Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
ГлавнаяРезультаты поиска
СтатьяИскать документыПерейти к записи. 2022; № 10: 96–103. DOI:10.21518/2079-701X-2022-16-10-96-103
Метформин при предиабете: ключевые механизмы профилактики диабета и кардиометаболических рисков
Искать документыПерейти к записи[1]
Аффилированные организации
[1]Искать документыПерейти к записи
Аннотация
Сегодня мировым медицинским сообществом предиабет рассматривается как ранний сахарный диабет. Накопленные научные данные свидетельствуют о том, что предиабет характеризуется спектром осложнений, аналогичных при сахарном диабете, т. е. ухудшение сердечно-сосудистого прогноза начинается уже на стадии предиабета. В текущий период времени метформин фактически является единственным препаратом, широко назначаемым для лечения предиабета с целью профилактики сахарного диабета 2-го типа и сердечно-сосудистых заболеваний, ассоциированных с инсулинорезистентностью и гиперинсулинемией. Между тем метаболически нездоровое ожирение, характеризующееся гиперинсулинемией и инсулинорезистентностью, ассоциировано со значительно более неблагоприятным течением предиабета и с самым высоким риском развития как сахарного диабета 2-го типа, так и сердечно-сосудистых заболеваний, развития/прогрессии хронической болезни почек. Приоритетность метформина для коррекции наиболее прогностически неблагоприятных фенотипов предиабета – тема настоящего обзора, который также посвящен описанию наиболее значимых механизмов, обеспечивающих те эффекты метформина, которые лежат в основе коррекции ключевых нарушений, детерминирующих неблагоприятный прогноз предиабета. В частности, обозначена роль нездорового питания, его эффектов на развитие дисбаланса в составе микробиоты желудочно-кишечного тракта, который, в свою очередь, влечет за собой каскад метаболических нарушений, лежащих в основе формирования метаболического нездоровья. Обозначена ключевая роль метформина как препарата, защищающего от развития этих нарушений. Представленные в обзоре данные будут полезны для персонификации выбора как объема вмешательств, так и их характера у пациентов с разными фенотипическими характеристиками.
Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Рубрики Mesh
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Lakka H.M., Laaksonen D.E., Lakka T.A., Niskanen L.K., Kumpusalo E., Tuomilehto J., Salonen J.T. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002;288(21):2709–2716. https://doi.org/10.1001/jama.288.21.2709..
DOI: 10.1001/jama.288.21.2709

Thomas M.C., Cooper M.E., Zimmet P. Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat Rev Nephrol. 2016;12(2):73–81. https://doi.org/10.1038/nrneph.2015.173..
DOI: 10.1038/nrneph.2015.173

Einarson T.R., Acs A., Ludwig C., Panton U.H. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol. 2018;17(1):83. https://doi.org/10.1186/s12933-018-0728-6..
DOI: 10.1186/s12933-018-0728-6

Nichols G.A., Gullion C.M., Koro C.E., Ephross S.A., Brown J.B. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care. 2004;27(8):1879–1784. https://doi.org/10.2337/diacare.27.8.1879..
DOI: 10.2337/diacare.27.8.1879

Ndumele C.E., Matsushita K., Lazo M., Bello N., Blumenthal R.S., Gerstenblith G. et al. Obesity and Subtypes of Incident Cardiovascular Disease. J Am Heart Assoc. 2016;5(8):e003921. https://doi.org/10.1161/JAHA.116.003921..
DOI: 10.1161/JAHA.116.003921

Jenkins D.J.A., Dehghan M., Mente A., Bangdiwala S.I., Rangarajan S., Srichaikul K. et al. Glycemic Index, Glycemic Load, and Cardiovascular Disease and Mortality. N Engl J Med. 2021;384(14):1312–1322. https://doi.org/10.1056/NEJMoa2007123..
DOI: 10.1056/NEJMoa2007123

Leow M.K., Henry C.J. Glycemic Index, Glycemic Load, and Cardiovascular Disease and Mortality. N Engl J Med. 2021;385(4):378. https://doi.org/10.1056/NEJMc2107926..
DOI: 10.1056/NEJMc2107926

Kirkpatrick C.F., Maki K.C. Dietary Influences on Atherosclerotic Cardiovascular Disease Risk. Curr Atheroscler Rep. 2021;23(10):62. https://doi.org/10.1007/s11883-021-00954-z..
DOI: 10.1007/s11883-021-00954-z

Morigny P., Boucher J., Arner P., Langin D. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat Rev Endocrinol. 2021;17(5):276–295. https://doi.org/10.1038/s41574-021-00471-8..
DOI: 10.1038/s41574-021-00471-8

Stenkula K.G., Erlanson-Albertsson C. Adipose cell size: importance in health and disease. Am J Physiol Regul Integr Comp Physiol. 2018;315(2):R284–R295. https://doi.org/10.1152/ajpregu.00257.2017..
DOI: 10.1152/ajpregu.00257.2017

Ahlqvist E., Storm P., Käräjämäki A., Martinell M., Dorkhan M., Carlsson A. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361–369. https://doi.org/10.1016/S2213-8587(18)30051-2..
DOI: 10.1016/S2213-8587(18)30051-2

Häring H.U. Novel phenotypes of prediabetes? Diabetologia. 2016;59(9):1806–1818. https://doi.org/10.1007/s00125-016-4015-3..
DOI: 10.1007/s00125-016-4015-3

Stefan N., Fritsche A., Schick F., Häring H.U. Phenotypes of prediabetes and stratification of cardiometabolic risk. Lancet Diabetes Endocrinol. 2016;4(9):789–798. https://doi.org/10.1016/S2213-8587(16)00082-6..
DOI: 10.1016/S2213-8587(16)00082-6

Stefan N., Staiger H., Wagner R., Machann J., Schick F., Häring H.U., Fritsche A. A high-risk phenotype associates with reduced improvement in glycaemia during a lifestyle intervention in prediabetes. Diabetologia. 2015;58(12):2877–2884. https://doi.org/10.1007/s00125-015-3760-z..
DOI: 10.1007/s00125-015-3760-z

Wagner R., Heni M., Tabák A.G., Machann J., Schick F., Randrianarisoa E. et al. Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nat Med. 2021;27(1):49–57. https://doi.org/10.1038/s41591-020-1116-9..
DOI: 10.1038/s41591-020-1116-9

Hur K.Y., Lee M.S. New mechanisms of metformin action: Focusing on mitochondria and the gut. J Diabetes Investig. 2015;6(6):600–609. https://doi.org/10.1111/jdi.12328..
DOI: 10.1111/jdi.12328

Van Son J., Koekkoek L.L., La Fleur S.E., Serlie M.J., Nieuwdorp M. The Role of the Gut Microbiota in the Gut-Brain Axis in Obesity: Mechanisms and Future Implications. Int J Mol Sci. 2021;22(6):2993. https://doi.org/10.3390/ijms22062993..
DOI: 10.3390/ijms22062993

Rastelli M., Knauf C., Cani P.D. Gut Microbes and Health: A Focus on the Mechanisms Linking Microbes, Obesity, and Related Disorders. Obesity (Silver Spring). 2018;26(5):792–800. https://doi.org/10.1002/oby.22175..
DOI: 10.1002/oby.22175

Belkaid Y., Harrison O.J. Homeostatic Immunity and the Microbiota. Immunity. 2017;46(4):562–576. https://doi.org/10.1016/j.immuni.2017.04.008..
DOI: 10.1016/j.immuni.2017.04.008

Hersoug L.G., Møller P., Loft S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Obes Rev. 2016;17(4):297–312. https://doi.org/10.1111/obr.12370..
DOI: 10.1111/obr.12370

Postler T.S., Ghosh S. Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metab. 2017;26(1):110–130. https://doi.org/10.1016/j.cmet.2017.05.008..
DOI: 10.1016/j.cmet.2017.05.008

Møller C.L., Vistisen D., Færch K., Johansen N.B., Witte D.R., Jonsson A. et al. Glucose-Dependent Insulinotropic Polypeptide Is Associated With Lower Low-Density Lipoprotein But Unhealthy Fat Distribution, Independent of Insulin: The ADDITION-PRO Study. J Clin Endocrinol Metab. 2016;101(2):485–493. https://doi.org/10.1210/jc.2015-3133..
DOI: 10.1210/jc.2015-3133

Meijles D.N., Zoumpoulidou G., Markou T., Rostron K.A., Patel R., Lay K. et al. The cardiomyocyte “redox rheostat”: Redox signalling via the AMPKmTOR axis and regulation of gene and protein expression balancing vival and death. J Mol Cell Cardiol. 2019;129:118–129. https://doi.org/10.1016/j.yjmcc.2019.02.006..
DOI: 10.1016/j.yjmcc.2019.02.006

Krzysiak T.C., Thomas L., Choi Y.J., Auclair S., Qian Y., Luan S. et al. An Insulin-Responsive Sensor in the SIRT1 Disordered Region Binds DBC1 and PACS-2 to Control Enzyme Activity. Mol Cell. 2018;72(6):985– 998.e7. https://doi.org/10.1016/j.molcel.2018.10.007..
DOI: 10.1016/j.molcel.2018.10.007

Paula-Gomes S., Gonçalves D.A., Baviera A.M., Zanon N.M., Navegantes L.C., Kettelhut I.C. Insulin suppresses atrophyand autophagy-related genes in heart tissue and cardiomyocytes through AKT/FOXO signaling. Horm Metab Res. 2013;45(12):849–855. https://doi.org/10.1055/s-0033-1347209..
DOI: 10.1055/s-0033-1347209

Baek J.H., Jin S.M., Bae J.C., Jee J.H., Yu T.Y., Kim S.K. et al. Serum Calcium and the Risk of Incident Metabolic Syndrome: A 4.3-Year Retrospective Longitudinal Study. Diabetes Metab J. 2017;41(1):60–68. https://doi.org/10.4093/dmj.2017.41.1.60..
DOI: 10.4093/dmj.2017.41.1.60

Stepensky D., Friedman M., Raz I., Hoffman A. Pharmacokineticpharmacodynamic analysis of the glucose-lowering effect of metformin in diabetic rats reveals first-pass pharmacodynamic effect. Drug Metab Dispos. 2002;30(8):861–868. https://doi.org/10.1124/dmd.30.8.861..
DOI: 10.1124/dmd.30.8.861

Bailey C.J., Mynett K.J., Page T. Importance of the intestine as a site of metformin-stimulated glucose utilization. Br J Pharmacol. 1994;112(2):671–675. https://doi.org/10.1111/j.1476-5381.1994.tb13128.x..
DOI: 10.1111/j.1476-5381.1994.tb13128.x

Bailey C.J., Wilcock C., Scarpello J.H. Metformin and the intestine. Diabetologia. 2008;51(8):1552–1553. https://doi.org/10.1007/s00125-008-1053-5..
DOI: 10.1007/s00125-008-1053-5

Tucker G.T., Casey C., Phillips P.J., Connor H., Ward J.D., Woods H.F. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol. 1981;12(2):235–246. https://doi.org/10.1111/j.1365-2125.1981.tb01206.x..
DOI: 10.1111/j.1365-2125.1981.tb01206.x

Gorboulev V., Schürmann A., Vallon V., Kipp H., Jaschke A., Klessen D. et al. Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes. 2012;61(1):187–196. https://doi.org/10.2337/db11-1029..
DOI: 10.2337/db11-1029

Kuhre R.E., Frost C.R., Svendsen B., Holst J.J. Molecular mechanisms of glucose-stimulated GLP-1 secretion from perfused rat small intestine. Diabetes. 2015;64(2):370–382. https://doi.org/10.2337/db14-0807..
DOI: 10.2337/db14-0807

Parker H.E., Adriaenssens A., Rogers G., Richards P., Koepsell H., Reimann F., Gribble F.M. Predominant role of active versus facilitative glucose transport for glucagon-like peptide-1 secretion. Diabetologia. 2012;55(9): 2445–2455. https://doi.org/10.1007/s00125-012-2585-2..
DOI: 10.1007/s00125-012-2585-2

Bauer P.V., Duca F.A., Waise T.M.Z., Rasmussen B.A., Abraham M.A., Dranse H.J. et al. Metformin Alters Upper Small Intestinal Microbiota that Impact a Glucose-SGLT1-Sensing Glucoregulatory Pathway. Cell Metab. 2018;27(1):101–117.e5. https://doi.org/10.1016/j.cmet.2017.09.019..
DOI: 10.1016/j.cmet.2017.09.019

Sun L., Xie C., Wang G., Wu Y., Wu Q., Wang X. et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med. 2018;24(12):1919–1929. https://doi.org/10.1038/s41591-018-0222-4..
DOI: 10.1038/s41591-018-0222-4

Lee C.B., Chae S.U., Jo S.J., Jerng U.M., Bae S.K. The Relationship between the Gut Microbiome and Metformin as a Key for Treating Type 2 Diabetes Mellitus. Int J Mol Sci. 2021;22(7):3566. https://doi.org/10.3390/ijms22073566..
DOI: 10.3390/ijms22073566

Den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D.J., Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–2340. https://doi.org/10.1194/jlr.R036012..
DOI: 10.1194/jlr.R036012

Lee H., Lee Y., Kim J., An J., Lee S., Kong H. et al. Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice. Gut Microbes. 2018;9(2):155–165. https://doi.org/10.1080/19490976.2017.1405209..
DOI: 10.1080/19490976.2017.1405209

Rios-Covian D., Arboleya S., Hernandez-Barranco A.M., Alvarez-Buylla J.R., Ruas-Madiedo P., Gueimonde M., de los Reyes-Gavilan C.G. Interactions between Bifidobacterium and Bacteroides species in cofermentations are affected by carbon sources, including exopolysaccharides produced by bifidobacteria. Appl Environ Microbiol. 2013;79(23):7518–7524. https://doi.org/10.1128/AEM.02545-13..
DOI: 10.1128/AEM.02545-13

Ryan P.M., Patterson E., Carafa I., Mandal R., Wishart D.S., Dinan T.G. et al. Metformin and Dipeptidyl Peptidase-4 Inhibitor Differentially Modulate the Intestinal Microbiota and Plasma Metabolome of Metabolically Dysfunctional Mice. Can J Diabetes. 2020;44(2):146–155.e2. https://doi.org/10.1016/j.jcjd.2019.05.008..
DOI: 10.1016/j.jcjd.2019.05.008

Zhang W., Xu J.H., Yu T., Chen Q.K. Effects of berberine and metformin on intestinal inflammation and gut microbiome composition in db/db mice. Biomed Pharmacother. 2019;118:109131. https://doi.org/10.1016/j.biopha.2019.109131..
DOI: 10.1016/j.biopha.2019.109131

Li X., Wang E., Yin B., Fang D., Chen P., Wang G. et al. Effects of Lactobacillus casei CCFM419 on insulin resistance and gut microbiota in type 2 diabetic mice. Benef Microbes. 2017;8(3):421–432. https://doi.org/10.3920/BM2016.0167..
DOI: 10.3920/BM2016.0167

Zheng J., Li H., Zhang X., Jiang M., Luo C., Lu Z. et al. Prebiotic Mannan-Oligosaccharides Augment the Hypoglycemic Effects of Metformin in Correlation with Modulating Gut Microbiota. J Agric Food Chem. 2018;66(23):5821–5831. https://doi.org/10.1021/acs.jafc.8b00829..
DOI: 10.1021/acs.jafc.8b00829

Shin N.R., Lee J.C., Lee H.Y., Kim M.S., Whon T.W., Lee M.S., Bae J.W. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63(5):727–735. https://doi.org/10.1136/gutjnl-2012-303839..
DOI: 10.1136/gutjnl-2012-303839

Wu H., Esteve E., Tremaroli V., Khan M.T., Caesar R., Mannerås-Holm L. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23(7):850–858. https://doi.org/10.1038/nm.4345..
DOI: 10.1038/nm.4345

Lee H., Ko G. Effect of metformin on metabolic improvement and gut microbiota. Appl Environ Microbiol. 2014;80(19):5935–5943. https://doi.org/10.1128/AEM.01357-14..
DOI: 10.1128/AEM.01357-14

Gao Z., Yin J., Zhang J., Ward R.E., Martin R.J., Lefevre M. et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509–1517. https://doi.org/10.2337/db08-1637..
DOI: 10.2337/db08-1637

Lin H.V., Frassetto A., Kowalik E.J. Jr, Nawrocki A.R., Lu M.M., Kosinski J.R. et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE. 2012;7(4):e35240. https://doi.org/10.1371/journal.pone.0035240..
DOI: 10.1371/journal.pone.0035240

Lynn F.C., Thompson S.A., Pospisilik J.A., Ehses J.A., Hinke S.A., Pamir N. et al. A novel pathway for regulation of glucose-dependent insulinotropic polypeptide (GIP) receptor expression in beta cells. FASEB J. 2003;17(1):91–93. https://doi.org/10.1096/fj.02-0243fje..
DOI: 10.1096/fj.02-0243fje

Ahmadi S., Razazan A., Nagpal R., Jain S., Wang B., Mishra S.P. et al. Metformin Reduces Aging-Related Leaky Gut and Improves Cognitive Function by Beneficially Modulating Gut Microbiome/Goblet Cell/Mucin Axis. J Gerontol A Biol Sci Med Sci. 2020;75(7):e9–e21. https://doi.org/10.1093/gerona/glaa056..
DOI: 10.1093/gerona/glaa056

Liu Y., Wang C., Li J., Li T., Zhang Y., Liang Y., Mei Y. Phellinus linteus polysaccharide extract improves insulin resistance by regulating gut microbiota composition. FASEB J. 2020;34(1):1065–1078. https://doi.org/10.1096/fj.201901943RR..
DOI: 10.1096/fj.201901943RR

Pryor R., Norvaisas P., Marinos G., Best L., Thingholm L.B., Quintaneiro L.M. et al. Host-Microbe-Drug-Nutrient Screen Identifies Bacterial Effectors of Metformin Therapy. Cell. 2019;178(6):1299–1312.e29. https://doi.org/10.1016/j.cell.2019.08.003..
DOI: 10.1016/j.cell.2019.08.003

Cui H.X., Zhang L.S., Luo Y., Yuan K., Huang Z.Y., Guo Y. A Purified Anthraquinone-Glycoside Preparation From Rhubarb Ameliorates Type 2 Diabetes Mellitus by Modulating the Gut Microbiota and Reducing Inflammation. Front Microbiol. 2019;10:1423. https://doi.org/10.3389/fmicb.2019.01423..
DOI: 10.3389/fmicb.2019.01423

Vrieze A., Van Nood E., Holleman F., Salojärvi J., Kootte R.S., Bartelsman J.F. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–916.e7. https://doi.org/10.1053/j.gastro.2012.06.031..
DOI: 10.1053/j.gastro.2012.06.031

Delzenne N.M., Cani P.D., Everard A., Neyrinck A.M., Bindels L.B. Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia. 2015;58(10):2206–2217. https://doi.org/10.1007/s00125-015-3712-7..
DOI: 10.1007/s00125-015-3712-7

Balakumar M., Prabhu D., Sathishkumar C., Prabu P., Rokana N., Kumar R. et al. Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice. Eur J Nutr. 2018;57(1):279–295. https://doi.org/10.1007/s00394-016-1317-7..
DOI: 10.1007/s00394-016-1317-7

Carvalho B.M., Guadagnini D., Tsukumo D.M.L., Schenka A.A., Latuf-Filho P., Vassallo J. et al. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia. 2012;55(10):2823–2834. https://doi.org/10.1007/s00125-012-2648-4..
DOI: 10.1007/s00125-012-2648-4

Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E. et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–484. https://doi.org/10.1038/nature07540..
DOI: 10.1038/nature07540

Ma W., Chen J., Meng Y., Yang J., Cui Q., Zhou Y. Metformin Alters Gut Microbiota of Healthy Mice: Implication for Its Potential Role in Gut Microbiota Homeostasis. Front Microbiol. 2018;9:1336. https://doi.org/10.3389/fmicb.2018.01336..
DOI: 10.3389/fmicb.2018.01336

Rosario D., Benfeitas R., Bidkhori G., Zhang C., Uhlen M., Shoaie S., Mardinoglu A. Understanding the Representative Gut Microbiota Dysbiosis in Metformin-Treated Type 2 Diabetes Patients Using Genome-Scale Metabolic Modeling. Front Physiol. 2018;9:775. https://doi.org/10.3389/fphys.2018.00775..
DOI: 10.3389/fphys.2018.00775

Depommier C., Everard A., Druart C., Plovier H., Van Hul M., Vieira-Silva S. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25(7):1096–1103. https://doi.org/10.1038/s41591-019-0495-2..
DOI: 10.1038/s41591-019-0495-2

Napolitano A., Miller S., Nicholls A.W., Baker D., Van Horn S., Thomas E. et al. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS ONE. 2014;9(7):e100778. https://doi.org/10.1371/journal.pone.0100778..
DOI: 10.1371/journal.pone.0100778

De la Cuesta-Zuluaga J., Mueller N.T., Corrales-Agudelo V., VelásquezMejía E.P., Carmona J.A., Abad J.M., Escobar J.S. Metformin Is Associated With Higher Relative Abundance of Mucin-Degrading Akkermansia muciniphila and Several Short-Chain Fatty Acid-Producing Microbiota in the Gut. Diabetes Care. 2017;40(1):54–62. https://doi.org/10.2337/dc16-1324..
DOI: 10.2337/dc16-1324

Elbere I., Kalnina I., Silamikelis I., Konrade I., Zaharenko L., Sekace K. et al. Association of metformin administration with gut microbiome dysbiosis in healthy volunteers. PLoS ONE. 2018;13(9):e0204317. https://doi.org/10.1371/journal.pone.0204317..
DOI: 10.1371/journal.pone.0204317

Li T., Chiang J.Y. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev. 2014;66(4):948–983. https://doi.org/10.1124/pr.113.008201..
DOI: 10.1124/pr.113.008201

Sansome D.J., Xie C., Veedfald S., Horowitz M., Rayner C.K., Wu T. Mechanism of glucose-lowering by metformin in type 2 diabetes: Role of bile acids. Diabetes Obes Metab. 2020;22(2):141–148. https://doi.org/10.1111/dom.13869..
DOI: 10.1111/dom.13869

Scarpello J.H., Hodgson E., Howlett H.C. Effect of metformin on bile salt circulation and intestinal motility in type 2 diabetes mellitus. Diabet Med. 1998;15(8):651–656. https://doi.org/10.1002/(SICI)1096-9136(199808)15:8<651::AID-DIA628>3.0.CO;2-A..
DOI: 10.1002/(SICI)1096-9136(199808)15:8<651::AID-DIA628>3.0.CO;2-A

Scarpello J.H., Hodgson E., Howlett H.C. Effect of metformin on bile salt circulation and intestinal motility in type 2 diabetes mellitus. Diabet Med. 1998;15(8):651–656. https://doi.org/10.1002/(SICI)1096-9136(199808)15:8<651::AID-DIA628>3.0.CO;2-A..
DOI: 10.1002/(SICI)1096-9136(199808) 15:8<651::AID-DIA628>3.0.CO;2-A

Meng X.M., Ma X.X., Tian Y.L., Jiang Q., Wang L.L., Shi R. et al. Metformin improves the glucose and lipid metabolism via influencing the level of serum total bile acids in rats with streptozotocin-induced type 2 diabetes mellitus. Eur Rev Med Pharmacol Sci. 2017;21(9):2232–2237. Available at: https://www.europeanreview.org/article/12704.https://www.europeanreview.org/article/12704

Meng X.M., Ma X.X., Tian Y.L., Jiang Q., Wang L.L., Shi R. et al. Metformin improves the glucose and lipid metabolism via influencing the level of serum total bile acids in rats with streptozotocin-induced type 2 diabetes mellitus. Eur Rev Med Pharmacol Sci. 2017;21(9):2232–2237. Available at: https://www.europeanreview.org/article/12704.https://www.europeanreview.org/article/12704

Brønden A., Albér A., Rohde U., Rehfeld J.F., Holst J.J., Vilsbøll T., Knop F.K. Single-Dose Metformin Enhances Bile Acid-Induced Glucagon-Like Peptide-1 Secretion in Patients With Type 2 Diabetes. J Clin Endocrinol Metab. 2017;102(11):4153–4162. https://doi.org/10.1210/jc.2017-01091..
DOI: 10.1210/jc.2017-01091

Forslund K., Hildebrand F., Nielsen T., Falony G., Le Chatelier E., Sunagawa S. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–266. https://doi.org/10.1038/nature15766..
DOI: 10.1038/nature15766

Breit S.N., Brown D.A., Tsai V.W. The GDF15-GFRAL Pathway in Health and Metabolic Disease: Friend or Foe? Annu Rev Physiol. 2021;83:127–151. https://doi.org/10.1146/annurev-physiol-022020-045449..
DOI: 10.1146/annurev-physiol-022020-045449

Gerstein H.C., Pare G., Hess S., Ford R.J., Sjaarda J., Raman K. et al. Growth Differentiation Factor 15 as a Novel Biomarker for Metformin. Diabetes Care. 2017;40(2):280–283. https://doi.org/10.2337/dc16-1682..
DOI: 10.2337/dc16-1682

Natali A., Nesti L., Venturi E., Shore A.C., Khan F., Gooding K. et al. Metformin is the key factor in elevated plasma growth differentiation factor-15 levels in type 2 diabetes: A nested, case-control study. Diabetes Obes Metab. 2019;21(2):412–416. https://doi.org/10.1111/dom.13519..
DOI: 10.1111/dom.13519

Preiss D., Lloyd S.M., Ford I., McMurray J.J., Holman R.R., Welsh P. et al. Metformin for non-diabetic patients with coronary heart disease (the CAMERA study): a randomised controlled trial. Lancet Diabetes Endocrinol. 2014;2(2):116–124. https://doi.org/10.1016/S2213-8587(13)70152-9..
DOI: 10.1016/S2213-8587(13)70152-9

Coll A.P., Chen M., Taskar P., Rimmington D., Patel S., Tadross J.A. et al. GDF15 mediates the effects of metformin on body weight and energy balance. Nature. 2020;578(7795):444–448. https://doi.org/10.1038/s41586-019-1911-y..
DOI: 10.1038/s41586-019-1911-y

Blonde L., Dailey G.E., Jabbour S.A., Reasner C.A., Mills D.J. Gastrointestinal tolerability of extended-release metformin tablets compared to immediate-release metformin tablets: results of a retrospective cohort study. Curr Med Res Opin. 2004;20(4):565–572. https://doi.org/10.1185/030079904125003278..
DOI: 10.1185/030079904125003278

Аметов А.С., Барыкина И.Н., Бондарь И.А., Вайсберг А.Р., Вербовая Н.И., Жукова Л.А. и др. Приверженность пациентов терапии метформином пролонгированного действия (Глюкофаж® Лонг) в условиях реальной клинической практики в Российской Федерации. Эндокринология: новости, мнения, обучение. 2017;(4):52–63. https://doi.org/10.24411/2304-9529-2017-00054..
DOI: 10.24411/2304-9529-2017-00054

Аметов А.С., Барыкина И.Н., Бондарь И.А., Вайсберг А.Р., Вербовая Н.И., Жукова Л.А. и др. Приверженность пациентов терапии метформином пролонгированного действия (Глюкофаж® Лонг) в условиях реальной клинической практики в Российской Федерации. Эндокринология: новости, мнения, обучение. 2017;(4):52–63. https://doi.org/10.24411/2304-9529-2017-00054..
DOI: 10.24411/23049529-2017-00054

Дополнительная информация
Язык текста: Русский
ISSN: 2079-701X
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4e432d4d4544534f5645542d41525449434c452d323032322d302d31302d302d39362d313033/