Rowe H.M., Huntley J.F. From the outside-in: The Francisella tularensis envelope and virulence. Front. Cell Infect. Microbiol. 2015; 5:94. DOI: 10.3389/fcimb.2015.00094..
DOI: 10.3389/fcimb.2015.00094
Подладчикова О.Н. Современные представления о молекулярных механизмах патогенеза чумы. Проблемы особо опасных инфекций. 2017; 3:33–40. DOI: 10.21055/0370-1069-2017-3-33-40..
DOI: 10.21055/0370-1069-2017-3-33-40
Livorsi D.J., Stenehjem E., Stephens D.S. Virulence factors of gram-negative bacteria in sepsis with a focus on Neisseria meningitidis. Contrib. Microbiol. 2011; 17:31–47. DOI: 10.1159/000324008..
DOI: 10.1159/000324008
Knox K.W., Vesk M., Work E. Relation between excreted lipopolysaccharide complexes and surface structures of a lysinelimited culture of Escherichia coli. J. Bacteriol. 1966; 92(4): 1206–17. DOI: 10.1128/JB.92.4.1206-1217.1966..
DOI: 10.1128/JB.92.4.1206-1217.1966
Chatterjee S.N., Das J. Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. J. Gen. Microbiol. 1967; 49(1):1–11. DOI: 10.1099/00221287-49-1-1..
DOI: 10.1099/00221287-49-1-1
Beveridge T.J. Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 1999; 181(16):4725–33. DOI: 10.1128/JB.181.16.4725-4733.1999..
DOI: 10.1128/JB.181.16.4725-4733.1999
Ellis T.N., Kuehn M.J. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev. 2010; 74(1):81–94. DOI: 10.1128/MMBR.00031-09..
DOI: 10.1128/MMBR.00031-09
Yoon H. Bacterial outer membrane vesicles as a delivery system for virulence regulation. J. Microbiol. Biotechnol. 2016; 26(8):1343–7. DOI: 10.4014/jmb.1604.04080..
DOI: 10.4014/jmb.1604.04080
Луста К.А., Кондашевская М.В. Участие внеклеточных мембранных нановезикул бактерий в патологических процессах. Вестник новых медицинских технологий. Электронное издание. 2019; 2. Публикация 3–5. [Электронный ресурс]. URL: http://www.medtsu.tula.ru/VNMT/Bulletin/E2019-2/3-5.pdf (дата обращения 03.04.2019). DOI: 10.24411/2075-4094-2019-16306..
DOI: 10.24411/2075-4094-2019-16306http://www.medtsu.tula.ru/VNMT/Bulletin/E2019-2/3-5.pdf
Луста К.А., Кондашевская М.В. Участие внеклеточных мембранных нановезикул бактерий в патологических процессах. Вестник новых медицинских технологий. Электронное издание. 2019; 2. Публикация 3–5. [Электронный ресурс]. URL: http://www.medtsu.tula.ru/VNMT/Bulletin/E2019-2/3-5.pdf (дата обращения 03.04.2019). DOI: 10.24411/2075-4094-2019-16306..
DOI: 10.24411/2075-4094-2019-16306http://www.medtsu.tula.ru/VNMT/Bulletin/E2019-2/3-5.pdf
Шендеров Б.А., Синица А.В., Захарченко М.М., Ткаченко Е.И. Внеклеточные везикулы (экзосомы) и их роль в биологии бактерий и реализации их патогенного потенциала. Экспериментальная и клиническая гастроэнтерология. 2020; 7:118–30. DOI: 10.31146/1682-8658-ecg-179-7-118-130..
DOI: 10.31146/1682-8658-ecg-179-7-118-130
Kulp A., Kuehn M.J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 2010; 64:163–84. DOI: 10.1146/annurev.micro.091208.073413..
DOI: 10.1146/annurev.micro.091208.073413
Tran F., Boedicker J.Q. Genetic cargo and bacterial species set the rate of vesicle-mediated horizontal gene transfer. Sci. Rep. 2017; 7(1):8813. DOI: 10.1038/s41598-017-07447-7..
DOI: 10.1038/s41598-017-07447-7
Kuehn M.J., Kesty N.C. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes. Dev. 2005; 19(22):2645–55. DOI: 10.1101/gad.1299905..
DOI: 10.1101/gad.1299905
Rueter C., Bielaszewska M. Secretion and delivery of intestinal pathogenic Escherichia coli virulence factors via outer membrane vesicles. Front. Cell Infect. Microbiol. 2020; 10:91. DOI: 10.3389/fcimb.2020.00091..
DOI: 10.3389/fcimb.2020.00091
Lai C.H., Listgarten M.A., Hammond B.F. Comparative ultrastructure of leukotoxic and non-leukotoxic strains of Actinobacillus actinomycetemcomitans. J. Periodontal. Res. 1981; 16(4):379–89. DOI: 10.1111/j.1600-0765.1981.tb00989.x..
DOI: 10.1111/j.1600-0765.1981.tb00989.x
Wang S., Gao J., Wang Z. Outer membrane vesicles for vaccination and targeted drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019; 11(2):e1523. DOI: 10.1002/wnan.1523..
DOI: 10.1002/wnan.1523
Pizza M., Bekkat-Berkani R., Rappuoli R. Vaccines against meningococcal diseases. Microorganisms. 2020; 8(10):1521. DOI: 10.3390/microorganisms8101521..
DOI: 10.3390/microorganisms8101521
Elluri S., Enow C., Vdovikova S., Rompikuntal P.K., Dongre M., Carlsson S., Pal A., Uhlin B.E., Wai S.N. Outer membrane vesicles mediate transport of biologically active Vibrio cholerae cytolysin (VCC) from V. cholerae strains. PLoS One. 2014; 9(9):e106731. DOI: 10.1371/journal.pone.0106731..
DOI: 10.1371/journal.pone.0106731
Rasti E.S., Schappert M.L., Brown A.C. Association of Vibrio cholerae 569B outer membrane vesicles with host cells occurs in a GM1-independent manner. Cell Microbiol. 2018; 20(6):e12828. DOI: 10.1111/cmi.12828..
DOI: 10.1111/cmi.12828
Rasti E.S., Brown A.C. Cholera toxin encapsulated within several Vibrio cholerae O1 serotype Inaba outer membrane vesicles lacks a functional B-subunit. Toxins (Basel). 2019; 11(4):207. DOI: 10.3390/toxins11040207..
DOI: 10.3390/toxins11040207
Rompikuntal P.K., Vdovikova S., Duperthuy M., Johnson T.L., Åhlund M., Lundmark R., Oscarsson J., Sandkvist M., Uhlin B.E., Wai S.N. Outer membrane vesicle-mediated export of processed PrtV protease from Vibrio cholerae. PLoS One. 2015; 10(7):e0134098. DOI: 10.1371/journal.pone.0134098..
DOI: 10.1371/journal.pone.0134098
Mondal A., Tapader R., Chatterjee N.S., Ghosh A., Sinha R., Koley H., Saha D.R., Chakrabarti M.K., Wai S.N., Pal A. Cytotoxic and inflammatory responses induced by outer membrane vesicleassociated biologically active proteases from Vibrio cholerae. Infect. Immun. 2016; 84(5):1478–90. DOI: 10.1128/IAI.01365-15..
DOI: 10.1128/IAI.01365-15
Bitar A., Aung K.M., Wai S.N., Hammarström M.-L. Vibrio cholerae derived outer membrane vesicles modulate the inflammatory response of human intestinal epithelial cells by inducing microRNA-146a. Sci. Rep. 2019; 9(1):7212. DOI: 10.1038/s41598-019-43691-9..
DOI: 10.1038/s41598-019-43691-9
Altindis E., Fu Y., Mekalanos J.J. Proteomic analysis of Vibrio cholerae outer membrane vesicles. Proc. Natl Acad. Sci. USA. 2014; 111(15):E1548–56. DOI: 10.1073/pnas.1403683111..
DOI: 10.1073/pnas.1403683111
Sjöström A.E., Sandblad L., Uhlin B.E., Wai S.N. Membrane vesicle-mediated release of bacterial RNA. Sci. Rep. 2015; 5:15329. DOI: 10.1038/srep15329..
DOI: 10.1038/srep15329
Song T., Mika F., Lindmark B., Liu Z., Schild S., Bishop A., Zhu J., Camilli A., Johansson J., Vogel J., Wai S.N. A new Vibrio cholerae RNA modulates colonization and affects release of outer membrane vesicles. Mol. Microbiol. 2008; 70(1):100–11. DOI: 10.1111/j.1365-2958.2008.06392.x..
DOI: 10.1111/j.1365-2958.2008.06392.x
Zingl F.G., Kohl P., Cakar F., Leitner D.R., Mitterer F., Bonnington K.E., Rechberger G.N., Kuehn M.J., Guan Z., Reidl J., Schild S. Outer membrane vesiculation facilitates surface exchange and in vivo adaptation of Vibrio cholerae. Cell Host Microbe. 2020; 27(2):225–37.e8. DOI: 10.1016/j.chom.2019.12.002..
DOI: 10.1016/j.chom.2019.12.002
Fong J.N.C., Yildiz F.H. Biofilm matrix proteins. Microbiol. Spectr. 2015; 3(2). DOI: 10.1128/microbiolspec.MB-0004-2014..
DOI: 10.1128/microbiolspec.MB-0004-2014
Abd H., Saeed A., Weintraub A., Nair G.B., Sandström G. Vibrio cholerae O1 strains are facultative intracellular bacteria, able to survive and multiply symbiotically inside the aquatic free-living amoeba Acanthamoeba castellanii. FEMS Microbiol. Ecol. 2007; 60(1):33–9. DOI: 10.1111/j.1574-6941.2006.00254.x..
DOI: 10.1111/j.1574-6941.2006.00254.x
Valeru S.P., Shanan S., Alossimi H., Saeed A., Sandström G., Abd H. Lack of outer membrane protein a enhances the release of outer membrane vesicles and survival of Vibrio cholerae and suppresses viability of Acanthamoeba castellanii. Int. J. Microbiol. 2014; 2014:610190. DOI: 10.1155/2014/610190..
DOI: 10.1155/2014/610190
Reyes-Robles T., Dillard R.S., Cairns L.S., Silva-Valenzuela C.A., Housman M., Ali A., Wright E.R., Camilli A. Vibrio cholerae outer membrane vesicles inhibit bacteriophage infection. J. Bacteriol. 2018; 200(15):e00792-17. DOI: 10.1128/JB.00792-17..
DOI: 10.1128/JB.00792-17
Adriani R., Mousavi Gargari S.L., Nazarian S., Sarvary S., Noroozi N. Immunogenicity of Vibrio cholerae outer membrane vesicles secreted at various environmental conditions. Vaccine. 2018; 36(2):322–30. DOI: 10.1016/j.vaccine.2017.09.004..
DOI: 10.1016/j.vaccine.2017.09.004
Sedaghat M., Siadat S.D., Mirabzadeh E., Keramati M., Vaziri F., Shafiei M., Shahcheraghi F. Evaluation of antibody responses to outer membrane vesicles (OMVs) and killed whole cell of Vibrio cholerae O1 El Tor in immunized mice. Iran J. Microbiol. 2019; 11(3):212–9.
Wang Z., Lazinski D.W., Camilli A. Immunity provided by an outer membrane vesicle cholera vaccine is due to О-antigenspecific antibodies inhibiting bacterial motility. Infect. Immun. 2016; 85(1):e00626–16. DOI: 10.1128/IAI.00626-16..
DOI: 10.1128/IAI.00626-16
Sinha R., Howlader D.R., Ta A., Mitra S., Das S., Koley H. Retinoic acid pre-treatment down regulates V. cholerae outer membrane vesicles induced acute inflammation and enhances mucosal immunity. Vaccine. 2017; 35(28):3534–47. DOI: 10.1016/j.vaccine.2017.05.036..
DOI: 10.1016/j.vaccine.2017.05.036
Kolodziejek A.M., Caplan A.B., Bohach G.A., Paszczynski A.J., Minnich S.A., Hovde C.J. Physiological levels of glucose induce membrane vesicle secretion and affect the lipid and рrotein composition of Yersinia pestis cell surfaces. Appl. Environ. Microbiol. 2013; 79(14):4509–14. DOI: 10.1128/AEM.00675-13..
DOI: 10.1128/AEM.00675-13
Eddy J.L., Gielda L.M., Caulfield A.J., Rangel S.M., Lathem W.W. Production of outer membrane vesicles by the plague pathogen Yersinia pestis. PLoS One. 2014; 9(9):e107002. DOI: 10.1371/journal.pone.0107002..
DOI: 10.1371/journal.pone.0107002
Дудина Л.Г., Малкова М.А., Чернядьев А.В., Литвинец C.Г., Бывалов А.А. Влияние специфических бактериофагов и гентамицина на морфологию и везикулообразование бактерий Yersinia pestis EV. Проблемы особо опасных инфекций. 2019; 2:50–4. DOI: 10.21055/0370-1069-2019-2-50-54..
DOI: 10.21055/0370-1069-2019-2-50-54
Carvalho A.L., Miquel-Clopés A., Wegmann U., Jones E., Stentz R., Telatin A., Walker N.J., Butcher W.A., Brown P.J., Holmes S., Dennis M.J., Williamson E.D., Funnell S.G.P., Stock M., Carding S.R. Use of bioengineered human commensal gut bacteria-derived microvesicles for mucosal plague vaccine delivery and immunization. Clin. Exp. Immunol. 2019; 196(3):287–304. DOI: 10.1111/cei.13301..
DOI: 10.1111/cei.13301
Wang X., Singh A.K., Zhang X., Sun W. Induction of protective antiplague immune responses by self-adjuvanting bionanoparticles derived from engineered Yersinia pestis. Infect Immun. 2020; 88(5):e00081-20. DOI: 10.1128/IAI.00081-20..
DOI: 10.1128/IAI.00081-20
Олсуфьев Н.Г., Руднев Г.П., редакторы. Туляремия. М.: Медгиз; 1960. 460 с.
Pierson T., Matrakas D., Taylor Y.U., Manyam G., Morozov V.N., Zhou W., van Hoek M.L. Proteomic characterization and functional analysis of outer membrane vesicles of Francisella novicida suggests possible role in virulence and use as a vaccine. J. Proteome Res. 2011; 10(3):954–67. DOI: 10.1021/pr1009756..
DOI: 10.1021/pr1009756
McCaig W.D., Koller А., Thanassi D.G. Production of outer membrane vesicles and outer membrane tubes by Francisella novicida. J. Bacteriol. 2013; 195(6):1120–32. DOI: 10.1128/JB.02007-12..
DOI: 10.1128/JB.02007-12
Champion A.E., Bandara A.B., Mohapatra N., Fulton K.M., Twine S.M., Inzana T.J. Further characterization of the capsule- like complex (CLC) produced by Francisella tularensis subspecies tularensis: protective efficacy and similarity to outer membrane vesicles. Front. Cell Infect. Microbiol. 2018; 8:182. DOI: 10.3389/fcimb.2018.00182..
DOI: 10.3389/fcimb.2018.00182
Sampath V., McCaig W.D., Thanassi D.G. Amino acid deprivation and central carbon metabolism regulate the production of outer membrane vesicles and tubes by Francisella. Mol. Microbiol. 2018; 107(4):523–41. DOI: 10.1111/mmi.13897..
DOI: 10.1111/mmi.13897
Siebert C., Lindgren H., Ferré S., Villers C., Boisset S., Perard J., Sjöstedt A., Maurin M., Brochier-Armanet C., Couté Y., Renesto P. Francisella tularensis: FupA mutation contributes to fluoroquinolone resistance by increasing vesicle secretion and biofilm formation. Emerg. Microbes Infect. 2019; 8(1):808–22. DOI: 10.1080/22221751.2019.1615848..
DOI: 10.1080/22221751.2019.1615848
Chen F., Cui G., Wang S., Nair M.K. M., He L., Qi X., Han X., Zhang H., Zhang J.-R., Su J. Outer membrane vesicle-associated lipase FtlA enhances cellular invasion and virulence in Francisella tularensis LVS. Emerg. Microbes Infect. 2017; 6(7):с66. DOI: 10.1038/emi.2017.53..
DOI: 10.1038/emi.2017.53
Klimentova J., Pavkova I., Horcickova L., Bavlovic J., Kofronova O., Benada O., Stulik J. Francisella tularensis subsp. Holarctica releases differentially loaded outer membrane vesicles under various stress conditions. Front. Microbiol. 2019; 10:2304. DOI: 10.3389/fmicb.2019.02304..
DOI: 10.3389/fmicb.2019.02304
Chen L., Valentine J.L., Huang C.J., Endicott C.E., Moeller T.D., Rasmussen J.A., Fletcher J.R., Boll J.M., Rosenthal J.A., Dobruchowska J., Wang Z., Heiss C., Azadi P., Putnam D., Trent M.S., Jones B.D., DeLisa M.P. Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies. Proc. Natl Acad. Sci. USA. 2016; 113(26):E3609-18. DOI: 10.1073/pnas.1518311113..
DOI: 10.1073/pnas.1518311113
Gamazo C., Moriyon I. Release of outer membrane fragments by exponentially growing Brucella melitensis cells. Infect. Immun. 1987; 55(3):609–15. DOI: 10.1128/IAI.55.3.609-615.1987..
DOI: 10.1128/IAI.55.3.609-615.1987
Pollak C.N., Delpino M.V., Fossati C.A., Baldi P.C. Outer membrane vesicles from Brucella abortus promote bacterial internalization by human monocytes and modulate their innate immune response. PLoS One. 2012; 7(11):e50214. DOI: 10.1371/journal.pone.0050214..
DOI: 10.1371/journal.pone.0050214
Zavattieri L., Ferrero M.C., Alonso Paiva I.M., Sotelo A.D., Canellada A.M., Baldi P.C. Brucella abortus proliferates in decidualized and non-decidualized human endometrial cells inducing a proinflammatory response. Pathogens. 2020; 9(5):369. DOI: 10.3390/pathogens9050369..
DOI: 10.3390/pathogens9050369
Avila-Calderón E.D., Lopez-Merino A., Jain N., Peralta H., López-Villegas E.O., Sriranganathan N., Boyle S.M., Witonsky S., Contreras-Rodríguez A. Characterization of outer membrane vesicles from Brucella melitensis and protection induced in mice. Clin. Dev. Immunol. 2012; 2012:352493. DOI: 10.1155/2012/352493..
DOI: 10.1155/2012/352493
Avila-Calderón E.D., Medina-Chávez O., Flores-Romo L., Hernández-Hernández J.M., Donis-Maturano L., López-Merino A., Arellano-Reynoso B., Aguilera-Arreola M.G., Ruiz E.A., Gomez-Lunar Z., Witonsky S., Contreras-Rodríguez A. Outer membrane vesicles from Brucella melitensis modulate immune response and induce cytoskeleton rearrangement in peripheral blood mononuclear cells. Front Microbiol. 2020; 11:556795. DOI: 10.3389/fmicb.2020.556795..
DOI: 10.3389/fmicb.2020.556795
Kaur G., Singh S., Sunil Kumar B.V., Mahajan K., Verma R. Сharacterization and immunogenicity of outer membrane vesicles.
DOI: 10.1080/15321819.2015.1132231
from Brucella abortus. J. Immunoassay Immunochem. 2016; 37(3):261–72. DOI: 10.1080/15321819.2015.1132231..
DOI: 10.1080/15321819.2015.1132231
from Brucella abortus. J. Immunoassay Immunochem. 2016; 37(3):261–72. DOI: 10.1080/15321819.2015.1132231..
DOI: 10.1111/apm.12997
Bagheri Nejad R., Yahyaraeyat R., Es-Haghi A., Nayeri Fasayi B., Zahraei Salehi T. Induction of specific cell-mediated immune responses and protection in BALB/c mice by vaccination with outer membrane vesicles from a Brucella melitensis human isolate. APMIS. 2019; 127(12):797–804. DOI: 10.1111/apm.12997..
DOI: 10.1111/apm.12997
Bagheri Nejad R., Yahyaraeyat R., Es-Haghi A., Nayeri Fasayi B., Zahraei Salehi T. Induction of specific cell-mediated immune responses and protection in BALB/c mice by vaccination with outer membrane vesicles from a Brucella melitensis human isolate. APMIS. 2019; 127(12):797–804. DOI: 10.1111/apm.12997..
DOI: 10.1016/j.intimp.2020.106573
Golshani M., Amani M., Amirzadeh F., Nazeri E., Davar Siadat S., Nejati-Moheimani M., Arsang A., Bouzari S. Evaluation of Poly(I:C) and combination of CpG ODN plus Montanide ISA adjuvants to enhance the efficacy of outer membrane vesicles as an acellular vaccine against Brucella melitensis infection in mice. Int. Immunopharmacol. 2020; 84:106573. DOI: 10.1016/j.intimp.2020.106573..
DOI: 10.1016/j.intimp.2020.106573
Golshani M., Amani M., Amirzadeh F., Nazeri E., Davar Siadat S., Nejati-Moheimani M., Arsang A., Bouzari S. Evaluation of Poly(I:C) and combination of CpG ODN plus Montanide ISA adjuvants to enhance the efficacy of outer membrane vesicles as an acellular vaccine against Brucella melitensis infection in mice. Int. Immunopharmacol. 2020; 84:106573. DOI: 10.1016/j.intimp.2020.106573..
DOI: 10.1371/journal.pone.0014361
Nieves W., Heang J., Asakrah S., Höner zu Bentrup K., Roy C.J., Morici L.A. Immunospecific responses to bacterial elongation factor Tu during Burkholderia infection and immunization. PLoS One. 2010; 5(12):e14361. DOI: 10.1371/journal.pone.0014361..
DOI: 10.1371/journal.pone.0014361
Nieves W., Heang J., Asakrah S., Höner zu Bentrup K., Roy C.J., Morici L.A. Immunospecific responses to bacterial elongation factor Tu during Burkholderia infection and immunization. PLoS One. 2010; 5(12):e14361. DOI: 10.1371/journal.pone.0014361..
DOI: 10.1016/j.vaccine.2011.08.058
Nieves W., Asakrah S., Qazi O., Brown K.A., Kurtz J., Aucoin D.P., McLachlan J.B., Roy C.J., Morici L.A. A naturally derived outer-membrane vesicle vaccine protects against lethal pulmonary Burkholderia pseudomallei infection. Vaccine. 2011; 29(46):8381–9. DOI: 10.1016/j.vaccine.2011.08.058..
DOI: 10.1016/j.vaccine.2011.08.058
Nieves W., Asakrah S., Qazi O., Brown K.A., Kurtz J., Aucoin D.P., McLachlan J.B., Roy C.J., Morici L.A. A naturally derived outer-membrane vesicle vaccine protects against lethal pulmonary Burkholderia pseudomallei infection. Vaccine. 2011; 29(46):8381–9. DOI: 10.1016/j.vaccine.2011.08.058..
DOI: 10.1128/CVI.00119-14
Nieves W., Petersen H., Judy B.M., Blumentritt C.A., Russell-Lodrigue K., Roy C.J., Torres A.G., Morici L.A. A Burkholderia pseudomallei outer membrane vesicle vaccine provides protection against lethal sepsis. Clin. Vaccine Immunol. 2014; 21(5):747–54. DOI: 10.1128/CVI.00119-14..
DOI: 10.1128/CVI.00119-14
Nieves W., Petersen H., Judy B.M., Blumentritt C.A., Russell-Lodrigue K., Roy C.J., Torres A.G., Morici L.A. A Burkholderia pseudomallei outer membrane vesicle vaccine provides protection against lethal sepsis. Clin. Vaccine Immunol. 2014; 21(5):747–54. DOI: 10.1128/CVI.00119-14..
DOI: 10.1016/j.provac.2014.07.007
Petersen H., Nieves W., Russell-Lodrigue K., Roy C.J., Morici L.A. Evaluation of a Burkholderia pseudomallei outer membrane vesicle vaccine in nonhuman primates. Procedia Vaccinol. 2014; 8:38–42. DOI: 10.1016/j.provac.2014.07.007..
DOI: 10.1016/j.provac.2014.07.007
Petersen H., Nieves W., Russell-Lodrigue K., Roy C.J., Morici L.A. Evaluation of a Burkholderia pseudomallei outer membrane vesicle vaccine in nonhuman primates. Procedia Vaccinol. 2014; 8:38–42. DOI: 10.1016/j.provac.2014.07.007..
DOI: 10.3390/vaccines5040049
Baker S.M., Davitt C.J.H., Motyka N., Kikendall N.L., Russell-Lodrigue K., Roy C.J., Morici L.A. A Burkholderia pseudomallei outer membrane vesicle vaccine provides cross protection against inhalational glanders in mice and non-human primates. Vaccines (Basel). 2017; 5(4):49. DOI: 10.3390/vaccines5040049..
DOI: 10.3390/vaccines5040049
Baker S.M., Davitt C.J.H., Motyka N., Kikendall N.L., Russell-Lodrigue K., Roy C.J., Morici L.A. A Burkholderia pseudomallei outer membrane vesicle vaccine provides cross protection against inhalational glanders in mice and non-human primates. Vaccines (Basel). 2017; 5(4):49. DOI: 10.3390/vaccines5040049..
DOI: 10.3390/vaccines6010005
Norris M.H., Khan M.S.R., Chirakul S., Schweizer H.P., Tuanyok A. Outer membrane vesicle vaccines from biosafe surrogates prevent acute lethal glanders in mice. Vaccines (Basel). 2018; 6(1):5. DOI: 10.3390/vaccines6010005..
DOI: 10.3390/vaccines6010005
Norris M.H., Khan M.S.R., Chirakul S., Schweizer H.P., Tuanyok A. Outer membrane vesicle vaccines from biosafe surrogates prevent acute lethal glanders in mice. Vaccines (Basel). 2018; 6(1):5. DOI: 10.3390/vaccines6010005..
DOI: 10.1073/pnas.1008843107
Rivera J., Cordero R.J., Nakouzi A.S., Frases S., Nicola A., Casadevall A. Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc. Natl Acad. Sci. USA. 2010; 107(44):19002–7. DOI: 10.1073/pnas.1008843107..
DOI: 10.1073/pnas.1008843107