Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
ГлавнаяРезультаты поиска
Статья; ОбзорИскать документыПерейти к записи. 2022; Т. 16, № 2: 92–98. DOI:10.14412/1996-7012-2022-2-92-98
Анализ механизмов развития нейроревматологических последствий COVID-19 и возможности их фармакологической коррекции
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[2,3]
Искать документыПерейти к записи[4]
Искать документыПерейти к записи[4]
Искать документыПерейти к записи[5]
Искать документыПерейти к записи[3]
Аффилированные организации
[1]Искать документыПерейти к записи
[2]Искать документыПерейти к записи
[4]Искать документыПерейти к записи
[5]Искать документыПерейти к записи
[3]Искать документыПерейти к записи
Аннотация
Представлен обзор клинических и экспериментальных исследований, посвященных патогенезу нейроревматологических осложнений (НРО) при COVID-19. Проанализировано влияние системного гипервоспаления, вызванного нарушением врожденного иммунитета, на функционирование нейроваскулярного эндотелия и гематоэнцефалического барьера, активацию сигнальных путей врожденного иммунитета и параинфекционного аутоиммунитета в центральной нервной системе. Показано, что гипервоспаление способствует развитию НРО COVID-19. Рассмотрена потенциальная терапевтическая эффективность лекарственных препаратов, в том числе на основе хондроитина сульфата, которые могут использоваться для профилактики и лечения НРО COVID-19.
Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Рубрики Mesh
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Nouh A, Carbunar O, Ruland S. Neurology of rheumatologic disorders. Curr Neurol Neurosci Rep. 2014 Jul;14(7):456. doi: 10.1007/s11910-014-0456-6..
DOI: 10.1007/s11910-014-0456-6

Грачев ЮВ. Нейроревматология – междисциплинарное клиническое направление. Характеристика и классификация неврологических проявлений системных ревматических заболеваний. Нейронауки. 2005;(1):54-7.

Раскина ТА, Семенов ВА, Королева МВ, Летаева МВ. Неврологические проявления системных ревматических заболеваний. Возможности фармакологической коррекции. Совpeменная ревматология. 2011;11(4):61-5..
DOI: 10.14412/1996-7012-2011-701

Hua LH, Obeidat AZ, Longbrake EE. Outcomes and future directions for neuroimmunology/multiple sclerosis fellowship training: Survey of recent trainees. Mult Scler Relat Disord. 2020 Sep;44:102296. doi: 10.1016/j.msard.2020.102296.
DOI: 10.1016/j.msard.2020.102296

Liampas A, Nteveros A, Parperis K, et al. Primary Sjцgren's syndrome (pSS)-related cerebellar ataxia: a systematic review and metaanalysis. Acta Neurol Belg. 2021 Oct 5. doi: 10.1007/s13760-021-01784-1. Online ahead of print..
DOI: 10.1007/s13760-021-01784-1. Online ahead of print

Goglin S, Cho TA. Clinical approach to neuro-rheumatology. J Neurol Sci. 2021 Dec 15;431:120048. doi: 10.1016/j.jns.2021.120048.
DOI: 10.1016/j.jns.2021.120048

Чучалин АГ, редактор. Микронутриенты против коронавирусов. Москва: ГЭОТАРМедиа; 2020. 112 с.

Schett G, Sticherling M, Neurath M. COVID-19: risk for cytokine targeting in chronic inflammatory diseases? Nat Rev Immunol. 2020 May;20(5):271-2. doi: 10.1038/s41577-020-0312-7..
DOI: 10.1038/s41577-020-0312-7

Pascolini S, Vannini A, Deleonardi G, et al. COVID-19 and immunological dysregulation: can autoantibodies be useful? Clin Transl Sci. 2021 Mar;14(2):502-8. doi: 10.1111/cts.12908..
DOI: 10.1111/cts.12908

Epub 2021 Jan 20.

Mahmudpour M, Roozbeh J, Keshavarz M, et al. COVID-19 cytokine storm: the anger of inflammation. Cytokine. 2020 Sep;133:155151. doi: 10.1016/j.cyto.2020.155151. Epub 2020 May 30..
DOI: 10.1016/j.cyto.2020.155151. Epub 2020 May 30

Liua Y, Sawalhab A, Lua Q. COVID-19 and autoimmune diseases. Curr Opin Rheumatol. 2021 Mar 1;33(2):155-62. doi: 10.1097/BOR.0000000000000776..
DOI: 10.1097/BOR.0000000000000776

Najjar S, Najjar A, Chong D, et al. Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of pathophysiology and case reports. J Neuroinflammation. 2020 Aug 6;17(1):231. doi: 10.1186/s12974-020-01896-0..
DOI: 10.1186/s12974-020-01896-0

Yong S. Persistent brainstem dysfunction in long-COVID: a hypothesis. ACS Chem Neurosci. 2021 Feb 17;12(4):573-80. doi: 10.1021/acschemneuro.0c00793. Epub 2021 Feb 4..
DOI: 10.1021/acschemneuro.0c00793. Epub 2021 Feb 4

Taboada M, Carinena A, Moreno E, et al. Post-COVID-19 functional status six-months after hospitalization. J Infect. 2021 Apr;82(4):e31-e33. doi: 10.1016/j.jinf.2020.12.022. Epub 2020 Dec 26..
DOI: 10.1016/j.jinf.2020.12.022. Epub 2020 Dec 26

Белопасов ВВ, Яшу Я, Самойлова ЕМ, Баклаушев ВП. Поражение нервной системы при COVID-19. Клиническая практика. 2020;11(2):60-80.

Waheed S, Bayas A, Hindi F, et al. Neurological complications of COVID-19: GuillainBarre syndrome following pfizer COVID-19 vaccine. Cureus. 2021 Feb 18;13(2):e13426. doi: 10.7759/cureus.13426..
DOI: 10.7759/cureus.13426

Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020 May;94:55-8. doi: 10.1016/j.ijid.2020.03.062. Epub 2020 Apr 3..
DOI: 10.1016/j.ijid.2020.03.062. Epub 2020 Apr 3

Poyiadji N, Shahin G, Noujaim D, et al. COVID-19-associated Acute Hemorrhagic Necrotizing Encephalopathy: CT and MRI Features. Radiology. 2020 Aug;296(2):E119-E120. doi: 10.1148/radiol.2020201187. Epub 2020 Mar 31..
DOI: 10.1148/radiol.2020201187. Epub 2020 Mar 31

Rossi A. Imaging of acute disseminated encephalomyelitis. Neuroimaging Clin N Am. 2008 Feb;18(1):149-61; ix. doi: 10.1016/j.nic.2007.12.007..
DOI: 10.1016/j.nic.2007.12.007

Li Y, BaiW, Hirano N, et al. Neurotropic virus tracing suggests a membranous-coatingmediated mechanism for transsynaptic communication. J Comp Neurol. 2013 Jan 1; 521(1):203-12. doi: 10.1002/cne.23171..
DOI: 10.1002/cne.23171

Baig A. Neurological manifestations in COVID-19 caused by SARS-CoV-2. CNS Neurosci Ther. 2020 May;26(5):499-501. doi: 10.1111/cns.13372. Epub 2020 Apr 7..
DOI: 10.1111/cns.13372. Epub 2020 Apr 7

Baig A, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci. 2020 Apr 1; 11(7):995-8. doi: 10.1021/acschemneuro.0c00122. Epub 2020 Mar 13..
DOI: 10.1021/acschemneuro.0c00122. Epub 2020 Mar 13

Wang K, Chen W, Sen Zhou Y, et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv. 2020:2020.03.14.988345. doi:10.1101/2020.03.14.988345.
DOI: 10.1101/2020.03.14.988345

Cantuti-Castelvetri L, Ojha R, Pedro L, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and provides a possible pathway into the central nervous system. bioRxiv. 2020:2020.06.07.137802. doi:10.1101/2020.06.07.137802.
DOI: 10.1101/2020.06.07.137802

Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16;181(2):271-80.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5..
DOI: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5

Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020 Apr 23;382(17):e38. doi: 10.1056/NEJMc2007575. Epub 2020 Apr 8..
DOI: 10.1056/NEJMc2007575. Epub 2020 Apr 8

Xu X, Yu C, Qu J, et al. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. Eur J Nucl Med Mol Imaging. 2020 May;47(5):1275-80. doi: 10.1007/s00259-020-04735-9. Epub 2020 Feb 28..
DOI: 10.1007/s00259-020-04735-9. Epub 2020 Feb 28

Lou J, Movassaghi M, Gordy D, et al. Neuropathology of COVID-19 (neuroCOVID): clinicopathological update. Free Neuropathol. 2021 Jan 18;2:2. doi: 10.17879/freeneuropathology-2021-2993..
DOI: 10.17879/freeneuropathology-2021-2993

Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020 Apr;8(4):420-422. doi: 10.1016/S2213-2600(20)30076-X. Epub 2020 Feb 18..
DOI: 10.1016/S2213-2600(20)30076-X. Epub 2020 Feb 18

Liu J, Li S, Liang B, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020 May;55:102763. doi: 10.1016/j.ebiom.2020.102763. Epub 2020 Apr 18..
DOI: 10.1016/j.ebiom.2020.102763. Epub 2020 Apr 18

MuskardinW. Intravenous Anakinra for macrophage activation syndrome may hold lessons for treatment of cytokine storm in the setting of coronavirus disease 2019. ACR Open Rheumatol. 2020 May;2(5):283-5. doi: 10.1002/acr2.11140. Epub 2020 May 10..
DOI: 10.1002/acr2.11140. Epub 2020 May 10

Park M. Macrophages: a Trojan horse in COVID-19? Nat Rev Immunol. 2020 Jun; 20(6):351. doi: 10.1038/s41577-020-0317-2..
DOI: 10.1038/s41577-020-0317-2

Conti P, Caraffa A, Tete` G, et al. Mast cells activated by SARS-CoV-2 release histamine which increases IL-1 levels causing cytokine storm and inflammatory reaction in COVID-19. J Biol Regul Homeost Agents. 2020 Sep-Oct,;34(5):1629-32. doi: 10.23812/20-2EDIT..
DOI: 10.23812/20-2EDIT

Oliviero B, Varchetta S, Mele D, et al. Expansion of atypical memory B cells is a prominent feature of COVID-19. Cell Mol Immunol. 2020 Oct;17(10):1101-3. doi: 10.1038/s41423-020-00542-2. Epub 2020 Sep 2..
DOI: 10.1038/s41423-020-00542-2. Epub 2020 Sep 2

Sommer A, Marxreiter F, Krach F, et al. Th17 Lymphocytes induce neuronal cell death in a human iPSC-based model of Parkinson’s disease. Cell Stem Cell. 2019 Jun 6;24(6):1006. doi: 10.1016/j.stem.2019.04.019..
DOI: 10.1016/j.stem.2019.04.019

Khan Z, Ahmad U, Ualiyeva D, et al. Guillain-Barre syndrome: An autoimmune disorder post-COVID-19 vaccination? Clinical Immunology Communications. 2022;(2):1-5. doi: 10.1016/j.clicom.2021.12.002.
DOI: 10.1016/j.clicom.2021.12.002

Marra A, Vargas M, Striano P, et al. Posterior reversible encephalopathy syndrome: the endothelial hypotheses. Med Hypotheses. 2014 May;82(5):619-22. doi: 10.1016/j.mehy.2014.02.022. Epub 2014 Mar 1..
DOI: 10.1016/j.mehy.2014.02.022. Epub 2014 Mar 1

Pusch E, Renz H, Skevaki C. Respiratory virus-induced heterologous immunity:part of the problem or part of the solution? Allergo J. 2018;27(3):28-45. doi: 10.1007/s15007-018-1580-4. Epub 2018 Apr 26..
DOI: 10.1007/s15007-018-1580-4. Epub 2018 Apr 26

Pohl D, Alper G, van Haren K, et al. Acute disseminated encephalomyelitis:updates on an inflammatory CNS syndrome. Neurology. 2016 Aug 30;87(9 Suppl 2):S38-45. doi: 10.1212/WNL.0000000000002825..
DOI: 10.1212/WNL.0000000000002825

Esmaeilzadeh A, Elahi R. Immunobiology and immunotherapy of COVID-19: a clinically updated overview. J Cell Physiol. 2021 Apr;236(4):2519-43. doi: 10.1002/jcp.30076. Epub 2020 Oct 6..
DOI: 10.1002/jcp.30076. Epub 2020 Oct 6

Barlow A, Landolf K, Barlow B, et al. Review of emerging pharmacotherapy for the treatment of coronavirus disease 2019. Pharmacotherapy. 2020 May;40(5):416-37. doi: 10.1002/phar.2398. Epub 2020 May 6..
DOI: 10.1002/phar.2398. Epub 2020 May 6

Stroud C, Hegde A, Cherry C, et al. Tocilizumab for the management of immune mediated adverse events secondary to PD-1 blockade. J Oncol Pharm Pract. 2019 Apr;25(3):551-7. doi: 10.1177/1078155217745144. Epub 2017 Dec 5..
DOI: 10.1177/1078155217745144. Epub 2017 Dec 5

Giovannoni G, Hawkes C, Lechner-Scott J, et al. The COVID-19 pandemic and the use of MS disease-modifying therapies. Mult Scler Relat Disord. 2020 Apr;39:102073. doi: 10.1016/j.msard.2020.102073. Epub 2020 Mar 27..
DOI: 10.1016/j.msard.2020.102073. Epub 2020 Mar 27

Willis M, Robertson N. Multiple sclerosis and the risk of infection: Considerations in the threat of the novel coronavirus, COVID-19/SARS-CoV-2. J Neurol. 2020 May; 267(5):1567-9. doi: 10.1007/s00415-020-09822-3..
DOI: 10.1007/s00415-020-09822-3

Novi G, Mikulska M, Briano F, et al. COVID-19 in a MS patient treated with ocrelizumab: Does immunosupression have a protective role? Mult Scler Relat Disord. 2020 Jul; 42:102120. doi: 10.1016/j.msard.2020.102120. Epub 2020 Apr 15..
DOI: 10.1016/j.msard.2020.102120. Epub 2020 Apr 15

Торшин ИЮ, Громова ОА, Чучалин АГ, Журавлев ЮИ. Хемореактомный скрининг воздействия фармакологических препаратов на SARS-CoV-2 и виром человека как информационная основа для принятия решений по фармакотерапии COVID-19. Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2021;14(2):191-211.

https://clinicaltrials.gov/ct2/show/NCT04276688https://clinicaltrials.gov/ct2/show/NCT04276688

https://clinicaltrials.gov/ct2/show/NCT04276688https://clinicaltrials.gov/ct2/show/NCT04276688

https://clinicaltrials.gov/ct2/show/NCT04280588https://clinicaltrials.gov/ct2/show/NCT04280588

https://clinicaltrials.gov/ct2/show/NCT04280588https://clinicaltrials.gov/ct2/show/NCT04280588

Paul A, Hossain M, Mahboob T, et al. Does Oxidative Stress Management Help Alleviation of COVID-19 Symptoms in Patients Experiencing Diabetes? Nutrients. 2022 Jan 13;14(2):321. doi: 10.3390/nu14020321..
DOI: 10.3390/nu14020321

Громова ОА, Торшин ИЮ, Путилина МВ и др. Ноцицепция: роли витамина D. Неврология, нейропсихиатрия, психосоматика. 2021;13(1):145-53..
DOI: 10.14412/2074-2711-2021-1-145-153

Theoharides T. COVID-19, pulmonary mast cells, cytokine storms, and beneficial actions of luteolin. Biofactors. 2020 May;46(3):306-8. doi: 10.1002/biof.1633. Epub 2020 Apr 27..
DOI: 10.1002/biof.1633. Epub 2020 Apr 27

Gigante A, Aquili A, Farinelli L, et al. Sodium chromo-glycate and palmitoylethanolamide: a possible strategy to treat mast cell-induced lung inflammation in COVID-19. Med Hypotheses. 2020 Oct;143:109856. doi: 10.1016/j.mehy.2020.109856. Epub 2020 May 19..
DOI: 10.1016/j.mehy.2020.109856. Epub 2020 May 19

Торшин ИЮ, Громова ОА, Нечаева ГИ, Рейер ИА. Систематический анализ молекулярно-биологических механизмов поддержки хондроитина сульфатом метаболизма соединительной ткани. Неврология, нейропсихиатрия, психосоматика. 2021;13(1):154-62..
DOI: 10.14412/2074-2711-2021-1-154-162

Gross A, Theoharides T. Chondroitin sulfate inhibits secretion of TNF and CXCL8 from human mast cells stimulated by IL-33. Biofactors. 2019 Jan;45(1):49-61. doi: 10.1002/biof.1464. Epub 2018 Dec 6..
DOI: 10.1002/biof.1464. Epub 2018 Dec 6

Kempuraj D, Selvakumar G, Ahmed M, et al. COVID-19, mast cells, cytokine storm, psychological stress, and neuroinflammation. Neuroscientist. Oct-Dec 2020;26(5-6):402-14. doi: 10.1177/1073858420941476. Epub 2020 Jul 18..
DOI: 10.1177/1073858420941476. Epub 2020 Jul 18

Торшин ИЮ, Громова ОА, Лила АМ и др. Толл-подобные рецепторы как компонент патофизиологии остеоартрита: противовоспалительное, анальгетическое и нейропротекторное действие. Неврология, нейропсихиатрия, психосоматика. 2021;13(4):123-9..
DOI: 10.14412/2074-2711-2021-4-123-129

Торшин ИЮ, Лила АМ, Наумов АВ и др. Метаанализ клинических исследований эффективности лечения остеоартита препаратом Хондрогард. Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2020;13(4):388-99.

https://www.sciencedirect.com/journal/journal-of-the-neurological-sciences/specialissue/109QBJSVZ2Thttps://www.sciencedirect.com/journal/journal-of-the-neurological-sciences/specialissue/109QBJSVZ2T

https://www.sciencedirect.com/journal/journal-of-the-neurological-sciences/specialissue/109QBJSVZ2Thttps://www.sciencedirect.com/journal/journal-of-the-neurological-sciences/specialissue/109QBJSVZ2T

Дополнительная информация
Язык текста: Русский
ISSN: 1996-7012
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4e432d4d524a2d41525449434c452d323032322d31362d322d302d39322d3938/