayst S., Balasubramaniam S., Ruys J. Long-term treatment of hypercholesterolaemia with a new palatable formulation of guar gum. Atherosclerosis. 1982;45(1):101–108. https://doi.org/10.1016/0021-9150(82)90175-7..
DOI: 10.1016/0021-9150(82)90175-7
Minekus M., Jelier M., Xiao J., Kondo S., Iwatsuki K., Kokubo S. et al. Effect of Partially Hydrolyzed Guar Gum (PHGG) on the Bioaccessibility of Fat and Cholesterol. Biosci Biotechnol Biochem. 2005;69(5):932–938. https://doi.org/10.1271/bbb.69.932..
DOI: 10.1271/bbb.69.932
Landin K., Holm G., Tengborn L., Smith U. Guar gum improves insulin sensitivity, blood lipids, blood pressure, and fibrinolysis in healthy men. Am J Clin Nutr. 1992;56(6):1061–1065. https://doi.org/10.1093/ajcn/56.6.1061..
DOI: 10.1093/ajcn/56.6.1061
Hara H., Nagata M., Ohta A., Kasai T. Increases in calcium absorption with ingestion of soluble dietary fibre, guargum hydrolysate, depend on the caecum in partially nephrectomized and normal rats. Br J Nutr. 1996;76(5):773–784. https://doi.org/10.1079/bjn19960083..
DOI: 10.1079/bjn19960083
De Vadder F., Kovatcheva-Datchary P., Zitoun C., Duchampt A., Backhed F., Mithieux G. Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis. Cell Metab. 2016;24(1):151–157. https://doi.org/10.1016/j.cmet.2016.06.013..
DOI: 10.1016/j.cmet.2016.06.013
Jiamiao H., Shaoling L., Baodong Z., Cheung P. Short-chain fatty acids in control of energy metabolism. Crit Rev Food Sci Nutr. 2017;58(8):1243–1249. https://doi.org/10.1080/10408398.2016.1245650..
DOI: 10.1080/10408398.2016.1245650
Verhaar B., Prodan A., Nieuwdorp M., Muller M. Gut Microbiota in Hypertension and Atherosclerosis: A Review. Nutrients. 2020;12(10):2982. https://doi.org/10.3390/nu12102982..
DOI: 10.3390/nu12102982