Gage K.L., Kosoy M.Y. Natural history of plague: perspectives from more than a century of research. Annu. Rev. Entomol. 2005; 50:505–28. DOI: 10.1146/annurev.ento.50.071803.130337..
DOI: 10.1146/annurev.ento.50.071803.130337
Perry R.D., Fetherston J.D. Iron and heme uptake systems. In: Carniel E., Hinnebusch B.J., editors. Yersinia: Molecular and Cellular Biology. UK: Horizon Bioscience; 2004. P. 257–83.
Burrows T.W., Jackson S. The virulence-enhancing effect of iron on nonpigmented mutants of virulent strains of Pasteurella pestis. Br. J. Exp. Pathol. 1956; 37(6):577–83.
Сазанова Е.В., Малахаева А.Н., Малюкова Т.А., Бойко А.В., Булгакова Е.Г., Попов Ю.А. Моделирование чумной инфекции при заражении авирулентными штаммами Yersinia pestis. Проблемы особо опасных инфекций. 2017; 2:45–9. DOI: 10.21055/0370-1069-2017-2-45-49..
DOI: 10.21055/0370-1069-2017-2-45-49
Lee-Lewis H., Anderson D.M. Absence of inflammation and pneumonia during infection with nonpigmented Yersinia pestis reveals a new role for the pgm locus in pathogenesis. Infect. Immun. 2010; 78(1):220–30. DOI: 10.1128/IAI.00559-09..
DOI: 10.1128/IAI.00559-09
Parent M.A., Wilhelm L.B., Kummer L.W., Szaba F.M., Mullarky I.K., Smiley S.T. Gamma interferon, tumor necrosis factor alpha, and nitric oxide synthase 2, key elements of cellular immunity, perform critical protective functions during humoral defense against lethal pulmonary Yersinia pestis infection. Infect. Immun. 2006; 74(6):3381–6. DOI: 10.1128/IAI.00185-06..
DOI: 10.1128/IAI.00185-06
Denoël P., Godfroid F., Guiso N., Hallander H., Poolman J. Comparison of acellular pertussis vaccines-induced immunity against infection due to Bordetella pertussis variant isolates in a mouse model. Vaccine. 2005. 23(46-47):5333–41. DOI: 10.1016/j.vaccine.2005.06.021..
DOI: 10.1016/j.vaccine.2005.06.021
Wake A., Morita H., Yamamoto M. The effect of an iron drug on host response to experimental plague infection. Jpn. J. Med. Sci. Biol. 1972. 25(2):75–84. DOI: 10.7883/yoken1952.25.75..
DOI: 10.7883/yoken1952.25.75
Holbein B.E., Jericho K.W., Likes G.C. Neisseria meningitidis infection in mice: influence of iron, variations in virulence among strains, and pathology. Infect. Immun. 1979; 24(2):545–51. DOI: 10.1128/iai.24.2.545-551.1979..
DOI: 10.1128/iai.24.2.545-551.1979
Starks A.M., Schoeb T.R., Tamplin M.L., Parveen S., Doyle T.J., Bomeisl P.E., Escudero G.M., Gulig P.A. Pathogenesis of infection by clinical and environmental strains of Vibrio vulnificus in iron-dextran-treated mice. Infect. Immun. 2000; 68(10):5785–93. DOI: 10.1128/iai.68.10.5785-5793.2000..
DOI: 10.1128/iai.68.10.5785-5793.2000
Yi K., Stephens D.S., Stojiljkovic I. Development and evaluation of an improved mouse model of meningococcal colonization. Infect. Immun. 2003; 71:1849–55. DOI: 10.1128/iai.71.4.1849-1855.2003..
DOI: 10.1128/iai.71.4.1849-1855.2003
Galván E.M., Nair M.K., Chen H., Del P.F., Schifferli D.M. Biosafety level 2 model of pneumonic plague and protection studies with F1 and Psa. Infect. Immun. 2010; 78(8):3443–53. DOI: 10.1128/ IAI.00382-10..
DOI: 10.1128/ IAI.00382-10
Ашмарин И.П., Воробьев А.А. Статистические методы в микробиологических исследованиях. Ленинград: Медгиз [Ленингр. отд-ние]; 1962. 180 с.
Ivanov M.I., Noel B.L., Rampersaud R., Mena P., Benach J.L., Bliska J.B. Vaccination of mice with a Yop translocon complex elicits antibodies that are protective against infection with F1–Yersinia pestis. Infect. Immun. 2008; 76(11):5181–90. DOI: 10.1128/IAI.00189-08..
DOI: 10.1128/IAI.00189-08
Mellado-Sanchez G., Ramirez K., Drachenberg C.B., Diaz-McNair J., Rodriguez A.L., Galen J.E., Nataro J.P., Pasetti M.F. Characterization of systemic and pneumonic murine models of plague infection using a conditionally virulent strain. Comp. Immunol. Microbiol. Infect. Dis. 2013; 36(2):113–28. DOI: 10.1016/j.cimid.2012.10.005..
DOI: 10.1016/j.cimid.2012.10.005
Rosenzweig J.A., Jejelowo O., Sha J., Erova T.E., Brackman S.M., Kirtley M.L., van Lier C.J., Chopra A.K. Progress on plague vaccine development. Appl. Microbiol. Biotechnol. 2011; 91(2):265–86. DOI: 10.1007/s00253-011-3380-6..
DOI: 10.1007/s00253-011-3380-6
Bubeck S.S., Cantwell A.M., Dube P.H. Delayed inflammatory response to primary pneumonic plague occurs in both outbred and inbred mice. Infect. Immun. 2007; 75(2):697–705. DOI: 10.1128/IAI.00403-06..
DOI: 10.1128/IAI.00403-06
Lathem W.W., Crosby S.D., Miller V.L., Goldman W.E. Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity. Proc. Natl Acad. Sci. USA. 2005; 102(49):17786–91. DOI: 10.1073/pnas.0506840102..
DOI: 10.1073/pnas.0506840102
Agar S.L., Sha J., Foltz S.M.., Erova T.E., Walberg K.G., Parham T.E., Baze W.B., Suarez G., Peterson J.W., Chopra A.K. Characterization of a mouse model of plague after aerosolization of Yersinia pestis CO92. Microbiology (Reading). 2008; 154(Pt 7):1939–48. DOI: 10.1099/mic.0.2008/017335-0..
DOI: 10.1099/mic.0.2008/017335-0
Fetherston J.D., Kirillina O., Bobrov A.G., Paulley J.T., Perry R.D. The yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague. Infect. Immun. 2010; 78(5):2045–52. DOI: 10.1128/IAI.01236-09..
DOI: 10.1128/IAI.01236-09
Hinnebusch J., Cherepanov P., Du Y., Rudolph A., Dixon J.D., Schwan T., Forsberg A. Murine toxin of Yersinia pestis shows phospholipase D activity but is not required for virulence in mice. Int. J. Med. Microbiol. 2000; 290(4-5):483–7. DOI: 10.1016/S1438-4221(00)80070-3..
DOI: 10.1016/S1438-4221(00)80070-3
Fan Y., Zhou Y., Feng N., Wang Q., Tian G., Wu X., Liu Z., Bi Y., Yang R., Wang X. Recombinant murine toxin from Yersinia pestis shows high toxicity and β-adrenergic blocking activity in mice. Microbes Infect. 2016; 18(5):329–35. DOI: 10.1016/j.micinf.2016.01.001..
DOI: 10.1016/j.micinf.2016.01.001