Neuschwander-Tetri B.A. Non-alcoholic fatty liver disease. BMC Med. 2017;15(1):45. https://doi.org/10.1186/s12916-017-0806-8..
DOI: 10.1186/s12916-017-0806-8
Law K., Brunt E.M. Nonalcoholic fatty liver disease. Clin Liver Dis. 2010;14(4):591–604. https://doi.org/10.1016/j.cld.2010.07.006..
DOI: 10.1016/j.cld.2010.07.006
Lomonaco R., Sunny N.E., Bril F., Cusi K. Nonalcoholic fatty liver disease: current issues and novel treatment approaches. Drugs. 2013;73(1):1–14. https://doi.org/10.1007/s40265-012-0004-0..
DOI: 10.1007/s40265-012-0004-0
Zhang E., Mohammed Al-Amily I., Mohammed S., Luan C., Asplund O., Ahmed M. et al. Preserving Insulin Secretion in Diabetes by Inhibiting VDAC1 Overexpression and Surface Translocation in β Cells. Cell Metab. 2019;29(1):64–77.e6. https://doi.org/10.1016/j.cmet.2018.09.008..
DOI: 10.1016/j.cmet.2018.09.008
Pessayre D. Role of mitochondria in non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2007;22(1 Suppl.):S20–27. https://doi.org/10.1111/j.1440-1746.2006.04640.x..
DOI: 10.1111/j.1440-1746.2006.04640.x
Wallace D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39:359–407. https://doi.org/10.1146/annurev.genet.39.110304.095751..
DOI: 10.1146/annurev.genet.39.110304.095751
Reina S., De Pinto V. Anti-Cancer Compounds Targeted to VDAC: Potential and Perspectives. Curr Med Chem. 2017;24(40):4447–4469. https://doi.org/10.2174/0929867324666170530074039..
DOI: 10.2174/0929867324666170530074039
Shoshan-Barmatz V., Krelin Y., Chen Q. VDAC1 as a Player in MitochondriaMediated Apoptosis and Target for Modulating Apoptosis. Curr Med Chem. 2017;24(40):4435–4446. https://doi.org/10.2174/0929867324666170616105200..
DOI: 10.2174/0929867324666170616105200
Fang D., Maldonado E.N. VDAC Regulation: A Mitochondrial Target to Stop Cell Proliferation. Adv Cancer Res. 2018;138:41–69. https://doi.org/10.1016/bs.acr.2018.02.002..
DOI: 10.1016/bs.acr.2018.02.002
Karachitos A., Jordan J., Kmita H. VDAC-Targeted Drugs Affecting Cytoprotection and Mitochondrial Physiology in Cerebrovascular and Cardiovascular Diseases. Curr Med Chem. 2017;24(40):4419–4434. https://doi.org/10.2174/0929867324666170530073238..
DOI: 10.2174/0929867324666170530073238
Shoshan-Barmatz V., Ben-Hail D., Admoni L., Krelin Y., Tripathi S.S. The mitochondrial voltage-dependent anion channel 1 in tumor cells. Biochim Biophys Acta. 2015;1848(10 Pt B):2547–2575. https://doi.org/10.1016/j.bbamem.2014.10.040..
DOI: 10.1016/j.bbamem.2014.10.040
Prezma T., Shteinfer A., Admoni L., Raviv Z., Sela I., Levi I., Shoshan-Barmatz V. VDAC1-based peptides: novel pro-apoptotic agents and potential therapeutics for B-cell chronic lymphocytic leukemia. Cell Death Dis. 2013;4(9):e809. https://doi.org/10.1038/cddis.2013.316..
DOI: 10.1038/cddis.2013.316
Anderson E.R., Shah Y.M. Iron homeostasis in the liver. Compr Physiol. 2013;3(1):315–330. https://doi.org/10.1002/cphy.c120016..
DOI: 10.1002/cphy.c120016
Daniels T.R., Bernabeu E., Rodríguez J.A., Patel S., Kozman M., Chiappetta D.A. et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta. 2012;1820(3):291–317. https://doi.org/10.1016/j.bbagen.2011.07.016..
DOI: 10.1016/j.bbagen.2011.07.016
Shteinfer-Kuzmine A., Amsalem Z., Arif T., Zooravlov A., Shoshan-Barmatz V. Selective induction of cancer cell death by VDAC1-based peptides and their potential use in cancer therapy. Mol Oncol. 2018;12(7):1077–1103. https://doi.org/10.1002/1878-0261.12313..
DOI: 10.1002/1878-0261.12313
Lee K., Kerner J., Hoppel C.L. Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex. J Biol Chem. 2011;286(29):25655–15662. https://doi.org/10.1074/jbc.M111.228692..
DOI: 10.1074/jbc.M111.228692
Tonazzi A., Giangregorio N., Console L., Indiveri C. Mitochondrial carnitine/ acylcarnitine translocase: insights in structure/ function relationships. Basis for drug therapy and side effects prediction. Mini Rev Med Chem. 2015;15(5):396–405. https://doi.org/10.2174/138955751505150408142032..
DOI: 10.2174/138955751505150408142032
Martel C., Allouche M., Esposti D.D., Fanelli E., Boursier C., Henry C. et al. Glycogen synthase kinase 3-mediated voltage-dependent anion channel phosphorylation controls outer mitochondrial membrane permeability during lipid accumulation. Hepatology. 2013;57(1):93–102. https://doi.org/10.1002/hep.25967..
DOI: 10.1002/hep.25967
Friedman S.L. Evolving challenges in hepatic fibrosis. Nat Rev Gastroenterol Hepatol. 2010;7(8):425–436. https://doi.org/10.1038/nrgastro.2010.97..
DOI: 10.1038/nrgastro.2010.97
Feldmann H.M., Golozoubova V., Cannon B., Nedergaard J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 2009;9(2):203–209. https://doi.org/10.1016/j.cmet.2008.12.014..
DOI: 10.1016/j.cmet.2008.12.014
Brocker C.N., Patel D.P., Velenosi T.J., Kim D., Yan T., Yue J. et al. Extrahepatic PPARα modulates fatty acid oxidation and attenuates fasting-induced hepatosteatosis in mice. J Lipid Res. 2018;59(11):2140–2152. https://doi.org/10.1194/jlr.M088419..
DOI: 10.1194/jlr.M088419
Pittala S., Krelin Y., Kuperman Y., Shoshan-Barmatz V. A Mitochondrial VDAC1-Based Peptide Greatly Suppresses Steatosis and NASH-Associated Pathologies in a Mouse Model. Mol Ther. 2019;27(10):1848–1862. https://doi.org/10.1016/j.ymthe.2019.06.017..
DOI: 10.1016/j.ymthe.2019.06.017
Pittala S., Krelin Y., Kuperman Y., Shoshan-Barmatz V. A Mitochondrial VDAC1-Based Peptide Greatly Suppresses Steatosis and NASH-Associated Pathologies in a Mouse Model. Mol Ther. 2019;27(10):1848–1862. https://doi.org/10.1016/j.ymthe.2019.06.017..
DOI: 10.1016/j.ymthe.2019.06.017
Ponugoti B., Kim D.H., Xiao Z., Smith Z., Miao J., Zang M. et al. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem. 2010;285(44):33959–33970. https://doi.org/10.1074/jbc.M110.122978..
DOI: 10.1074/jbc.M110.122978
Hou X., Xu S., Maitland-Toolan K.A., Sato K., Jiang B., Ido Y. et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem. 2008;283(29):20015–20026. https://doi.org/10.1074/jbc.M802187200..
DOI: 10.1074/jbc.M802187200
Sanli T., Steinberg G.R., Singh G., Tsakiridis T. AMP-activated protein kinase (AMPK) beyond metabolism: a novel genomic stress sensor participating in the DNA damage response pathway. Cancer Biol Ther. 2014;15(2):156–169. https://doi.org/10.4161/cbt.26726..
DOI: 10.4161/cbt.26726
Fullerton M.D., Galic S., Marcinko K., Sikkema S., Pulinilkunnil T., Chen Z.P. et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med. 2013;19(12):1649–1654. https://doi.org/10.1038/nm.3372..
DOI: 10.1038/nm.3372
Morris E.M., Meers G.M., Booth F.W., Fritsche K.L., Hardin C.D., Thyfault J.P., Ibdah J.A. PGC-1α overexpression results in increased hepatic fatty acid oxidation with reduced triacylglycerol accumulation and secretion. Am J Physiol Gastrointest Liver Physiol. 2012;303(8):G979–992. https://doi.org/10.1152/ajpgi.00169.2012..
DOI: 10.1152/ajpgi.00169.2012
Grasso D., Zampieri L.X., Capelôa T., Van de Velde J.A., Sonveaux P. Mitochondria in cancer. Cell Stress. 2020;4(6):114–146. https://doi.org/10.15698/cst2020.06.221..
DOI: 10.15698/cst2020.06.221
Zong W.X., Rabinowitz J.D., White E. Mitochondria and Cancer. Mol Cell. 2016;61(5):667–676. https://doi.org/10.1016/j.molcel.2016.02.011..
DOI: 10.1016/j.molcel.2016.02.011
Shoshan-Barmatz V., Mizrachi D. VDAC1: from structure to cancer therapy. Front Oncol. 2012;2:164. https://doi.org/10.3389/fonc.2012.00164..
DOI: 10.3389/fonc.2012.00164
Arbel N., Shoshan-Barmatz V. Voltage-dependent anion channel 1-based peptides interact with Bcl-2 to prevent antiapoptotic activity. J Biol Chem. 2010;285(9):6053–6062. https://doi.org/10.1074/jbc.M109.082990..
DOI: 10.1074/jbc.M109.082990
Arzoine L., Zilberberg N., Ben-Romano R., Shoshan-Barmatz V. Voltage-dependent anion channel 1-based peptides interact with hexokinase to prevent its anti-apoptotic activity. J Biol Chem. 2009;284(6):3946–3955. https://doi.org/10.1074/jbc.M803614200..
DOI: 10.1074/jbc.M803614200
Abu-Hamad S., Zaid H., Israelson A., Nahon E., Shoshan-Barmatz V. Hexokinase-I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1: mapping the site of binding. J Biol Chem. 2008;283(19):13482–13490. https://doi.org/10.1074/jbc.M708216200..
DOI: 10.1074/jbc.M708216200
Zaid H., Abu-Hamad S., Israelson A., Nathan I., Shoshan-Barmatz V. The voltage-dependent anion channel-1 modulates apoptotic cell death. Cell Death Differ. 2005;12(7):751–760. https://doi.org/10.1038/sj.cdd.4401599..
DOI: 10.1038/sj.cdd.4401599
Lincet H., Icard P. How do glycolytic enzymes favour cancer cell proliferation by nonmetabolic functions? Oncogene. 2015;34(29):3751–3759. https://doi.org/10.1038/onc.2014.320..
DOI: 10.1038/onc.2014.320
Kontos C.K., Christodoulou M.I., Scorilas A. Apoptosis-related BCL2-family members: Key players in chemotherapy. Anticancer Agents Med Chem. 2014;14(3):353–374. https://doi.org/10.2174/18715206113139990091..
DOI: 10.2174/18715206113139990091
Shteinfer-Kuzmine A., Arif T., Krelin Y., Tripathi S.S., Paul A., Shoshan-Barmatz V. Mitochondrial VDAC1-based peptides: Attacking oncogenic properties in glioblastoma. Oncotarget. 2017;8(19):31329–31346. https://doi.org/10.18632/oncotarget.15455..
DOI: 10.18632/oncotarget.15455
Pittala S., Krelin Y., Shoshan-Barmatz V. Targeting Liver Cancer and Associated Pathologies in Mice with a Mitochondrial VDAC1-Based Peptide. Neoplasia. 2018;20(6):594–609. https://doi.org/10.1016/j.neo.2018.02.012..
DOI: 10.1016/j.neo.2018.02.012
Shakeri R., Kheirollahi A., Davoodi J. Apaf-1: Regulation and function in cell death. Biochimie. 2017;135:111–125. https://doi.org/10.1016/j.bio-chi.2017.02.001..
DOI: 10.1016/j.bio-chi.2017.02.001
Adams L.A., Waters O.R., Knuiman M.W., Elliott R.R., Olynyk J.K. NAFLD as a risk factor for the development of diabetes and the metabolic syndrome: an eleven-year follow-up study. Am J Gastroenterol. 2009;104(4):861–867. https://doi.org/10.1038/ajg.2009.67..
DOI: 10.1038/ajg.2009.67
Pittala S., Levy I., De S., Kumar Pandey S., Melnikov N., Hyman T., Shoshan-Barmatz V. The VDAC1-based R-Tf-D-LP4 Peptide as a Potential Treatment for Diabetes Mellitus. Cells. 2020;9(2):481. https://doi.org/10.3390/cells9020481..
DOI: 10.3390/cells9020481
Romer A.I., Sussel L. Pancreatic islet cell development and regeneration. Curr Opin Endocrinol Diabetes Obes. 2015;22(4):255–264. https://doi.org/10.1097/MED.0000000000000174..
DOI: 10.1097/MED.0000000000000174
Kim S.K., Hebrok M. Intercellular signals regulating pancreas development and function. Genes Dev. 2001;15(2):111–127. https://doi.org/10.1101/gad.859401..
DOI: 10.1101/gad.859401
Jonsson J., Carlsson L., Edlund T., Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature. 1994;371(6498):606–609. https://doi.org/10.1038/371606a0..
DOI: 10.1038/371606a0
Kim-Muller J.Y., Kim Y.J., Fan J., Zhao S., Banks A.S., Prentki M., Accili D. FoxO1 Deacetylation Decreases Fatty Acid Oxidation in β-Cells and Sustains Insulin Secretion in Diabetes. J Biol Chem. 2016;291(19):10162–10172. https://doi.org/10.1074/jbc.M115.705608..
DOI: 10.1074/jbc.M115.705608