McGoldrick E., Stewart F., Parker R., Dalziel S.R. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2020;12(12):CD004454. https://doi.org/10.1002/14651858.CD004454.pub4..
DOI: 10.1002/14651858.CD004454.pub4
Simhan H.M. Practice Bulletin No. 171: Management of Preterm Labor. Obstet Gynecol. 2016;128(4):155–164. https://doi.org/10.1097/AOG.0000000000001711..
DOI: 10.1097/AOG.0000000000001711
Murphy K.E., Hannah M.E., Willan A.R., Hewson S.A., Ohlsson A., Kelly E.N. et al. Multiple courses of antenatal corticosteroids for preterm birth (MACS): a randomized controlled trial. Lancet. 2008;372(9656):2143–2151. https://doi.org/10.1016/S0140-6736(08)61929-7..
DOI: 10.1016/S0140-6736(08)61929-7
Speiser P.W., Arlt W., Auchus R.J., Baskin L.S., Conway G.S., Merke D.P. et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2018;103(11):4043–4088. https://doi.org/10.1210/jc.2018-01865..
DOI: 10.1210/jc.2018-01865
Суплотова Л.А., Храмова Е.Б., Макарова О.Б., Старкова О.Б., Кукарская И.И., Брынза Н.С., Фомина С.В. Скрининг беременных женщин на врожденную дисфункцию коры надпочечников: результаты и перспективы. Проблемы эндокринологии. 2005;(6):12–14. Режим доступа: https://www.probl-endojournals.ru/jour/article/view/10822.https://www.probl-endojournals.ru/jour/article/view/10822
Суплотова Л.А., Храмова Е.Б., Макарова О.Б., Старкова О.Б., Кукарская И.И., Брынза Н.С., Фомина С.В. Скрининг беременных женщин на врожденную дисфункцию коры надпочечников: результаты и перспективы. Проблемы эндокринологии. 2005;(6):12–14. Режим доступа: https://www.probl-endojournals.ru/jour/article/view/10822.https://www.probl-endojournals.ru/jour/article/view/10822
Суплотова Л.А., Храмова Е.Б., Кукарская И.И., Брынза Н.С., Старкова О.Б., Макарова О.Б., Фомина С.В. Использование дексаметазона в терапии угрозы невынашивания беременности у женщин с неклассическими формами врожденной дисфункции коры надпочечников. Медицинская наука и образование Урала. 2004;(4):93.
Matsusue Y., Horii-Hayashi N., Kirita T., Nishi M. Distribution of corticosteroid reseptor in mature oligodendrocytes and oligodendrocyte progenitors of the adult mouse brain. J Histochem Cytochem. 2014;62(3):211–226. https://doi.org/10.1369/0022155413517700..
DOI: 10.1369/0022155413517700
de Kloet E.R., Joels M., Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci. 2005;6(6):463–475. https://doi.org/10.1038/nrn1683..
DOI: 10.1038/nrn1683
LeDoux J.E. Evotion Circuits In the Brain. Annu Rev Neurosci. 2000;23:155–184. https://doi.org/10.1146/annurev.neuro.23.1.155..
DOI: 10.1146/annurev.neuro.23.1.155
Funahashi S. Neuronal mechanisms of executive control by the prefrontal cortex. Neurosci Res. 2001;(39):147–165. https://doi.org/10.1016/s0168-0102(00)00224-8..
DOI: 10.1016/s0168-0102(00)00224-8
Opitz B. Memory Function and the Hippocampus. Front Neurol Neurosci. 2014;(34):51–59. https://doi.org/10.1159/000356422..
DOI: 10.1159/000356422
Vehaskari V.M., Woods L.L. Prenatal programming of hypertension: lessons from experimental models. J Am Soc Nephrol. 2005;16(9):2545–2556. https://doi.org/10.1681/Asn.2005030300..
DOI: 10.1681/Asn.2005030300
Hoppe C.C., Evans R.G., Moritz K.M., Cullen-McEwen L.A., Fitzgerald S.M., Dowling J., Bertram J.F. Combined prenatal and postnatal protein restriction influences adult kidney structure, function, and arterial pressure. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R462–R469. https://doi.org/10.1152/ajpregu.00079.2006..
DOI: 10.1152/ajpregu.00079.2006
Seckl J.R., Holmes M.C. Mechanisms of disease: glucocorticoids, their placental metabolism and fetal “programming” of adult pathophysiology. Nat Clin Pract Endocrinol Metab. 2007;3(6): 479–488. https://doi.org/10.1038/ncpendmet0515..
DOI: 10.1038/ncpendmet0515
Goyal R., Goyal D., Leitzke A., Gheorghe C.P., Longo L.D. Brain reninangiotensin system: fetal epigenetic programming by maternal protein restriction during pregnancy. Reprod Sci. 2010;17(3):227–238. https://doi.org/10.1177/1933719109351935..
DOI: 10.1177/1933719109351935
Pladys P., Sennlaub F., Brault S., Checchin D., Lahaie I., Lê N.L. et al. Microvascular rarefaction and decreased angiogenesis in rats with fetal programming of hypertension associated with exposure to a low-protein diet in utero. Am J Physiol Regul Integr Comp Physiol. 2005;289(6):R1580–1588. https://doi.org/10.1152/ajpregu.00031.2005..
DOI: 10.1152/ajpregu.00031.2005
Boyne M.S., Woollard A., Phillips D.I., Taylor-Bryan C., Bennett F.I., Osmond C. et al. The association of hypothalamic-pituitary-adrenal axis activity and blood pressure in an Afro-Caribbean population. Psychoneuroendocrinology. 2009;34(5):736–742. https://doi.org/10.1016/j.psyneuen.2008.12.005..
DOI: 10.1016/j.psyneuen.2008.12.005
Young J.B. Programming of Sympathoadrenal function. Trends Endocrinol Metab. 2002;13(9):381–385. https://doi.org/10.1016/s1043-2760(02)00661-6..
DOI: 10.1016/s1043-2760(02)00661-6
Johansson S., Norman M., Legnevall L., Dalmaz Y., Lagercrantz H., Vanpée M. Increased catecholamines and heart rate in children with low birth weight: perinatal contributions to sympathoadrenal overactivity. J Intern Med. 2007;261(5):480–487. https://doi.org/10.1111/j.1365-2796.2007.01776.x..
DOI: 10.1111/j.1365-2796.2007.01776.x
Peltsch H., Khurana S., Byrne C.J., Nguyen P., Khaper N., Kumar A., Tai T.C. Cardiac phenylethanolamine N-methyltransferase: localization and regulation of gene expression in the spontaneously hypertensive rat. Can J Physiol Pharmacol. 2016;94(4):363–372. https://doi.org/10.1139/cjpp-2015-0303..
DOI: 10.1139/cjpp-2015-0303
Nguyen P., Khurana S., Peltsch H., Grandbois J., Eibl J., Crispo J. et al. Prenatal glucocorticoid exposure programs adrenal PNMT expression and adult hypertension. J Endocrinol. 2015;227(2):117–127. https://doi.org/10.1530/JOE-15-0244..
DOI: 10.1530/JOE-15-0244
Wong D.L., Siddall B., Wang W. Hormonal control of rat adrenal phenylethanolamine N-methyltransferase. Enzyme activity, the final critical pathway. Neuropsychopharmacology. 1995;13(3):223–234. https://doi.org/10.1016/0893-133X(95)00066-M..
DOI: 10.1016/0893-133X(95)00066-M
Wong D.L., Anderson L.J., Tai T.C. Cholinergic and peptidergic regulation of phenylethanolamine N-methyltransferase gene expression. Ann N Y Acad Sci. 2002;971:19–26. https://doi.org/10.1111/j.1749-6632.2002.tb04428.x..
DOI: 10.1111/j.1749-6632.2002.tb04428.x
Tai T.C., Claycomb R., Siddall B.J., Bell R.A., Kvetnansky R., Wong D.L. Stress-induced changes in epinephrine expression in the adrenal medulla in vivo. J Neurochem. 2007;101(4):1108–1118. https://doi.org/10.1111/j.1471-4159.2007.04484.x..
DOI: 10.1111/j.1471-4159.2007.04484.x
Tai T.C., Claycomb R., Her S., Bloom A.K., Wong D.L. Glucocorticoid responsiveness of the rat phenylethanolamine N-methyltransferase gene. Mol Pharmacol. 2002;61(6):1385–1392. https://doi.org/10.1124/mol.61.6.1385..
DOI: 10.1124/mol.61.6.1385
Moisiadis V.G., Matthews S.G. Glucocorticoids and fetal programming part 1: Outcomes. Nat Rev Endocrinol. 2014;10(7):391–402. https://doi.org/10.1038/nrendo.2014.73..
DOI: 10.1038/nrendo.2014.73
Browne W.V., Hindmarsh P.C., Pasterski V., Hughes I.A., Acerini C.L., Spencer D. et al. Working memory performance is reduced in children with congenital adrenal hyperplasia. Horm Behav. 2015;67:83–91. https://doi.org/10.1016/j.yhbeh.2014.11.014..
DOI: 10.1016/j.yhbeh.2014.11.014
Stuart F.A., Segal T.Y., Keady S. Adverse psychological effects of corticosteroids in children and adolescents. Arch Dis Child. 2005;90(5):500–506. https://doi.org/10.1136/adc.2003.041541..
DOI: 10.1136/adc.2003.041541
Meyer-Bahlburg H.F., Dolezal C., Haggerty R., Silverman M., New M.I. Cognitive outcome of offspring from dexamethasone-treated pregnancies at risk for congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Eur J Endocrinol. 2012;167(1):103–110. https://doi.org/10.1530/EJE-11-0789..
DOI: 10.1530/EJE-11-0789
Hirvikoski T., Nordenström A., Lindholm T., Lindblad F., Ritzén E.M., Wedell A., Lajic S. Cognitive functions in children at risk for congenital adrenal hyperplasia treated prenatally with dexamethasone. J Clin Endocrinol Metab. 2007;92(2):542–548. https://doi.org/10.1210/jc.2006-1340..
DOI: 10.1210/jc.2006-1340
Hirvikoski T., Nordenström A., Wedell A., Ritzén M., Lajic S. Prenatal dexamethasone treatment of children at risk for congenital adrenal hyperplasia: The Swedish experience and standpoint. J Clin Endocrinol Metab. 2012;97(6):1881–1883. https://doi.org/10.1210/jc.2012-1222..
DOI: 10.1210/jc.2012-1222
Colciago A., Casati L., Negri-Cesi P., Celotti F. Learning and memory: Steroids and epigenetics. J Steroid Biochem Mol Biol. 2015;150:64–85. https://doi.org/10.1016/j.jsbmb.2015.02.008..
DOI: 10.1016/j.jsbmb.2015.02.008
Colciago A., Casati L., Negri-Cesi P., Celotti F. Learning and memory: Steroids and epigenetics. J Steroid Biochem Mol Biol. 2015;150:64–85. https://doi.org/10.1016/j.jsbmb.2015.02.008..
DOI: 10.1016/j.jsbmb.2015.02.008
Hamed S.A., Metwalley K.A., Farghaly H.S. Cognitive function in children with classic congenital adrenal hyperplasia. Eur J Pediatr. 2018;177(11):1633–1640. https://doi.org/10.1007/s00431-018-3226-7..
DOI: 10.1007/s00431-018-3226-7
Sewell R., Buchanan C.L., Davis S., Christakis D.A., Dempsey A., Furniss A. et al. Behavioral Health Diagnoses in Youth with Differences of Sex Development or Congenital Adrenal Hyperplasia Compared with Controls: A PEDSnet Study. J Pediatr. 2021;239:175–181.e2. https://doi.org/10.1016/j.jpeds.2021.08.066..
DOI: 10.1016/j.jpeds.2021.08.066
Sotiriadis A., Tsiami A., Papatheodorou S., Baschat A.A., Sarafidis K., Makrydimas G. Neurodevelopmental Outcome After a Single Course of Antenatal Steroids in Children Born Preterm: A Systematic Review and Meta-analysis. Obstet Gynecol. 2015;125(6):1385–1396. https://doi.org/10.1097/AOG.0000000000000748..
DOI: 10.1097/AOG.0000000000000748
Cheong J.L., Burnett A.C., Lee K.J., Roberts G., Thompson D.K., Wood S.J. et al. Association between postnatal dexamethasone for treatment of bronchopulmonary dysplasia and brain volumes at adolescence in infants born very preterm. J Pediatr. 2014;164(4):737–743.e1. https://doi.org/10.1016/j.jpeds.2013.10.083..
DOI: 10.1016/j.jpeds.2013.10.083
de Bie H.M., Oostrom K.J., Delemarre-van de Waal H.A. Brain development, intelligence and cognitive outcome in children born small for gestational age. Horm Res Paediatr. 2010;73(1):6–14. https://doi.org/10.1159/000271911..
DOI: 10.1159/000271911
Davis E.P., Sandman C.A., Buss C., Wing D.A., Head K. Fetal glucocorticoid exposure is associated with preadolescent brain development. Biol Psychiatry. 2013;74(9):647–655. https://doi.org/10.1016/j.biopsych.2013.03.009..
DOI: 10.1016/j.biopsych.2013.03.009
Grant K.A., Sandman C.A., Wing D.A., Dmitrieva J., Davis E.P. Prenatal programming of postnatal susceptibility to memory impairments: a developmental double jeopardy. Psychol Sci. 2015;26(7):1054–1062. https://doi.org/10.1177/0956797615580299..
DOI: 10.1177/0956797615580299
Шайтарова А.В., Суплотова Л.А., Храмова Е.Б. Особенности физического и нервно-психического развития детей, матери которых в период беременности принимали дексаметазон. Вопросы гинекологии, акушерства и перинатологии. 2013;(2):43–47. Режим доступа: https://www.phdynasty.ru/katalog/zhurnaly/voprosy-ginekologii-akusherstva-i-perinatologii/2013/tom-12-nomer-21935/12546.https://www.phdynasty.ru/katalog/zhurnaly/voprosy-ginekologii-akusherstva-i-perinatologii/2013/tom-12-nomer-21935/12546
Шайтарова А.В., Суплотова Л.А., Храмова Е.Б. Особенности физического и нервно-психического развития детей, матери которых в период беременности принимали дексаметазон. Вопросы гинекологии, акушерства и перинатологии. 2013;(2):43–47. Режим доступа: https://www.phdynasty.ru/katalog/zhurnaly/voprosy-ginekologii-akusherstva-i-perinatologii/2013/tom-12-nomer-21935/12546.https://www.phdynasty.ru/katalog/zhurnaly/voprosy-ginekologii-akusherstva-i-perinatologii/2013/tom-12-nomer-21935/12546