Leung TYM, Chan AYL, Chan EW, Chan VKY, Chui CSL, Cowling BJ et al. Short- and potential long-term adverse health outcomes of COVID-19: a rapid review. Emerg Microbes Infect. 2020;9(1):2190–2199. https://doi.org/10.1080/22221751.2020.1825914..
DOI: 10.1080/22221751.2020.1825914
Vitiello A, Ferrara F. Pharmacological agents to therapeutic treatment of cardiac injury caused by COVID-19. Life Sci. 2020;262:118510. https://doi.org/10.1016/j.lfs.2020.118510..
DOI: 10.1016/j.lfs.2020.118510
Jin Y, Ji W, Yang H, Chen S, Zhang W, Duan G. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Signal Transduct Target Ther. 2020;5(1):293. https://doi.org/10.1038/s41392-020-00454-7..
DOI: 10.1038/s41392-020-00454-7
Silva Andrade B, Siqueira S, de Assis Soares WR, de Souza Rangel F, Santos NO, Dos Santos Freitas A et al. Long-COVID and Post-COVID Health Complications: An Up-to-Date Review on Clinical Conditions and Their Possible Molecular Mechanisms. Viruses. 2021;13(4):700. https://doi.org/10.3390/v13040700..
DOI: 10.3390/v13040700
Grosse C, Grosse A, Salzer HJF, Dünser MW, Motz R, Langer R. Analysis of cardiopulmonary findings in COVID-19 fatalities: High incidence of pulmonary artery thrombi and acute suppurative bronchopneumonia. Cardiovasc Pathol. 2020;49:107263. https://doi.org/10.1016/j.carpath.2020.107263..
DOI: 10.1016/j.carpath.2020.107263
Piazza G, Campia U, Hurwitz S, Snyder JE, Rizzo SM, Pfeferman MB et al. Registry of Arterial and Venous Thromboembolic Complications in Patients With COVID-19. J Am Coll Cardiol. 2020;76(18):2060–2072. https://doi.org/10.1016/j.jacc.2020.08.070..
DOI: 10.1016/j.jacc.2020.08.070
Sakr Y, Giovini M, Leone M, Pizzilli G, Kortgen A, Bauer M et al. Pulmonary embolism in patients with coronavirus disease-2019 (COVID-19) pneumonia: a narrative review. Ann Intensive Care. 2020;10:124. https://doi.org/10.1186/s13613-020-00741-0..
DOI: 10.1186/s13613-020-00741-0
George PM, Barratt SL, Condliffe R, Desai SR, Devaraj A, Forrest I et al. Respiratory follow-up of patients with COVID-19 pneumonia. Thorax. 2020;75(11):1009–1016. https://doi.org/10.1136/thoraxjnl-2020-215314..
DOI: 10.1136/thoraxjnl-2020-215314
Korkmaz B, Lesner A, Marchand-Adam S, Moss C, Jenne DE. Lung Protection by Cathepsin C Inhibition: A New Hope for COVID-19 and ARDS? J Med Chem. 2020;63(22):13258–13265. https://doi.org/10.1021/acs.jmedchem.0c00776..
DOI: 10.1021/acs.jmedchem.0c00776
Cobos-Siles M, Cubero-Morais P, Arroyo-Jiménez I, Rey-Hernández M, Hernández-Gómez L, Vargas-Parra DJ et al. Cause-specific death in hospitalized individuals infected with SARS-CoV-2: more than just acute respiratory failure or thromboembolic events. Intern Emerg Med. 2020;15(8):1533–1544. https://doi.org/10.1007/s11739-020-02485-y..
DOI: 10.1007/s11739-020-02485-y
Sidarta-Oliveira D, Jara CP, Ferruzzi AJ, Skaf MS, Velander WH, Araujo EP et al. SARS-CoV-2 receptor is co-expressed with elements of the kininkallikrein, renin-angiotensin and coagulation systems in alveolar cells. Sci Rep. 2020;10(1):19522. https://doi.org/10.1038/s41598-020-76488-2..
DOI: 10.1038/s41598-020-76488-2
Kligerman SJ, Franks TJ, Galvin JR. From the radiologic pathology archives: organization and fibrosis as a response to lung injury in diffuse alveolar damage, organizing pneumonia, and acute fibrinous and organizing pneumonia. Radiographics. 2013;33(7):1951–1975. https://doi.org/10.1148/rg.337130057..
DOI: 10.1148/rg.337130057
Al-Khawaga S, Abdelalim EM. Potential application of mesenchymal stem cells and their exosomes in lung injury: an emerging therapeutic option for COVID-19 patients. Stem Cell Res Ther. 2020;11(1):437. https://doi.org/10.1186/s13287-020-01963-6..
DOI: 10.1186/s13287-020-01963-6
Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in COVID-19. N Engl J Med. 2020;383(2):120–128. https://doi.org/10.1056/NEJMoa2015432..
DOI: 10.1056/NEJMoa2015432
Tanaka T, Narazaki M, Kishimoto T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy. 2016;8(8):959–970. https://doi.org/10.2217/imt-2016-0020..
DOI: 10.2217/imt-2016-0020
Dupont A, Rauch A, Staessens S, Moussa M, Rosa M, Corseaux D et al. Vascular Endothelial Damage in the Pathogenesis of Organ Injury in Severe COVID-19. Arterioscler Thromb Vasc Biol. 2021;41(5):1760–1773. https://doi.org/10.1161/ATVBAHA.120.315595..
DOI: 10.1161/ATVBAHA.120.315595
Ruhl L, Pink I, Kühne JF, Beushausen K, Keil J, Christoph S et al. Endothelial dysfunction contributes to severe COVID-19 in combination with dysregulated lymphocyte responses and cytokine networks. Signal Transduct Target Ther. 2021;6(1):418. https://doi.org/10.1038/s41392-021-00819-6..
DOI: 10.1038/s41392-021-00819-6
Henderson LA, Canna SW, Schulert GS, Volpi S, Lee PY, Kernan KF et al. On the Alert for Cytokine Storm: Immunopathology in COVID-19. Arthritis Rheumatol. 2020;72(7):1059–1063. https://doi.org/10.1002/art.41285..
DOI: 10.1002/art.41285
Kokosi MA, Nicholson AG, Hansell DM, Wells AU. Rare idiopathic interstitial pneumonias: LIP and PPFE and rare histologic patterns of interstitial pneumonias: AFOP and BPIP. Respirology. 2016;21(4):600–614. https://doi.org/10.1111/resp.12693..
DOI: 10.1111/resp.12693
Obadina ET, Torrealba JM, Kanne JP. Acute pulmonary injury: high-resolution CT and histopathological spectrum. Br J Radiol. 2013;86(1027):20120614. https://doi.org/10.1259/bjr.20120614..
DOI: 10.1259/bjr.20120614
Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes?. Intensive Care Med. 2020;46(6):1099–1102. https://doi.org/10.1007/s00134-020-06033-2..
DOI: 10.1007/s00134-020-06033-2
Hopkins SR. Exercise induced arterial hypoxemia: the role of ventilationperfusion inequality and pulmonary diffusion limitation. Adv Exp Med Biol. 2006;588:17–30. https://doi.org/10.1007/978-0-387-34817-9_3..
DOI: 10.1007/978-0-387-34817-9_3
Xie J, Covassin N, Fan Z, Singh P, Gao W, Li G et al. Association Between Hypoxemia and Mortality in Patients With COVID-19. Mayo Clin Proc. 2020;95(6):1138–1147. https://doi.org/10.1016/j.mayocp.2020.04.006..
DOI: 10.1016/j.mayocp.2020.04.006
Woyke S, Rauch S, Ströhle M, Gatterer H. Modulation of Hb-O2 affinity to improve hypoxemia in COVID-19 patients. Clin Nutr. 2021;40(1):38–39. https://doi.org/10.1016/j.clnu.2020.04.036..
DOI: 10.1016/j.clnu.2020.04.036
Polkey MI. Diaphragm Dysfunction as a Contributor to Breathlessness after COVID-19 Infection. Am J Respir Crit Care Med. 2023;207(8):964–965. https://doi.org/10.1164/rccm.202301-0105ED..
DOI: 10.1164/rccm.202301-0105ED
Regmi B, Friedrich J, Jörn B, Senol M, Giannoni A, Boentert M et al. Diaphragm Muscle Weakness Might Explain Exertional Dyspnea 15 Months after Hospitalization for COVID-19. Am J Respir Crit Care Med. 2023;207(8):1012–1021. https://doi.org/10.1164/rccm.202206-1243OC..
DOI: 10.1164/rccm.202206-1243OC
Spiesshoefer J, Friedrich J, Regmi B, Geppert J, Jörn B, Kersten A et al. Diaphragm dysfunction as a potential determinant of dyspnea on exertion in patients 1 year after COVID-19-related ARDS. Respir Res. 2022;23(1):187. https://doi.org/10.1186/s12931-022-02100-y..
DOI: 10.1186/s12931-022-02100-y
Shi Z, de Vries HJ, Vlaar APJ, van der Hoeven J, Boon RA, Heunks LMA et al. Diaphragm Pathology in Critically Ill Patients With COVID-19 and Postmortem Findings From 3 Medical Centers. JAMA Intern Med. 2021;181(1):122–124. https://doi.org/10.1001/jamainternmed.2020.6278..
DOI: 10.1001/jamainternmed.2020.6278
Hadda V, Raja A, Suri TM, Khan MA, Mittal S, Madan K et al. Temporal evolution of diaphragm thickness and diaphragm excursion among subjects hospitalized with COVID-19: A prospective observational study. Respir Med Res. 2023;83:100960. https://doi.org/10.1016/j.resmer.2022.100960..
DOI: 10.1016/j.resmer.2022.100960
Law SM, Scott K, Alkarn A, Mahjoub A, Mallik AK, Roditi G et al. COVID-19 associated phrenic nerve mononeuritis: a case series. Thorax. 2022;77(8):834–838. https://doi.org/10.1136/thoraxjnl-2021-218257..
DOI: 10.1136/thoraxjnl-2021-218257
Dhont S, Derom E, Van Braeckel E, Depuydt P, Lambrecht BN. The pathophysiology of ‘happy’ hypoxemia in COVID-19. Respir Res. 2020;21(1):198. https://doi.org/10.1186/s12931-020-01462-5..
DOI: 10.1186/s12931-020-01462-5
González-Duarte A, Norcliffe-Kaufmann L. Is ‘happy hypoxia’ in COVID-19 a disorder of autonomic interoception? A hypothesis. Clin Auton Res. 2020;30(4):331–333. https://doi.org/10.1007/s10286-020-00715-z..
DOI: 10.1007/s10286-020-00715-z
Tobin MJ, Laghi F, Jubran A. Why COVID-19 Silent Hypoxemia Is Baffling to Physicians. Am J Respir Crit Care Med. 2020;202(3):356–360. https://doi.org/10.1164/rccm.202006-2157CP..
DOI: 10.1164/rccm.202006-2157CP
Moosavi SH, Golestanian E, Binks AP, Lansing RW, Brown R, Banzett RB. Hypoxic and hypercapnic drives to breathe generate equivalent levels of air hunger in humans. J Appl Physiol (1985). 2003;94(1):141–154. https://doi.org/10.1152/japplphysiol.00594.2002..
DOI: 10.1152/japplphysiol.00594.2002
Nakano T, Iwazaki M, Sasao G, Nagai A, Ebihara A, Iwamoto T et al. Hypobaric hypoxia is not a direct dyspnogenic factor in healthy individuals at rest. Respir Physiol Neurobiol. 2015;218:28–31. https://doi.org/10.1016/j.resp.2015.07.009..
DOI: 10.1016/j.resp.2015.07.009
Banzett RB, Lansing RW, Reid MB, Adams L, Brown R. ‘Air hunger’ arising from increased PCO2 in mechanically ventilated quadriplegics. Respir Physiol. 1989;76(1):53–67. https://doi.org/10.1016/0034-5687(89)90017-0..
DOI: 10.1016/0034-5687(89)90017-0
Galeas-Pena M, McLaughlin N, Pociask D. The role of the innate immune system on pulmonary infections. Biol Chem. 2019;400(4):443–456. https://doi.org/10.1515/hsz-2018-0304..
DOI: 10.1515/hsz-2018-0304
McMorris T, Hale BJ, Barwood M, Costello J, Corbett J. Effect of acute hypoxia on cognition: A systematic review and meta-regression analysis. Neurosci Biobehav Rev. 2017;74(Pt. A):225–232. https://doi.org/10.1016/j.neubiorev.2017.01.019..
DOI: 10.1016/j.neubiorev.2017.01.019
Needham EJ, Chou SH, Coles AJ, Menon DK. Neurological Implications of COVID-19 Infections. Neurocrit Care. 2020;32(3):667–671. https://doi.org/10.1007/s12028-020-00978-4..
DOI: 10.1007/s12028-020-00978-4
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271– 280.e8. https://doi.org/10.1016/j.cell.2020.02.052..
DOI: 10.1016/j.cell.2020.02.052
Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARSCoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92(6):552–555. https://doi.org/10.1002/jmv.25728..
DOI: 10.1002/jmv.25728
Manganelli F, Vargas M, Iovino A, Iacovazzo C, Santoro L, Servillo G. Brainstem involvement and respiratory failure in COVID-19. Neurol Sci. 2020;41(7):1663–1665. https://doi.org/10.1007/s10072-020-04487-2..
DOI: 10.1007/s10072-020-04487-2
Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020;94:55–58. https://doi.org/10.1016/j.ijid.2020.03.062..
DOI: 10.1016/j.ijid.2020.03.062
Paniz-Mondolfi A, Bryce C, Grimes Z, Gordon RE, Reidy J, Lednicky J et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol. 2020;92(7):699–702. https://doi.org/10.1002/jmv.25915..
DOI: 10.1002/jmv.25915
Li K, Wohlford-Lenane C, Perlman S, Zhao J, Jewell AK, Reznikov LR et al. Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4. J Infect Dis. 2016;213(5):712–722. https://doi.org/10.1093/infdis/jiv499..
DOI: 10.1093/infdis/jiv499
Hsieh YH, Litvin DG, Zaylor AR, Nethery DE, Dick TE, Jacono FJ. Brainstem inflammation modulates the ventilatory pattern and its variability after acute lung injury in rodents. J Physiol. 2020;598(13):2791–2811. https://doi.org/10.1113/JP279177..
DOI: 10.1113/JP279177
Caronna E, Ballvé A, Llauradó A, Gallardo VJ, Ariton DM, Lallana S et al. Headache: A striking prodromal and persistent symptom, predictive of COVID-19 clinical evolution. Cephalalgia. 2020;40(13):1410–1421. https://doi.org/10.1177/0333102420965157..
DOI: 10.1177/0333102420965157
Harper RM, Kumar R, Macey PM, Harper RK, Ogren JA. Impaired neural structure and function contributing to autonomic symptoms in congenital central hypoventilation syndrome. Front Neurosci. 2015;9:415. https://doi.org/10.3389/fnins.2015.00415..
DOI: 10.3389/fnins.2015.00415
Esser RW, Stoeckel MC, Kirsten A, Watz H, Taube K, Lehmann K et al. Brain Activation during Perception and Anticipation of Dyspnea in Chronic Obstructive Pulmonary Disease. Front Physiol. 2017;8:617. https://doi.org/10.3389/fphys.2017.00617..
DOI: 10.3389/fphys.2017.00617
Nouri-Vaskeh M, Sharifi A, Khalili N, Zand R, Sharifi A. Dyspneic and non-dyspneic (silent) hypoxemia in COVID-19: Possible neurological mechanism. Clin Neurol Neurosurg. 2020;198:106217. https://doi.org/10.1016/j.clineuro.2020.106217..
DOI: 10.1016/j.clineuro.2020.106217
Pamenter ME, Powell FL. Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis. Compr Physiol. 2016;6(3):1345–1385. https://doi.org/10.1002/cphy.c150026..
DOI: 10.1002/cphy.c150026
Busana M, Gasperetti A, Giosa L, Forleo GB, Schiavone M, Mitacchione G et al. Prevalence and outcome of silent hypoxemia in COVID-19. Minerva Anestesiol. 2021;87(3):325–333. https://doi.org/10.23736/S0375-9393.21.15245-9..
DOI: 10.23736/S0375-9393.21.15245-9
Jounieaux V, Rodenstein DO, Mahjoub Y. On Happy Hypoxia and on Sadly Ignored “Acute Vascular Distress Syndrome” in Patients with COVID-19. Am J Respir Crit Care Med. 2020;202(11):1598–1599. https://doi.org/10.1164/rccm.202006-2521LE..
DOI: 10.1164/rccm.202006-2521LE
Friedman J, Calderón-Villarreal A, Bojorquez I, Vera Hernández C, Schriger DL, Tovar Hirashima E. Excess Out-of-Hospital Mortality and Declining Oxygen Saturation: The Sentinel Role of Emergency Medical Services Data in the COVID-19 Crisis in Tijuana, Mexico. Ann Emerg Med. 2020;76(4):413–426. https://doi.org/10.1016/j.annemergmed.2020.07.035..
DOI: 10.1016/j.annemergmed.2020.07.035
Пальман АД, Андреев ДА, Сучкова СА. Немая гипоксемия у пациента с тяжелой SARS-CoV-2-пневмонией. Сеченовский вестник. 2020;11(2):87–91. https://doi.org/10.47093/2218-7332.2020.11.2.87-91..
DOI: 10.47093/2218-7332.2020.11.2.87-91