Chen Y.E., Fischbach M.A., Belkaid Y. Skin microbiota-host interactions. Nature. 2018;24;553(7689):427–436. https://doi.org/10.1038/nature25177..
DOI: 10.1038/nature25177
Totté J.E., van der Feltz W.T., Hennekam M., van Belkum A., van Zuuren E.J., Pasmans S.G. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: a systematic review and meta-analysis. Br J Dermatol. 2016;175(4):687–695. https://doi.org/10.1111/bjd.14566..
DOI: 10.1111/bjd.14566
Byrd A.L., Deming C., Cassidy S.K.B., Harrison O.J., Ng W.I., Conlan S., NISC Comparative Sequencing Program, Belkaid Y., Segre J.A., Kong H.H. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med. 2017;9(397):eaal4651. https://doi.org/10.1126/scitranslmed.aal465..
DOI: 10.1126/scitranslmed.aal465
Huang J.T., Abrams M., Tlougan B., Rademaker A., Paller A.S. Treatment of Staphylococcus aureus colonization in atopic dermatitis decreases disease severity. Pediatrics. 2009;123(5):e808-e814. https://doi.org/10.1542/peds.2008-2217..
DOI: 10.1542/peds.2008-2217
Kobayashi T., Glatz M., Horiuchi K., Kawasaki H., Haruhiko Akiyama D.H., Kong H.H. et al. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity. 2015;42(4):756–766. https://doi.org/10.1016/j.immuni.2015.03.014..
DOI: 10.1016/j.immuni.2015.03.014
Leyden J.J., Marples R.R., Kligman A.M. Staphylococcus aureus in the lesions of atopic dermatitis. Br J Dermatol. 1974;90(5):525–530. https://doi.org/10.1111/j.1365-2133.1974.tb06447.x..
DOI: 10.1111/j.1365-2133.1974.tb06447.x
Kwon S., Choi J.Y., Shin J.W., Huh C.H., Park C., Du M.H. et al. Changes in lesional and non-lesional skin microbiome during treatment of atopic dermatitis. Acta Derm Venereol. 2019;99:284–290. https://doi.org/10.2340/00015555-3089..
DOI: 10.2340/00015555-3089
Kwon S., Choi J.Y., Shin J.W., Huh C.H., Park C., Du M.H. et al. Changes in lesional and non-lesional skin microbiome during treatment of atopic dermatitis. Acta Derm Venereol. 2019;99:284–290. https://doi.org/10.2340/00015555-3089..
DOI: 10.2340/ 00015555-3089
Kong H.H., Oh J., Deming C., Conlan S., Grice E.A., Beatson M.A. et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22(5):850–859. https://doi.org/10.1101/gr.131029.111..
DOI: 10.1101/gr.131029.111
Otto M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu Rev Microbiol. 2010;64:143–162. https://doi.org/10.1146/annurev.micro.112408.134309..
DOI: 10.1146/annurev.micro.112408.134309
Sonesson A., Przybyszewska K., Eriksson S., Mörgelin M., Kjellström S., Davies J. et al. Identification of bacterial biofilm and the Staphylococcus aureus derived protease, staphopain, on the skin surface of patients with atopic dermatitis. Sci Rep. 2017;7(1):8689. https://doi.org/10.1038/s41598-017-08046-2..
DOI: 10.1038/s41598-017-08046-2
Chen C., Krishnan V., Macon K., Manne K., Narayana S.V., Schneewind O. Secreted proteases control autolysin-mediated biofilm growth of Staphylococcus aureus. J Biol Chem. 2013;288(41):29440–29452. https://doi.org/10.1074/jbc.M113.502039..
DOI: 10.1074/jbc.M113.502039
Thurlow L.R., Joshi G.S., Clark J.R., Spontak J.S., Neely C.J., Maile R. et al. Functional modularity of the arginine catabolic mobile element contributes to the success of USA300 methicillin-resistant Staphylococcus aureus. Cell Host Microbe. 2013;13(1):100–107. https://doi.org/10.1016/j.chom.2012.11.012..
DOI: 10.1016/j.chom.2012.11.012
Domingo-Calap P., Delgado-Martínez J. Bacteriophages: Protagonists of a Post-Antibiotic Era. Antibiotics (Basel). 2018;7(3):66. https://doi.org/10.3390/antibiotics7030066..
DOI: 10.3390/antibiotics7030066
Ильина Т.С., Толордава Э.Р., Романова Ю.М. Взгляд на фаготерапию через 100 лет после открытия бактериофагов. Молекулярная генетика, микробиология и вирусология. 2019;37(3):103–112. https://doi.org/10.17116/molgen201937031103b..
DOI: 10.17116/molgen201937031103b
Ильина Т.С., Толордава Э.Р., Романова Ю.М. Взгляд на фаготерапию через 100 лет после открытия бактериофагов. Молекулярная генетика, микробиология и вирусология. 2019;37(3):103–112. https://doi.org/10.17116/molgen201937031103b..
DOI: 10.17116/molgen201937031103
Monteiro R., Pires D.P., Costa A.R., Azeredo J. Phage Therapy: Going Temperate? Trends Microbiol. 2019;27(4):368-378. https://doi.org/10.1016/j.tim.2018.10.008.
DOI: 10.1016/j.tim.2018.10.008
Pirnay J.P., Blasdel B.G., Bretaudeau L., Buckling A., Chanishvili N., Clark J.R. et al. Quality and safety requirements for sustainable phage therapy products. Pharm Res. 2015;32(7):2173–2179. https://doi.org/10.1007/s11095-014-1617-7..
DOI: 10.1007/s11095-014-1617-7
Wittebole X., De Roock S., Opal S.M. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence. 2014;5(1):226–235. https://doi.org/10.4161/viru.25991..
DOI: 10.4161/viru.25991
Chanishvili N. Phage therapy-history from Twort and d’Herelle through Soviet experience to current approaches. Adv Virus Res. 2012;83:3–40. https://doi.org/10.1016/B978-0-12-394438-2.00001-3..
DOI: 10.1016/B978-0-12-394438-2.00001-3
Murugaiyan J., Kumar P.A., Rao G.S., Iskandar K., Hawser S., Hays J.P. et al. Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. Antibiotics (Basel). 2022;11(2):200. https://doi.org/10.3390/antibiotics11020200..
DOI: 10.3390/antibiotics11020200
Murugaiyan J., Kumar P.A., Rao G.S., Iskandar K., Hawser S., Hays J.P. et al. Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. Antibiotics (Basel). 2022;11(2):200. https://doi.org/10.3390/antibiotics11020200..
DOI: 10.1016/j.cell.2017.10.045
Ofir G., Sorek R. Contemporary Phage Biology: From Classic Models to New Insights. Cell. 2018;172(6):1260–1270. https://doi.org/10.1016/j.cell.2017.10.045..
DOI: 10.1016/j.cell.2017.10.045
Ofir G., Sorek R. Contemporary Phage Biology: From Classic Models to New Insights. Cell. 2018;172(6):1260–1270. https://doi.org/10.1016/j.cell.2017.10.045..
DOI: 10.1016/j.chom.2019.01.014
Kortright K.E., Chan B.K., Koff J.L., Turner P.E. Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host Microbe. 2019;25(2):219–232. https://doi.org/10.1016/j.chom.2019.01.014..
DOI: 10.1016/j.chom.2019.01.014
Kortright K.E., Chan B.K., Koff J.L., Turner P.E. Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host Microbe. 2019;25(2):219–232. https://doi.org/10.1016/j.chom.2019.01.014..
DOI: 10.3109/03009734.2014.902878
Nilsson A.S. Phage therapy – constraints and possibilities. Ups J Med Sci. 2014;119(2):192–198. https://doi.org/10.3109/03009734.2014.902878..
DOI: 10.3109/03009734.2014.902878
Parasion S., Kwiatek M., Gryko R., Mizak L., Malm A. Bacteriophages as an alternative strategy for fighting biofilm development. Polish J Microbiol. 2014;63(2):137–145..
DOI: 10.1128/spectrum.00411-22
Kebriaei R., Lev K.L., Shah R.M., Stamper K.C., Holger D.J., Morrisette T. et al. Eradication of Biofilm-Mediated Methicillin-Resistant Staphylococcus aureus Infections In Vitro: Bacteriophage-Antibiotic Combination. Microbiol Spectr. 2022;10(2):e0041122. https://doi.org/10.1128/spectrum.00411-22..
DOI: 10.1128/spectrum.00411-22
Kebriaei R., Lev K.L., Shah R.M., Stamper K.C., Holger D.J., Morrisette T. et al. Eradication of Biofilm-Mediated Methicillin-Resistant Staphylococcus aureus Infections In Vitro: Bacteriophage-Antibiotic Combination. Microbiol Spectr. 2022;10(2):e0041122. https://doi.org/10.1128/spectrum.00411-22..
DOI: 10.1016/j.ijantimicag.2007.04.006
Hanlon G.W. Bacteriophages: an appraisal of their role in the treatment of bacterial infections. Int J Antimicrob Agents. 2007;30(2):118–128. https://doi.org/10.1016/j.ijantimicag.2007.04.006..
DOI: 10.1016/j.ijantimicag.2007.04.006
Hanlon G.W. Bacteriophages: an appraisal of their role in the treatment of bacterial infections. Int J Antimicrob Agents. 2007;30(2):118–128. https://doi.org/10.1016/j.ijantimicag.2007.04.006..
DOI: 10.1016/j.copbio.2020.11.003
Lenneman B.R., Fernbach J., Loessner M.J., Lu T.K., Kilcher S. Enhancing phage therapy through synthetic biology and genome engineering. Curr Opin Biotechnol. 2021;68:151–159. https://doi.org/10.1016/j.copbio.2020.11.003..
DOI: 10.1016/j.copbio.2020.11.003
Lenneman B.R., Fernbach J., Loessner M.J., Lu T.K., Kilcher S. Enhancing phage therapy through synthetic biology and genome engineering. Curr Opin Biotechnol. 2021;68:151–159. https://doi.org/10.1016/j.copbio.2020.11.003..
DOI: 10.3390/v10070351
Oechslin F. Resistance Development to Bacteriophages Occurring during Bacteriophage Therapy. Viruses. 2018;10(7):351. https://doi.org/10.3390/v10070351..
DOI: 10.3390/v10070351
Oechslin F. Resistance Development to Bacteriophages Occurring during Bacteriophage Therapy. Viruses. 2018;10(7):351. https://doi.org/10.3390/v10070351..
DOI: 10.1002/rmv.2055
Jariah R.O.A., Hakim M.S. Interaction of phages, bacteria, and the human immune system: Evolutionary changes in phage therapy. Rev Med Virol. 2019;29(5):e2055. https://doi.org/10.1002/rmv.2055..
DOI: 10.1002/rmv.2055
Jariah R.O.A., Hakim M.S. Interaction of phages, bacteria, and the human immune system: Evolutionary changes in phage therapy. Rev Med Virol. 2019;29(5):e2055. https://doi.org/10.1002/rmv.2055..
DOI: 10.1016/j.jtbi.2017.06.037
Leung C.Y., Weitz J.S. Modeling the synergistic elimination of bacteria by phage and the innate immune system. J Theor Biol. 2017;429:241–252. https://doi.org/10.1016/j.jtbi.2017.06.037..
DOI: 10.1016/j.jtbi.2017.06.037
Leung C.Y., Weitz J.S. Modeling the synergistic elimination of bacteria by phage and the innate immune system. J Theor Biol. 2017;429:241–252. https://doi.org/10.1016/j.jtbi.2017.06.037..
DOI: 10.17116/klinderma2015179-84
Круглова Л.С. Поливалентные бактериофаги: перспективы применения в дерматологии. Клиническая дерматология и венерология. 2015;14(1):79–84. https://doi.org/10.17116/klinderma2015179-84..
DOI: 10.17116/klinderma2015179-84
Круглова Л.С. Поливалентные бактериофаги: перспективы применения в дерматологии. Клиническая дерматология и венерология. 2015;14(1):79–84. https://doi.org/10.17116/klinderma2015179-84..
DOI: 10.1016/j.jaad.2021.11.066
George S., Muhaj F.F., Nguyen C.D., Tyring S.K. Part I Antimicrobial resistance: Bacterial pathogens of dermatologic significance and implications of rising resistance. J Am Acad Dermatol. 2022;86(6):1189–1204. https://doi.org/10.1016/j.jaad.2021.11.066..
DOI: 10.1016/j.jaad.2021.11.066
George S., Muhaj F.F., Nguyen C.D., Tyring S.K. Part I Antimicrobial resistance: Bacterial pathogens of dermatologic significance and implications of rising resistance. J Am Acad Dermatol. 2022;86(6):1189–1204. https://doi.org/10.1016/j.jaad.2021.11.066..
DOI: 10.1128/AAC.00024-19
Raz A., Serrano A., Hernandez A., Euler C.W., Fischetti A. Isolation of phage lysins that effectively kill Pseudomonas aeruginosa in mouse models of lung and skin infection. Antimicrob Agents Chemother. 2019;63(7):e00024-19. https://doi.org/10.1128/AAC.00024-19..
DOI: 10.1128/AAC.00024-19
Raz A., Serrano A., Hernandez A., Euler C.W., Fischetti A. Isolation of phage lysins that effectively kill Pseudomonas aeruginosa in mouse models of lung and skin infection. Antimicrob Agents Chemother. 2019;63(7):e00024-19. https://doi.org/10.1128/AAC.00024-19..
DOI: 10.1371/journal.pntd.0002183
Trigo G., Martins T.G., Fraga A.G., Longatto-Filho A., Castro A.G., Azeredo J., Pedrosa J. Phage therapy is effective against infection by Mycobacterium ulcerans in a murine footpad model. PLoS Negl Trop Dis. 2013;7(4):e2183. https://doi.org/10.1371/journal.pntd.0002183..
DOI: 10.1371/journal.pntd.0002183
Trigo G., Martins T.G., Fraga A.G., Longatto-Filho A., Castro A.G., Azeredo J., Pedrosa J. Phage therapy is effective against infection by Mycobacterium ulcerans in a murine footpad model. PLoS Negl Trop Dis. 2013;7(4):e2183. https://doi.org/10.1371/journal.pntd.0002183..
DOI: 10.1371/journal.pone.0151184
Brown T.L., Petrovski S., Dyson Z.A., Seviour R., Tucci J. The Formulation of Bacteriophage in a Semi Solid Preparation for Control of Propionibacterium acnes Growth. PLoS ONE. 2016;11(3):e0151184. https://doi.org/10.1371/journal.pone.0151184..
DOI: 10.1371/journal.pone.0151184
Brown T.L., Petrovski S., Dyson Z.A., Seviour R., Tucci J. The Formulation of Bacteriophage in a Semi Solid Preparation for Control of Propionibacterium acnes Growth. PLoS ONE. 2016;11(3):e0151184. https://doi.org/10.1371/journal.pone.0151184..
DOI: 10.1007/s00284-021-02395-y
Shimamori Y., Pramono A.K., Kitao T., Suzuki T., Aizawa S.I., Kubori T. et al. Isolation and Characterization of a Novel Phage SaGU1 that Infects Staphylococcus aureus Clinical Isolates from Patients with Atopic Dermatitis. Curr Microbiol. 2021;78(4):1267–1276. https://doi.org/10.1007/s00284-021-02395-y..
DOI: 10.1007/s00284-021-02395-y
Shimamori Y., Pramono A.K., Kitao T., Suzuki T., Aizawa S.I., Kubori T. et al. Isolation and Characterization of a Novel Phage SaGU1 that Infects Staphylococcus aureus Clinical Isolates from Patients with Atopic Dermatitis. Curr Microbiol. 2021;78(4):1267–1276. https://doi.org/10.1007/s00284-021-02395-y..
DOI: 10.3390/v13010007
Shimamori Y., Mitsunaka S., Yamashita H., Suzuki T., Kitao T., Kubori T. et al. Staphylococcal Phage in Combination with Staphylococcus Epidermidis as a Potential Treatment for Staphylococcus Aureus-Associated Atopic Dermatitis and Suppressor of Phage-Resistant Mutants. Viruses. 2020;13(1):7. https://doi.org/10.3390/v13010007..
DOI: 10.3390/v13010007
Shimamori Y., Mitsunaka S., Yamashita H., Suzuki T., Kitao T., Kubori T. et al. Staphylococcal Phage in Combination with Staphylococcus Epidermidis as a Potential Treatment for Staphylococcus Aureus-Associated Atopic Dermatitis and Suppressor of Phage-Resistant Mutants. Viruses. 2020;13(1):7. https://doi.org/10.3390/v13010007..
DOI: 10.1186/s12985-020-01485-w
Zurabov F., Zhilenkov E. Characterization of four virulent Klebsiella pneumoniae bacteriophages, and evaluation of their potential use in complex phage preparation. Virol J. 2021;18(1):9. https://doi.org/10.1186/s12985-020-01485-w.
DOI: 10.1186/s12985-020-01485-w
Zurabov F., Zhilenkov E. Characterization of four virulent Klebsiella pneumoniae bacteriophages, and evaluation of their potential use in complex phage preparation. Virol J. 2021;18(1):9. https://doi.org/10.1186/s12985-020-01485-w.
DOI: 10.18565/aig.2019.6.126-131
Припутневич Т.В., Любасовская Л.А., Игнатьева А.А., Карапетян Т.Э., Чубаров В.В., Зурабов А.Ю. и др. Оценка эффективности и безопасности гелей для местного применения «Фагогин» и «Фагодерм», содержащих бактериофаги для профилактики раневых осложнений у родильниц. Акушерство и гинекология. 2019;(6):126–131. https://doi.org/10.18565/aig.2019.6.126-131..
DOI: 10.18565/aig.2019.6.126-131https://www.elibrary.ru/item.asp?id=18079355
Зурабов А.Ю., Жиленков Е.Л., Попов Д.В., Попова В.М., Панова О.С., Гурочкина Л.П. Фаговый препарат «Фагодерм» и перспективы его использования в дерматологии и косметологии. Вестник эстетической медицины. 2012;11(3):56–63. Режим доступа: https://www.elibrary.ru/item.asp?id=18079355.https://www.elibrary.ru/item.asp?id=18079355