Roberts JD, Polaner DM, Lang P, Zapol WM. Inhaled nitric oxide in persistent pulmonary hypertension of the newborn. Lancet. 1992;340(8823):818–819. https://doi.org/10.1016/0140-6736(92)92686-a..
DOI: 10.1016/0140-6736(92)92686-a
Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redoxactivated forms. Science. 1992;258(5090):1898–1902. https://doi.org/10.1126/science.1281928..
DOI: 10.1126/science.1281928
Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988;333(6174):664–666. https://doi.org/10.1038/333664a0..
DOI: 10.1038/333664a0
Flam BR, Eichler DC, Solomonson LP. Endothelial nitric oxide production is tightly coupled to the citrulline-NO cycle. Nitric Oxide. 2007;17(3–4):115–121. https://doi.org/10.1016/j.niox.2007.07.001..
DOI: 10.1016/j.niox.2007.07.001
Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Endogenous flux of nitric oxide: Citrulline is preferred to Arginine. Acta Physiol (Oxf). 2021;231(3):e13572. https://doi.org/10.1111/apha.13572..
DOI: 10.1111/apha.13572
Bath PM, Hassall DG, Gladwin AM, Palmer RM, Martin JF. Nitric oxide and prostacyclin. Divergence of inhibitory effects on monocyte chemotaxis and adhesion to endothelium in vitro. Arterioscler Thromb. 1991;11(2):254–260. https://doi.org/10.1161/01.atv.11.2.254..
DOI: 10.1161/01.atv.11.2.254
Radomski MW, Palmer RM, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet. 1987;2(8567):1057–1058. https://doi.org/10.1016/s0140-6736(87)91481-4..
DOI: 10.1016/s0140-6736(87)91481-4
Patel RP, Shuai Y, Kevil ChG. Chapter 4 - S-Nitrosothiols and Nitric Oxide Biology. In: Ignarro LJ, Freeman BA (eds). Nitric Oxide: Biology and Pathobiology. 3rd ed. Academic Press; 2017, pp. 45–56. https://doi.org/10.1016/B978-0-12-804273-1.00004-1..
DOI: 10.1016/B978-0-12-804273-1.00004-1
Hogg N. The biochemistry and physiology of S-nitrosothiols. Annu Rev Pharmacol Toxicol. 2002;42:585–600. https://doi.org/10.1146/annurev.pharmtox.42.092501.104328..
DOI: 10.1146/annurev.pharmtox.42.092501.104328
Prime TA, Blaikie FH, Evans C, Nadtochiy SM, James AM, Dahm CC et al. A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2009;106(26):10764–10769. https://doi.org/10.1073/pnas.0903250106..
DOI: 10.1073/pnas.0903250106
Gaston B. Summary: systemic effects of inhaled nitric oxide. Proc Am Thorac Soc. 2006;3(2):170–172. https://doi.org/10.1513/pats.200506-049BG..
DOI: 10.1513/pats.200506-049BG
Zafar MU, Vilahur G, Choi BG, Ibanez B, Viles-Gonzalez JF, Salas E, Badimon JJ. A novel anti-ischemic nitric oxide donor (LA419) reduces thrombogenesis in healthy human subjects. J Thromb Haemost. 2007;5(6):1195–1200. https://doi.org/10.1111/j.1538-7836.2007.02543.x..
DOI: 10.1111/j.1538-7836.2007.02543.x
Albers I, Zernickel E, Stern M, Broja M, Busch HL, Heiss C et al. Blue light (λ=453 nm) nitric oxide dependently induces β-endorphin production of human skin keratinocytes in-vitro and increases systemic β-endorphin levels in humans in-vivo. Free Radic Biol Med. 2019;145:78–86. https://doi.org/10.1016/j.freeradbiomed.2019.09.022..
DOI: 10.1016/j.freeradbiomed.2019.09.022
Opländer C, Volkmar CM, Paunel-Görgülü A, van Faassen EE, Heiss C, Kelm M et al. Whole body UVA irradiation lowers systemic blood pressure by release of nitric oxide from intracutaneous photolabile nitric oxide derivates. Circ Res. 2009;105(10):1031–1040. https://doi.org/10.1161/CIRCRESAHA.109.207019..
DOI: 10.1161/CIRCRESAHA.109.207019
Schmidt HH, Pollock JS, Nakane M, Gorsky LD, Förstermann U, Murad F. Purification of a soluble isoform of guanylyl cyclase-activating-factor synthase. Proc Natl Acad Sci U S A. 1991;88(2):365–369. https://doi.org/10.1073/pnas.88.2.365..
DOI: 10.1073/pnas.88.2.365
Hunt JL, Bronicki RA, Anas N. Role of Inhaled Nitric Oxide in the Management of Severe Acute Respiratory Distress Syndrome. Front Pediatr. 2016;4:74. https://doi.org/10.3389/fped.2016.00074..
DOI: 10.3389/fped.2016.00074
Marcondes S, Cardoso MH, Morganti RP, Thomazzi SM, Lilla S, Murad F et al. Cyclic GMP-independent mechanisms contribute to the inhibition of platelet adhesion by nitric oxide donor: a role for alpha-actinin nitration. Proc Natl Acad Sci U S A. 2006;103(9):3434–3439. https://doi.org/10.1073/pnas.0509397103..
DOI: 10.1073/pnas.0509397103
Conran N, Ferreira HH, Lorand-Metze I, Thomazzi SM, Antunes E, de Nucci G. Nitric oxide regulates human eosinophil adhesion mechanisms in vitro by changing integrin expression and activity on the eosinophil cell surface. Br J Pharmacol. 2001;134(3):632–638. https://doi.org/10.1038/sj.bjp.0704295..
DOI: 10.1038/sj.bjp.0704295
Murad F. Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest. 1986;78(1):1–5. https://doi.org/10.1172/JCI112536..
DOI: 10.1172/JCI112536
Mónica FZ, Bian K, Murad F. The Endothelium-Dependent Nitric Oxide-cGMP Pathway. Adv Pharmacol. 2016;77:1–27. https://doi.org/10.1016/bs.apha.2016.05.001..
DOI: 10.1016/bs.apha.2016.05.001
Griffith TM, Edwards DH, Lewis MJ, Henderson AH. Evidence that cyclic guanosine monophosphate (cGMP) mediates endothelium-dependent relaxation. Eur J Pharmacol. 1985;112(2):195–202. https://doi.org/10.1016/0014-2999(85)90496-0..
DOI: 10.1016/0014-2999(85)90496-0
Bath PM, Coleman CM, Gordon AL, Lim WS, Webb AJ. Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Res. 2021;10:536. https://doi.org/10.12688/f1000research.51270.2..
DOI: 10.12688/f1000research.51270.2
Lux A, Pokreisz P, Swinnen M, Caluwe E, Gillijns H, Szelid Z et al. Concomitant Phosphodiesterase 5 Inhibition Enhances Myocardial Protection by Inhaled Nitric Oxide in Ischemia-Reperfusion Injury. J Pharmacol Exp Ther. 2016;356(2):284–292. https://doi.org/10.1124/jpet.115.227850..
DOI: 10.1124/jpet.115.227850
Patel JK, Schoenfeld E, Hou W, Singer A, Rakowski E, Ahmad S et al. Inhaled nitric oxide in adults with in-hospital cardiac arrest: A feasibility study. Nitric Oxide. 2021;115:30–33. https://doi.org/10.1016/j.niox.2021.07.001..
DOI: 10.1016/j.niox.2021.07.001
Gladwin MT, Shelhamer JH, Schechter AN, Pease-Fye ME, Waclawiw MA, Panza JA et al. Role of circulating nitrite and S-nitrosohemoglobin in the regulation of regional blood flow in humans. Proc Natl Acad Sci U S A. 2000;97(21):11482–11487. https://doi.org/10.1073/pnas.97.21.11482..
DOI: 10.1073/pnas.97.21.11482
Jia L, Bonaventura C, Bonaventura J, Stamler JS. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature. 1996;380(6571):221–226. https://doi.org/10.1038/380221a0..
DOI: 10.1038/380221a0
Stamler JS, Jia L, Eu JP, McMahon TJ, Demchenko IT, Bonaventura J et al. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science. 1997;276(5321):2034–2037. https://doi.org/10.1126/science.276.5321.2034..
DOI: 10.1126/science.276.5321.2034
Gow AJ, Stamler JS. Reactions between nitric oxide and haemoglobin under physiological conditions. Nature. 1998;391(6663):169–173. https://doi.org/10.1038/34402..
DOI: 10.1038/34402
Gladwin MT, Ognibene FP, Pannell LK, Nichols JS, Pease-Fye ME, Shelhamer JH, Schechter AN. Relative role of heme nitrosylation and beta-cysteine 93 nitrosation in the transport and metabolism of nitric oxide by hemoglobin in the human circulation. Proc Natl Acad Sci U S A. 2000;97(18):9943–9948. https://doi.org/10.1073/pnas.180155397..
DOI: 10.1073/pnas.180155397
Poh WH, Rice SA. Recent Developments in Nitric Oxide Donors and Delivery for Antimicrobial and Anti-Biofilm Applications. Molecules. 2022;27(3):674. https://doi.org/10.3390/molecules27030674..
DOI: 10.3390/molecules27030674
Keyaerts E, Vijgen L, Chen L, Maes P, Hedenstierna G, Van Ranst M. Inhibition of SARS-coronavirus infection in vitro by S-nitroso-N-acetylpenicillamine, a nitric oxide donor compound. Int J Infect Dis. 2004;8(4):223–226. https://doi.org/10.1016/j.ijid.2004.04.012..
DOI: 10.1016/j.ijid.2004.04.012
Miller CC, Hergott CA, Rohan M, Arsenault-Mehta K, Döring G, Mehta S. Inhaled nitric oxide decreases the bacterial load in a rat model of Pseudomonas aeruginosa pneumonia. J Cyst Fibros. 2013;12(6):817–820. https://doi.org/10.1016/j.jcf.2013.01.008..
DOI: 10.1016/j.jcf.2013.01.008
Bartley BL, Gardner KJ, Spina S, Hurley BP, Campeau D, Berra L et al. HighDose Inhaled Nitric Oxide as Adjunct Therapy in Cystic Fibrosis Targeting Burkholderia multivorans. Case Rep Pediatr. 2020;2020:1536714. https://doi.org/10.1155/2020/1536714..
DOI: 10.1155/2020/1536714
Goldbart A, Lavie M, Lubetzky R, Pillar G, Landau D, Schlesinger Y et al. Inhaled Nitric Oxide for the Treatment of Acute Bronchiolitis: A Multicenter Randomized Controlled Clinical Trial to Evaluate Dose Response. Ann Am Thorac Soc. 2023;20(2):236–244. https://doi.org/10.1513/AnnalsATS.202103-348OC..
DOI: 10.1513/AnnalsATS.202103-348OC
Kono Y, Shibata H, Adachi K, Tanaka K. Lactate-dependent killing of Escherichia coli by nitrite plus hydrogen peroxide: a possible role of nitrogen dioxide. Arch Biochem Biophys. 1994;311(1):153–159. https://doi.org/10.1006/abbi.1994.1220..
DOI: 10.1006/abbi.1994.1220
De Groote MA, Granger D, Xu Y, Campbell G, Prince R, Fang FC. Genetic and redox determinants of nitric oxide cytotoxicity in a Salmonella typhimurium model. Proc Natl Acad Sci U S A. 1995;92(14):6399–6403. https://doi.org/10.1073/pnas.92.14.6399..
DOI: 10.1073/pnas.92.14.6399
Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM et al. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science. 1991;254(5034):1001–1003. https://doi.org/10.1126/science.1948068..
DOI: 10.1126/science.1948068
Fujikura Y, Kudlackova P, Vokurka M, Krijt J, Melkova Z. The effect of nitric oxide on vaccinia virus-encoded ribonucleotide reductase. Nitric Oxide. 2009;20(2):114–121. https://doi.org/10.1016/j.niox.2008.09.002..
DOI: 10.1016/j.niox.2008.09.002
Granger DL, Lehninger AL. Sites of inhibition of mitochondrial electron transport in macrophage-injured neoplastic cells. J Cell Biol. 1982;95(2 Pt 1):527–535. https://doi.org/10.1083/jcb.95.2.527..
DOI: 10.1083/jcb.95.2.527
Saura M, Zaragoza C, McMillan A, Quick RA, Hohenadl C, Lowenstein JM, Lowenstein CJ. An antiviral mechanism of nitric oxide: inhibition of a viral protease. Immunity. 1999;10(1):21–28. https://doi.org/10.1016/s1074-7613(00)80003-5..
DOI: 10.1016/s1074-7613(00)80003-5
Mokry RL, Schumacher ML, Hogg N, Terhune SS. Nitric Oxide Circumvents Virus-Mediated Metabolic Regulation during Human Cytomegalovirus Infection. mBio. 2020;11(6):e02630-20. https://doi.org/10.1128/mBio.02630-20..
DOI: 10.1128/mBio.02630-20
O’Leary V, Solberg M. Effect of sodium nitrite inhibition on intracellular thiol groups and on the activity of certain glycolytic enzymes in Clostridium perfringens. Appl Environ Microbiol. 1976;31(2):208–212. https://doi.org/10.1128/aem.31.2.208-212.1976..
DOI: 10.1128/aem.31.2.208-212.1976
Frawley ER, Karlinsey JE, Singhal A, Libby SJ, Doulias PT, Ischiropoulos H, Fang FC. Nitric Oxide Disrupts Zinc Homeostasis in Salmonella enterica Serovar Typhimurium. mBio. 2018;9(4):e01040-18. https://doi.org/10.1128/mBio.01040-18..
DOI: 10.1128/mBio.01040-18
Carpenter AW, Schoenfisch MH. Nitric oxide release: part II. Therapeutic applications. Chem Soc Rev. 2012;41(10):3742–3752. https://doi.org/10.1039/c2cs15273h..
DOI: 10.1039/c2cs15273h
Mehta DR, Ashkar AA, Mossman KL. The nitric oxide pathway provides innate antiviral protection in conjunction with the type I interferon pathway in fibroblasts. PLoS ONE. 2012;7(2):e31688. https://doi.org/10.1371/journal.pone.0031688..
DOI: 10.1371/journal.pone.0031688
Schön T, Elias D, Moges F, Melese E, Tessema T, Stendahl O et al. Arginine as an adjuvant to chemotherapy improves clinical outcome in active tuberculosis. Eur Respir J. 2003;21(3):483–488. https://doi.org/10.1183/09031936.03.00090702..
DOI: 10.1183/09031936.03.00090702
Grasemann H, Al-Saleh S, Scott JA, Shehnaz D, Mehl A, Amin R et al. Asymmetric dimethylarginine contributes to airway nitric oxide deficiency in patients with cystic fibrosis. Am J Respir Crit Care Med. 2011;183(10):1363–1368. https://doi.org/10.1164/rccm.201012-1995OC..
DOI: 10.1164/rccm.201012-1995OC
Miller C, McMullin B, Ghaffari A, Stenzler A, Pick N, Roscoe D et al. Gaseous nitric oxide bactericidal activity retained during intermittent high-dose short duration exposure. Nitric Oxide. 2009;20(1):16–23. https://doi.org/10.1016/j.niox.2008.08.002..
DOI: 10.1016/j.niox.2008.08.002
Miller C, Miller M, McMullin B, Regev G, Serghides L, Kain K et al. A phase I clinical study of inhaled nitric oxide in healthy adults. J Cyst Fibros. 2012;11(4):324–331. https://doi.org/10.1016/j.jcf.2012.01.003..
DOI: 10.1016/j.jcf.2012.01.003
Deppisch C, Herrmann G, Graepler-Mainka U, Wirtz H, Heyder S, Engel C et al. Gaseous nitric oxide to treat antibiotic resistant bacterial and fungal lung infections in patients with cystic fibrosis: a phase I clinical study. Infection. 2016;44(4):513–520. https://doi.org/10.1007/s15010-016-0879-x..
DOI: 10.1007/s15010-016-0879-x
Bentur L, Gur M, Ashkenazi M, Livnat-Levanon G, Mizrahi M, Tal A et al. Pilot study to test inhaled nitric oxide in cystic fibrosis patients with refractory Mycobacterium abscessus lung infection. J Cyst Fibros. 2020;19(2):225–231. https://doi.org/10.1016/j.jcf.2019.05.002..
DOI: 10.1016/j.jcf.2019.05.002
Howlin RP, Cathie K, Hall-Stoodley L, Cornelius V, Duignan C, Allan RN et al. Low-Dose Nitric Oxide as Targeted Anti-biofilm Adjunctive Therapy to Treat Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis. Mol Ther. 2017;25(9):2104–2116. https://doi.org/10.1016/j.ymthe.2017.06.021..
DOI: 10.1016/j.ymthe.2017.06.021
Möller MN, Li Q, Lancaster JR Jr, Denicola A. Acceleration of nitric oxide autoxidation and nitrosation by membranes. IUBMB Life. 2007;59(4-5):243–248. https://doi.org/10.1080/15216540701311147..
DOI: 10.1080/15216540701311147
Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ, Rice SA, Kjelleberg S. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol. 2009;191(23):7333–7342. https://doi.org/10.1128/JB.00975-09..
DOI: 10.1128/JB.00975-09
Ahonen MJR, Dorrier JM, Schoenfisch MH. Antibiofilm Efficacy of Nitric Oxide-Releasing Alginates against Cystic Fibrosis Bacterial Pathogens. ACS Infect Dis. 2019;5(8):1327–1335. https://doi.org/10.1021/acsinfecdis.9b00016..
DOI: 10.1021/acsinfecdis.9b00016
Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol. 2006;188(21):7344–7353. https://doi.org/10.1128/JB.00779-06..
DOI: 10.1128/JB.00779-06
Vincendeau P, Daulouède S, Veyret B, Darde ML, Bouteille B, Lemesre JL. Nitric oxide-mediated cytostatic activity on Trypanosoma brucei gambiense and Trypanosoma brucei brucei. Exp Parasitol. 1992;75(3):353–360. https://doi.org/10.1016/0014-4894(92)90220-5..
DOI: 10.1016/0014-4894(92)90220-5
Sternberg J, Mabbott N, Sutherland I, Liew FY. Inhibition of nitric oxide synthesis leads to reduced parasitemia in murine Trypanosoma brucei infection. Infect Immun. 1994;62(5):2135–2137. https://doi.org/10.1128/iai.62.5.2135-2137.1994..
DOI: 10.1128/iai.62.5.2135-2137.1994
Keller TT, Mairuhu AT, de Kruif MD, Klein SK, Gerdes VE, ten Cate H et al. Infections and endothelial cells. Cardiovasc Res. 2003;60(1):40–48. https://doi.org/10.1016/s0008-6363(03)00354-7..
DOI: 10.1016/s0008-6363(03)00354-7
Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418. https://doi.org/10.1016/S0140-6736(20)30937-5..
DOI: 10.1016/S0140-6736(20)30937-5
Ahmed S, Zimba O, Gasparyan AY. Thrombosis in Coronavirus disease 2019 (COVID-19) through the prism of Virchow’s triad. Clin Rheumatol. 2020;39(9):2529–2543. https://doi.org/10.1007/s10067-020-05275-1..
DOI: 10.1007/s10067-020-05275-1
Strickland B, Albala L, Coffey EC, Carroll RW, Zapol WM, Ichinose F et al. Safety and practicality of high dose inhaled nitric oxide in emergency department COVID-19 patients. Am J Emerg Med. 2022;58:5–8. https://doi.org/10.1016/j.ajem.2022.04.052..
DOI: 10.1016/j.ajem.2022.04.052
Safaee Fakhr B, Wiegand SB, Pinciroli R, Gianni S, Morais CCA, Ikeda T et al. High Concentrations of Nitric Oxide Inhalation Therapy in Pregnant Patients With Severe Coronavirus Disease 2019 (COVID-19). Obstet Gynecol. 2020;136(6):1109–1113. https://doi.org/10.1097/AOG.0000000000004128..
DOI: 10.1097/AOG.0000000000004128
Valsecchi C, Winterton D, Safaee Fakhr B, Collier AY, Nozari A, Ortoleva J et al. High-Dose Inhaled Nitric Oxide for the Treatment of Spontaneously Breathing Pregnant Patients With Severe Coronavirus Disease 2019 (COVID-19) Pneumonia. Obstet Gynecol. 2022;140(2):195–203. https://doi.org/10.1097/AOG.0000000000004847..
DOI: 10.1097/AOG.0000000000004847
Pechyonkin EV, Kovrizhkin AV, Pekshev AV, Vagapov AB, Sharapov NA, Vanin AF. High Dose Inhalation with Gaseous Nitric Oxide in COVID-19 Treatment. Biophysics (Oxf). 2022;67(6):1023–1032. https://doi.org/10.1134/S0006350922060185..
DOI: 10.1134/S0006350922060185
Di Fenza R, Shetty NS, Gianni S, Parcha V, Giammatteo V, Safaee Fakhr B et al. High-Dose Inhaled Nitric Oxide in Acute Hypoxemic Respiratory Failure due to COVID-19: A Multicenter Phase 2 Trial. Am J Respir Crit Care Med. 2023;10.1164/rccm.202304-0637OC. https://doi.org/10.1164/rccm.202304-0637OC..
DOI: 10.1164/rccm.202304-0637OC
Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75(23):2950–2973. https://doi.org/10.1016/j.jacc.2020.04.031..
DOI: 10.1016/j.jacc.2020.04.031
Zamanian RT, Pollack CV Jr, Gentile MA, Rashid M, Fox JC, Mahaffey KW, de Jesus Perez V. Outpatient Inhaled Nitric Oxide in a Patient with Vasoreactive Idiopathic Pulmonary Arterial Hypertension and COVID-19 Infection. Am J Respir Crit Care Med. 2020;202(1):130–132. https://doi.org/10.1164/rccm.202004-0937LE..
DOI: 10.1164/rccm.202004-0937LE
Peek GJ, Mugford M, Tiruvoipati R, Wilson A, Allen E, Thalanany MM et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial [published correction appears in Lancet. 2009 Oct 17;374(9698):1330]. Lancet. 2009;374(9698):1351–1363. https://doi.org/10.1016/S0140-6736(09)61069-2..
DOI: 10.1016/S0140-6736(09)61069-2
Villalba JA, Hilburn CF, Garlin MA, Elliott GA, Li Y, Kunitoki K et al. Vasculopathy and Increased Vascular Congestion in Fatal COVID-19 and Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2022;206(7):857–873. https://doi.org/10.1164/rccm.202109-2150OC..
DOI: 10.1164/rccm.202109-2150OC
Sinha P, Calfee CS, Beitler JR, Soni N, Ho K, Matthay MA, Kallet RH. Physiologic Analysis and Clinical Performance of the Ventilatory Ratio in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2019;199(3):333–341. https://doi.org/10.1164/rccm.201804-0692OC..
DOI: 10.1164/rccm.201804-0692OC
Shei RJ, Baranauskas MN. More questions than answers for the use of inhaled nitric oxide in COVID-19. Nitric Oxide. 2022;124:39–48. https://doi.org/10.1016/j.niox.2022.05.001..
DOI: 10.1016/j.niox.2022.05.001