Davies M.J., D’Alessio D.A., Fradkin J., Kernan W.N., Mathieu C., Mingrone G. et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018;41(12):2669–2701. https://doi.org/10.2337/dci18-0033..
DOI: 10.2337/dci18-0033
Carr R.D., Solomon A. Inhibitors of dipeptidyl peptidase‐4 as therapeutic agents for individuals with type 2 diabetes: a 25‐year journey. Diabet Med. 2020;37(8):1230–1233. https://doi.org/10.1111/dme.14325..
DOI: 10.1111/dme.14325
Сидоров А.В. Клиническая фармакология ингибиторов дипептидилпептидазы 4: сравнительный обзор. Эффективная фармакотерапия. 2020;16(25):24–48. https://doi.org/10.33978/2307-3586-2020-16-25-24-48..
DOI: 10.33978/2307-3586-2020-16-25-24-48
Ahrén B. Glucose-lowering action through targeting islet dysfunction in type 2 diabetes: Focus on dipeptidyl peptidase-4 inhibition. J Diabetes Investig. 2021;12(7):1128–1135. https://doi.org/10.1111/jdi.13564..
DOI: 10.1111/jdi.13564
Kawanami D., Takashi Y., Takahashi H., Motonaga R., Tanabe M. Renoprotective Effects of DPP-4 Inhibitors. Antioxidants (Basel). 2021;10(2):246. https://doi.org/10.3390/antiox10020246..
DOI: 10.3390/antiox10020246
Narimani R., Kachuei A., Rezvanian H. Feizi A., Poorpoone M. Effect of sitagliptin on proteinuria in patients with type 2 diabetes – A renoprotective effect of sitagliptin. Res Med Sci. 2021;26:35. https://doi.org/10.4103/jrms.JRMS_78_20..
DOI: 10.4103/jrms.JRMS_78_20
Avogaro A., Fadini G.P. The pleiotropic cardiovascular effects of dipeptidyl peptidase-4 inhibitors. Br J Clin Pharmacol. 2018;84(8):1686–1695. https://doi.org/10.1111/bcp.13611..
DOI: 10.1111/bcp.13611
Packer M. Worsening Heart Failure During the Use of DPP-4 Inhibitors: Pathophysiological Mechanisms, Clinical Risks, and Potential Influence of Concomitant Antidiabetic Medications. JACC Heart Fail. 2018;6(6):445–451. https://doi.org/10.1016/j.jchf.2017.12.016..
DOI: 10.1016/j.jchf.2017.12.016
Sano M. Mechanism by which dipeptidyl peptidase-4 inhibitors increase the risk of heart failure and possible differences in heart failure risk. J Cardiol. 2019;73(1):28–32. https://doi.org/10.1016/j.jjcc.2018.07.004..
DOI: 10.1016/j.jjcc.2018.07.004
Ali A., Fuentes A., Skelton IV W.P., Wang Yu., McGorray S., Shah C. et al. A multi-center retrospective analysis of the effect of DPP4 inhibitors on progression-free survival in advanced airway and colorectal cancers. Mol Clin Oncol. 2019;10(1):118–124. https://doi.org/10.3892/mco.2018.1766..
DOI: 10.3892/mco.2018.1766
Bishnoi R., Hong Y.-R., Shah C., Ali A., Skelton 4th W.P., Huo J. et al. Dipeptidyl peptidase 4 inhibitors as novel agents in improving survival in diabetic patients with colorectal cancer and lung cancer: A Surveillance Epidemiology and Endpoint Research Medicare study. Cancer Med. 2019;8(8):3918–3927. https://doi.org/10.1002/cam4.2278..
DOI: 10.1002/cam4.2278
Kawakita E., Koya D., Kanasaki K. CD26/DPP-4: Type 2 Diabetes Drug Target with Potential Influence on Cancer Biology. Cancers (Basel). 2021;13(9):2191. https://doi.org/10.3390/cancers13092191..
DOI: 10.3390/cancers13092191
Shah C., Hong Y.-R., Bishnoi R., Ali A., Skelton 4th W.P., Dang L.H. et al. Impact of DPP4 Inhibitors in Survival of Patients With Prostate, Pancreas, and Breast Cancer. Front Oncol. 2020;10:405. https://doi.org/10.3389/fonc.2020.00405..
DOI: 10.3389/fonc.2020.00405
Angelopoulou E., Piperi C. DPP-4 inhibitors: a promising therapeutic approach against Alzheimer’s disease. Ann Transl Med. 2018;6(12):255. https://doi.org/10.21037/atm.2018.04.41..
DOI: 10.21037/atm.2018.04.41
Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. https://doi.org/10.1016/S0140-6736(20)30638-3..
DOI: 10.1016/S0140-6736(20)30638-3
Holman N., Knighton P., Kar P., O’Keefe J., Curley M., Weaver A. et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study. Lancet Diabetes Endocrinol. 2020;8(10):823–833. https://doi.org/10.1016/S2213-8587(20)30271-0..
DOI: 10.1016/S2213-8587(20)30271-0
Barron E., Bakhai C., Kar P., Weaver A., Bradley D., Ismail H. et al. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: a whole-population study. Lancet Diabetes Endocrinol. 2020;8(10):813–822. https://doi.org/10.1016/S2213-8587(20)30272-2..
DOI: 10.1016/S2213-8587(20)30272-2
Mantovani A., Byrne C.D., Zheng M.-H., Targher G. Diabetes as a risk factor for greater COVID-19 severity and in-hospital death: a meta-analysis of observational studies. Nutr Metab Cardiovasc Dis. 2020;30(8):1236–1248. https://doi.org/10.1016/j.numecd.2020.05.014..
DOI: 10.1016/j.numecd.2020.05.014
Rubenfeld G.D., Caldwell E., Peabody E., Weaver J., Martin D.P., Neff M. et al. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353(16):1685–1693. https://doi.org/10.1056/NEJMoa050333..
DOI: 10.1056/NEJMoa050333
Reinhold D., Bank U., Täger M., Ansorge S., Wrenger S., Thielitz A. et al. DP IV/CD26, APN/CD13 and related enzymes as regulators of T cell immunity: implications for experimental encephalomyelitis and multiple sclerosis. Front Biosci. 2008;13:2356–2363. https://doi.org/10.2741/2849..
DOI: 10.2741/2849
Lontchi-Yimagou E., Sobngwi E., Matsha T.E., Kengne A.P. Diabetes mellitus and inflammation. Curr Diab Rep. 2013;13(3):435–444. https://doi.org/10.1007/s11892-013-0375y..
DOI: 10.1007/s11892-013-0375y
Katsiki N., Ferrannini E. Anti-inflammatory properties of antidiabetic drugs: A “promised land” in the COVID-19 era? J Diabetes Complications. 2020;34(12):107723. https://doi.org/10.1016/j.jdiacomp.2020.107723..
DOI: 10.1016/j.jdiacomp.2020.107723
Yazbeck R., Jaenisch S.E., Abbott C.A. Dipeptidyl peptidase 4 inhibitors: Applications in innate immunity? Biochem Pharmacol. 2021;188:114517. https://doi.org/10.1016/j.bcp.2021.114517..
DOI: 10.1016/j.bcp.2021.114517
Shao S., Xu Q., Yu X., Pan R., Chen Y. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacol Ther. 2020;209:107503. https://doi.org/10.1016/j.pharmthera.2020.107503..
DOI: 10.1016/j.pharmthera.2020.107503
Nargis T., Chakrabarti P. Significance of circulatory DPP4 activity in metabolic diseases. IUBMB Life. 2018;70(2):112–119. https://doi.org/10.1002/iub.1709..
DOI: 10.1002/iub.1709
Yazbeck R., Howarth G.S., Butler R.N., Geier M.S., Abbott C.A. Biochemical and histological changes in the small intestine of mice with dextran sulfate sodium colitis. J Cell Physiol. 2011;226(12):3219–3224. https://doi.org/10.1002/jcp.22682..
DOI: 10.1002/jcp.22682
Bassendine M.F., Bridge S.H., McCaughan G.W., Gorrell M.D. COVID-19 and comorbidities: A role for dipeptidyl peptidase 4 (DPP4) in disease severity? J Diabetes. 2020;12(9):649–658. https://doi.org/10.1111/1753-0407.13052..
DOI: 10.1111/1753-0407.13052
Lu G., Hu Y., Wang Q., Qi J., Gao F., Li Y. et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature. 2013;500(7461):227–231. https://doi.org/10.1038/nature12328..
DOI: 10.1038/nature12328
Solerte S.B., D’Addio F., Trevisan R., Lovati E., Rossi A., Pastore I. et al. Sitagliptin treatment at the time of hospitalization was associated with reduced mortality in patients with type 2 diabetes and COVID-19: a multicenter, case-control, retrospective, observational study. Diabetes Care. 2020;43(13):2999–3006. https://doi.org/10.2337/dc20-1521..
DOI: 10.2337/dc20-1521
Al-Kuraishy H.M., Al-Gareeb A.I., Qusty N., Alexiou A., Batih G.E.-S. Impact of Sitagliptin in Non-Diabetic Covid-19 Patients. Curr Mol Pharmacol. 2022;15(4):683–692. https://doi.org/10.2174/1874467214666210902115650..
DOI: 10.2174/1874467214666210902115650
Alhakamy N.A., Ahmed O.A.A., Ibrahim T.S., Aldawsari H.M., Eljaaly K., Fahmy U.A. et al. Evaluation of the Antiviral Activity of SitagliptinGlatiramer Acetate Nano-Conjugates against SARS-CoV-2 Virus. Pharmaceuticals (Basel). 2021;14(3):178. https://doi.org/10.3390/ph14030178..
DOI: 10.3390/ph14030178
Al-Rabia M.W., Alhakamy N.A., Ahmed O.A.A., Eljaaly K., Alaofi A.L., Mostafa A. et al. Repurposing of Sitagliptin-Melittin Optimized Nanoformula against SARS-CoV-2: Antiviral Screening and Molecular Docking Studies. Pharmaceutics. 2021;13(3):307. https://doi.org/10.3390/pharmaceutics13030307..
DOI: 10.3390/pharmaceutics13030307
Noh Y., Oh I.-S., Jeong H.E., Filion K.B., Yu O.H.Y., Shin J.-Y. Association Between DPP-4 Inhibitors and COVID-19-Related Outcomes Among Patients With Type 2 Diabetes. Diabetes Care. 2021;44(4):e64–e66. https://doi.org/10.2337/dc20-1824..
DOI: 10.2337/dc20-1824
Yang Y., Cai Z., Zhang J. DPP-4 inhibitors may improve the mortality of coronavirus disease 2019: A meta-analysis. PLoS ONE. 2021;16(5):e0251916. https://doi.org/10.1371/journal.pone.0251916..
DOI: 10.1371/journal.pone.0251916
Rakhmat I.I., Kusmala Yu.Yu., Handayani D.R., Juliastuti H., Nawangsih E.N., Wibowo A. et al. Dipeptidyl peptidase-4 (DPP-4) inhibitor and mortality in coronavirus disease 2019 (COVID-19) – A systematic review, metaanalysis, and meta-regression. Diabetes Metab Syndr. 2021;15(3):777–782. https://doi.org/10.1016/j.dsx.2021.03.027..
DOI: 10.1016/j.dsx.2021.03.027
Sainsbury C., Wang J., Gokhale K., Acosta-Mena D., Dhalla S., Byne N. et al. Sodium-glucose co-transporter-2 inhibitors and susceptibility to COVID-19: A population-based retrospective cohort study. Diabetes Obes Metab. 2021;23(1):263–269. https://doi.org/10.1111/dom.14203..
DOI: 10.1111/dom.14203
Dalan R., Ang L.W., Tan W.Y.T., Fong S.-W., Tay W.C., Chan Y.-H. et al. The association of hypertension and diabetes pharmacotherapy with COVID-19 severity and immune signatures: an observational study. Eur Heart J Cardiovasc Pharmacother. 2021;7(3):e48–e51. https://doi.org/10.1093/ehjcvp/pvaa098..
DOI: 10.1093/ehjcvp/pvaa098
Chen Y., Yang D., Cheng B., Chen J., Peng A., Yang C. et al. Clinical Characteristics and Outcomes of Patients With Diabetes and COVID-19 in Association With Glucose-Lowering Medication. Diabetes Care. 2020;43(7):1399–1407. https://doi.org/10.2337/dc20-0660..
DOI: 10.2337/dc20-0660
Drucker D.J. Coronavirus Infections and Type 2 Diabetes-Shared Pathways with Therapeutic Implications. Endocr Rev. 2020;41(3):bnaa011. https://doi.org/10.1210/endrev/bnaa011..
DOI: 10.1210/endrev/bnaa011
Bonora B.M., Avogaro A., Fadini G.P. Disentangling conflicting evidence on DPP-4 inhibitors and outcomes of COVID-19: narrative review and meta-analysis. J Endocrinol Invest. 2021;44(7):1379–1386. https://doi.org/10.1007/s40618-021-01515-6..
DOI: 10.1007/s40618-021-01515-6
Fadini G.P., Morieri M.L., Longato E., Bonora B.M., Pinelli S., Selmin E. et al. Exposure to dipeptidyl-peptidase-4 inhibitors and COVID-19 among people with type 2 diabetes: A case-control study. Diabetes Obes Metab. 2020;22(10):1946–1950. https://doi.org/10.1111/dom.14097..
DOI: 10.1111/dom.14097
Meijer R.I., Hoekstra T., van den Oever N.C.G., Simsek S., van den Bergh J.P., Douma R.A. et al. Treatment with a DPP-4 inhibitor at time of hospital admission for COVID-19 is not associated with improved clinical outcomes: data from the COVID-PREDICT cohort study in The Netherlands. J Diabetes Metab Disord. 2021;20(2):1–6. https://doi.org/10.1007/s40200-021-00833-z.
DOI: 10.1007/s40200-021-00833-z
Pérez-Belmonte L.M., Torres-Peña J.D., López-Carmona M.D., AyalaGutiérrez M.M., Fuentes-Jiménez F., Huerta L.J. et al. Mortality and other adverse outcomes in patients with type 2 diabetes mellitus admitted for COVID-19 in association with glucose-lowering drugs: a nationwide cohort study. BMC Med. 2020;18(1):359. https://doi.org/10.1186/s12916-020-01832-2..
DOI: 10.1186/s12916-020-01832-2
Zhou J.-H., Wu B., Wang W.-X., Lei F., Cheng X., Qin J.-J. et al. No significant association between dipeptidyl peptidase-4 inhibitors and adverse outcomes of COVID-19. World J Clin Cases. 2020;8(22):5576–5588. https://doi.org/10.12998/wjcc.v8.i22.5576..
DOI: 10.12998/wjcc.v8.i22.5576
Scheen A.J. DPP-4 inhibition and COVID-19: From initial concerns to recent expectations. Diabetes Metab. 2021;47(2):101213. https://doi.org/10.1016/j.diabet.2020.11.005..
DOI: 10.1016/j.diabet.2020.11.005
Sun B., Huang S., Zhou J. Perspectives of Antidiabetic Drugs in Diabetes With Coronavirus Infections. Front Pharmacol. 2021;11:592439. https://doi.org/10.3389/fphar.2020.592439..
DOI: 10.3389/fphar.2020.592439
Bornstein S.R., Rubino F., Khunti K., Mingrone G., Hopkins D., Birkenfeld A.L. et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 2020;8(6):546–550. https://doi.org/10.1016/S2213-8587(20)30152-2..
DOI: 10.1016/S2213-8587(20)30152-2
Zhu L., She Z.-G., Cheng X., Qin J.-J., Zhang X.-J., Cai J. et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 2020;31(6):1068–1077.e3. https://doi.org/10.1016/j.cmet.2020.04.021.
DOI: 10.1016/j.cmet.2020.04.021