Осочук С. С., Коцур Ю. М., Пожарицкая О. Н., Флисюк Е. В., Смехова И. Е., Малков С. Д., Зарифи К. О., Титович И. А., Красова Е. К., Шиков А. Н. Липосомы – метаболически активные транспортные системы лекарственных средств: классификация, составные компоненты, способы изготовления и стабилизации. Часть 1. Разработка и регистрация лекарственных средств. 2024;4. DOI: 10.33380/2305-2066-2024-13-4-1867..
DOI: 10.33380/2305-2066-2024-13-4-1867
Bibi S., Kaur R., Henriksen-Lacey M., McNeil S. E., Wilkhu J., Lattmann E., Christensen D., Mohammed A. R., Perrie Y. Microscopy imaging of liposomes: from coverslips to environmental SEM. International Journal of Pharmaceutics. 2011;417(1–2):138–150. DOI: 10.1016/j.ijpharm.2010.12.021..
DOI: 10.1016/j.ijpharm.2010.12.021
Nallamothu R., Wood G. C., Pattillo C. B., Scott R. C., Kiani M. F., Moore B. M., Thoma L. A. A tumor vasculature targeted liposome delivery system for combretastatin A4: Design, characterization, and in vitro evaluation. AAPS PharmSciTech. 2006;7(2):E32. DOI: 10.1208/pt070232..
DOI: 10.1208/pt070232
Bouvrais H., Pott T., Bagatolli L. A., Ipsen J. H., Méléard P. Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers. Biochimica et Biophysica Acta (BBA) – Biomembranes. 2010;1798(7):1333–1337. DOI: 10.1016/j.bbamem.2010.03.026..
DOI: 10.1016/j.bbamem.2010.03.026
Klymchenko A. S., Oncul S., Didier P., Schaub E., Bagatolli L., Duportail G., Mély Y. Visualization of lipid domains in giant unilamellar vesicles using an environment-sensitive membrane probe based on 3-hydroxyflavone. Biochimica et Biophysica Acta (BBA) – Biomembranes. 2009;1788(2):495–499. DOI: 10.1016/j.bbamem.2008.10.019..
DOI: 10.1016/j.bbamem.2008.10.019
Mertins O., Dimova R. Insights on the interactions of chitosan with phospholipid vesicles. Part II: membrane stiffening and pore formation. Langmuir. 2013;29(47):14552–14559. DOI: 10.1021/la4032199..
DOI: 10.1021/la4032199
Ruozi B., Belletti D., Tombesi A., Tosi G., Bondioli L., Forni F., Vandelli M. A. AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study. International Journal of Nanomedicine. 2011;6:557–563. DOI: 10.2147/IJN.S14615..
DOI: 10.2147/IJN.S14615
Karakas C. Y., Ustundag C. B., Sahin A., Karadag A. Co-axial electrospinning of liposomal propolis loaded gelatin-zein fibers as a potential wound healing material. Journal of Applied Polymer Science. 2023;140(46):e54683. DOI: 10.1002/app.54683..
DOI: 10.1002/app.54683
Johnston M. J. W., Edwards K., Karlsson G., Cullis P. R. Influence of drug-to-lipid ratio on drug release properties and liposome integrity in liposomal doxorubicin formulations. Journal of Liposome Research. 2008;18(2):145–157. DOI: 10.1080/08982100802129372..
DOI: 10.1080/08982100802129372
Zhigaltsev I. V., Maurer N., Akhong Q.-F., Leone R., Leng E., Wang J., Semple S. C., Cullis P. R. Liposome-encapsulated vincristine, vinblastine and vinorelbine: a comparative study of drug loading and retention. Journal of Controlled Release. 2005;104(1):103–111. DOI: 10.1016/j.jconrel.2005.01.010..
DOI: 10.1016/j.jconrel.2005.01.010
Damari S. P., Shamrakov D., Varenik M., Koren E., Nativ-Roth E., Barenholz Y., Regev O. Practical aspects in size and morphology characterization of drug-loaded nano-liposomes. International Journal of Pharmaceutics. 2018;547(1–2):648–655. DOI: 10.1016/j.ijpharm.2018.06.037..
DOI: 10.1016/j.ijpharm.2018.06.037
Kuntsche J., Horst J. C., Bunjes H. Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. International Journal of Pharmaceutics. 2011;417(1–2):120–137. DOI: 10.1016/j.ijpharm.2011.02.001..
DOI: 10.1016/j.ijpharm.2011.02.001
Resnik N., Romih R., Kreft M. E., Hudoklin S. Freeze-fracture electron microscopy for extracellular vesicle analysis. Journal of Visualized Experiments. 2022;187:e63550. DOI: 10.3791/63550..
DOI: 10.3791/63550
Perrie Y., Ali H., Kirby D. J., Mohammed A. U. R., McNeil S. E., Vangala A. Environmental scanning electron microscope imaging of vesicle systems. Methods in Molecular Biology. 2017;1522:131–143. DOI: 10.1007/978-1-4939-6591-5_11..
DOI: 10.1007/978-1-4939-6591-5_11
Takahashi N., Higashi K., Ueda K., Yamamoto K., Moribe K. Determination of nonspherical morphology of doxorubicin-loaded liposomes by atomic force microscopy. Journal of Pharmaceutical Sciences. 2018;107(2):717–726. DOI: 10.1016/j.xphs.2017.10.009..
DOI: 10.1016/j.xphs.2017.10.009
Ruozi B., Tosi G., Leo E., Vandelli M. A. Application of atomic force microscopy to characterize liposomes as drug and gene carriers. Talanta. 2007;73(1):12–22. DOI: 10.1016/j.talanta.2007.03.031..
DOI: 10.1016/j.talanta.2007.03.031
Ле-Дейген И. М., Скуредина А. А., Кудряшова Е. В. Экспериментальные методы исследования механизма взаимодействия липидных мембран с низкомолекулярными лекарствами. Биоорганическая химия. 2020;46(4):340–359. DOI: 10.31857/S013234232004017X..
DOI: 10.31857/S013234232004017X
Швецов И. С. Влияние pН среды гидратируемого раствора на морфологические характеристики лецитиновых липосом. Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. 2021;(5):236–240. DOI: 10.37882/2223-2966.2021.05.36..
DOI: 10.37882/2223-2966.2021.05.36
Бурдаев Н. И., Николаева Л. Л., Косенко В. В., Шпрах З. С., Бунятян Н. Д. Липосомы как носители лекарственных средств: классификация, методы получения и применение. Ведомости Научного центра экспертизы средств медицинского применения. Регуляторные исследования и экспертиза лекарственных средств. 2023;13(2–1):316–332. DOI: 10.30895/1991-2919-2023-508..
DOI: 10.30895/1991-2919-2023-508
Bagatolli L. A. Membranes and Fluorescence Microscopy. Reviews in Fluorescence. 2009;33–51. DOI: 10.1007/978-0-387-88722-7_2..
DOI: 10.1007/978-0-387-88722-7_2
Murphy D. B., Davidson M. W. Polarization Microscopy. In: Fundamentals of Light Microscopy and Electronic Imaging. New Jersey: John Wiley & Sons, Inc.; 2012. P. 153–171. DOI: 10.1002/9781118382905..
DOI: 10.1002/9781118382905
Murphy D. B., Davidson M. W. Fluorescence Microscopy. In: Fundamentals of Light Microscopy and Electronic Imaging. New Jersey: John Wiley & Sons, Inc.; 2012. P. 199–231. DOI: 10.1002/9781118382905.ch11..
DOI: 10.1002/9781118382905.ch11
Murphy D. B., Davidson M. W. Confocal Laser Scanning Microscopy. In: Fundamentals of Light Microscopy and Electronic Imaging. New Jersey: John Wiley & Sons, Inc.; 2012. P. 265–305. DOI: 10.1002/9781118382905.ch13..
DOI: 10.1002/9781118382905.ch13
Henry C. R. Morphology of supported nanoparticles. Progress in Surface Science. 2005;80(3–4):92–116. DOI: 10.1016/j.progsurf.2005.09.004..
DOI: 10.1016/j.progsurf.2005.09.004
Robson A.-L., Dastoor P. C., Flynn J., Palmer W., Martin A., Smith D. W., Woldu A., Hua S. Advantages and limitations of current imaging techniques for characterizing liposome morphology. Frontiers in Pharmacology. 2018;9:328115. DOI: 10.3389/fphar.2018.00080..
DOI: 10.3389/fphar.2018.00080
Adler K., Schiemann J. Characterization of liposomes by scanning electron microscopy and the freeze-fracture technique. Micron and Microscopica Acta. 1985;16(2):109–113. DOI: 10.1016/0739-6260(85)90039-5..
DOI: 10.1016/0739-6260(85)90039-5
Baxa U. Imaging of liposomes by transmission electron microscopy. Methods in Molecular Biology. 2018;1682:73–88. DOI: 10.1007/978-1-4939-7352-1_8..
DOI: 10.1007/978-1-4939-7352-1_8
Anabousi S., Laue M., Lehr C.-M., Bakowsky U., Ehrhardt C. Assessing transferrin modification of liposomes by atomic force microscopy and transmission electron microscopy. European Journal of Pharmaceutics and Biopharmaceutics. 2005;60(2):295–303. DOI: 10.1016/j.ejpb.2004.12.009..
DOI: 10.1016/j.ejpb.2004.12.009
Dürr V., Wohlfart S., Eisenzapf T., Mier W., Fricker G., Uhl P. Oral Delivery of mRNA by Liposomes Functionalized with Cell-Penetrating Peptides. Applied Nano. 2023;4(4):293–308. DOI: 10.3390/applnano4040017..
DOI: 10.3390/applnano4040017
Mohammed A. R., Weston N., Coombes A. G. A., Fitzgerald M., Perrie Y. Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability. International Journal of Pharmaceutics. 2004;285(1–2):23–34. DOI: 10.1016/j.ijpharm.2004.07.010..
DOI: 10.1016/j.ijpharm.2004.07.010
Sitterberg J., Özcetin A., Ehrhardt C., Bakowsky U. Utilising atomic force microscopy for the characterisation of nanoscale drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics. 2010;74(1):2–13. DOI: 10.1016/j.ejpb.2009.09.005..
DOI: 10.1016/j.ejpb.2009.09.005
Engelhardt K., Preis E., Bakowsky U. Visualization and characterization of liposomes by atomic force microscopy. In: Liposomes. Methods and Protocols. New York: Springer Nature; 2023. P. 253–263. DOI: 10.1007/978-1-0716-2954-3_23..
DOI: 10.1007/978-1-0716-2954-3_23
Sheikholeslami B., Lam N. W., Dua K., Haghi M. Exploring the impact of physicochemical properties of liposomal formulations on their in vivo fate. Life Sciences. 2022;300:120574. DOI: 10.1016/j.lfs.2022.120574..
DOI: 10.1016/j.lfs.2022.120574
Paramshetti S., Angolkar M., Talath S., Osmani R. A. M., Spandana A., Al Fatease A., Hani U., Ramesh K. V. R. N. S., Singh E. Unravelling the in vivo dynamics of liposomes: Insights into biodistribution and cellular membrane interactions. Life Sciences. 2024;346:122616. DOI: 10.1016/j.lfs.2024.122616..
DOI: 10.1016/j.lfs.2024.122616
Su J., Lu W., Guo Y., Liu Z., Wang X., Yan H., Zhang R. X. Depot unilamellar liposomes to sustain transscleral drug Co-delivery for ophthalmic infection therapy. Journal of Drug Delivery Science and Technology. 2023;86:104629. DOI: 10.1016/j.jddst.2023.104629..
DOI: 10.1016/j.jddst.2023.104629
Tian H., Chang M., Lyu Y., Dong N., Yu N., Yin T., Zhang Y., He H., Gou J., Tang X. Intramuscular injection of palmitic acid-conjugated Exendin-4 loaded multivesicular liposomes for long-acting and improving in-situ stability. Expert Opinion on Drug Delivery. 2024;21(1):169–185. DOI: 10.1080/17425247.2024.2305110..
DOI: 10.1080/17425247.2024.2305110
Peng J., Wang Q., Sun R., Zhang K., Chen Y., Gong Z. Phospholipids of inhaled liposomes determine the in vivo fate and therapeutic effects of salvianolic acid B on idiopathic pulmonary fibrosis. Journal of Controlled Release. 2024;371:1–15. DOI: 10.1016/j.jconrel.2024.05.026..
DOI: 10.1016/j.jconrel.2024.05.026
Duong V.-A., Nguyen T.-T.-L., Maeng H.-J. Recent advances in intranasal liposomes for drug, gene, and vaccine delivery. Pharmaceutics. 2023;15(1):207. DOI: 10.3390/pharmaceutics15010207..
DOI: 10.3390/pharmaceutics15010207
Liu J., Zheng A., Peng B., Xu Y., Zhang N. Size-dependent absorption through stratum corneum by drug-loaded liposomes. Pharmaceutical Research. 2021;38:1429–1437. DOI: 10.1007/s11095-021-03079-9..
DOI: 10.1007/s11095-021-03079-9
Li H., Tang Q., Wang Y., Li M., Wang Y., Zhu H., Geng F., Wu D., Peng L., Zhao G., Zou L., Shi S. Injectable thermosensitive lipo-hydrogels loaded with ropivacaine for prolonging local anesthesia. International Journal of Pharmaceutics. 2022;611:121291. DOI: 10.1016/j.ijpharm.2021.121291..
DOI: 10.1016/j.ijpharm.2021.121291
Pokharkar V., Patil-Gadhe A., Palla P. Efavirenz loaded nanostructured lipid carrier engineered for brain targeting through intranasal route: In-vivo pharmacokinetic and toxicity study. Biomedicine & Pharmacotherapy. 2017;94:150–164. DOI: 10.1016/j.biopha.2017.07.067..
DOI: 10.1016/j.biopha.2017.07.067
Xiang Y., Long Y., Yang Q., Zheng C., Cui M., Ci Z., Lv X., Li N., Zhang R. Pharmacokinetics, pharmacodynamics and toxicity of Baicalin liposome on cerebral ischemia reperfusion injury rats via intranasal administration. Brain Research. 2020;1726:146503. DOI: 10.1016/j.brainres.2019.146503..
DOI: 10.1016/j.brainres.2019.146503
Wei H., Liu T., Jiang N., Zhou K., Yang K., Ning W., Yu Y. A novel delivery system of cyclovirobuxine D for brain targeting: Angiopep-conjugated polysorbate 80-coated liposomes via intranasal administration. Journal of Biomedical Nanotechnology. 2018;14(7):1252–1262. DOI: 10.1166/jbn.2018.2581..
DOI: 10.1166/jbn.2018.2581
Liu Q., Guan J., Qin L., Zhang X., Mao S. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discovery Today. 2020;25(1):150–159. DOI: 10.1016/j.drudis.2019.09.023..
DOI: 10.1016/j.drudis.2019.09.023
Ferguson L. T., Ma X., Myerson J. W., Wu J., Glassman P. M., Zamora M. E., Hood E. D., Zaleski M., Shen M., Essien E.-O., Shuvaev V. V., Brenner J. S. Mechanisms by which liposomes improve inhaled drug delivery for alveolar diseases. Advanced NanoBiomed Research. 2023;3(3):2200106. DOI: 10.1002/anbr.202200106..
DOI: 10.1002/anbr.202200106
Lai S., Wei Y., Wu Q., Zhou K., Liu T., Zhang Y., Jiang N., Xiao W., Chen J., Liu Q., Yu Y. Liposomes for effective drug delivery to the ocular posterior chamber. Journal of Nanobiotechnology. 2019;17:64. DOI: 10.1186/s12951-019-0498-7..
DOI: 10.1186/s12951-019-0498-7
Zhang G., Li X., Huang C., Jiang Y., Su J., Hu Y. Preparation of the Levo-Tetrahydropalmatine Liposome Gel and Its Transdermal Study. International Journal of Nanomedicine. 2023;18:4617–4632. DOI: 10.2147/IJN.S422305..
DOI: 10.2147/IJN.S422305
Chabru A. S., Salve P. S., Ghumare G. D., Dhamak R. S., Tiwari D. R., Waghmare D. S. Comparative pharmacokinetic studies of transferosomes loaded gel and pressure sensitive adhesive based patch formulation for transdermal delivery of benztropine mesylate. Journal of Drug Delivery Science and Technology. 2024;92:105287. DOI: 10.1016/j.jddst.2023.105287..
DOI: 10.1016/j.jddst.2023.105287
Yu A.-M., Tu M.-J. Deliver the promise: RNAs as a new class of molecular entities for therapy and vaccination. Pharmacology & Therapeutics. 2022;230:107967. DOI: 10.1016/j.pharmthera.2021.107967..
DOI: 10.1016/j.pharmthera.2021.107967
Uhl P., Helm F., Hofhaus G., Brings S., Kaufman C., Leotta K., Urban S., Haberkorn U., Mier W., Fricker G. A liposomal formulation for the oral application of the investigational hepatitis B drug Myrcludex B. European Journal of Pharmaceutics and Biopharmaceutics. 2016;103:159–166. DOI: 10.1016/j.ejpb.2016.03.031..
DOI: 10.1016/j.ejpb.2016.03.031
Leal J., Dong T., Taylor A., Siegrist E., Gao F., Smyth H. D. C., Ghosh D. Mucus-penetrating phage-displayed peptides for improved transport across a mucus-like model. International Journal of Pharmaceutics. 2018;553(1–2):57–64. DOI: 10.1016/j.ijpharm.2018.09.055..
DOI: 10.1016/j.ijpharm.2018.09.055
Карлина М. В., Косман В. М., Пожарицкая О. Н., Шиков А. Н., Макарова М. Н., Макаров В. Г., Балабаньян В. Ю. Экспериментальное исследование фармакокинетики рифабутина в липосомальной форме. Фармакокинетика и фармакодинамика. 2013;(2):37–41.
El-Helaly S. N., Abd Elbary A., Kassem M. A., El-Nabarawi M. A. Electrosteric stealth Rivastigmine loaded liposomes for brain targeting: preparation, characterization, ex vivo, bio-distribution and in vivo pharmacokinetic studies. Drug Delivery. 2017;24(1):692–700. DOI: 10.1080/10717544.2017.1309476..
DOI: 10.1080/10717544.2017.1309476
Rip J., Chen L., Hartman R., van den Heuvel A., Reijerkerk A., van Kregten J., van der Boom B., Appeldoorn C., de Boer M., Maussang D., de Lange E. C. M., Gaillard P. J. Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood–brain barrier in rats. Journal of Drug Targeting. 2014;22(5):460–467. DOI: 10.3109/1061186X.2014.888070..
DOI: 10.3109/1061186X.2014.888070
Dadpour S., Mehrabian A., Arabsalmani M., Mirhadi E., Askarizadeh A., Mashreghi M., Jaafari M. R. The role of size in PEGylated liposomal doxorubicin biodistribution and anti-tumour activity. IET Nanobiotechnology. 2022;16(7–8):259–272. DOI: 10.1049/nbt2.12094..
DOI: 10.1049/nbt2.12094
Guo P., Liu D., Subramanyam K., Wang B., Yang J., Huang J., Auguste D. T., Moses M. A. Nanoparticle elasticity directs tumor uptake. Nature Communications. 2018;9(1):130. DOI: 10.1038/s41467-017-02588-9..
DOI: 10.1038/s41467-017-02588-9
Krasnici S., Werner A., Eichhorn M. E., Schmitt-Sody M., Pahernik S. A., Sauer B., Schulze B., Teifel M., Michaelis U., Naujoks K., Dellian M. Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. International Journal of Cancer. 2003;105(4):561–567. DOI: 10.1002/ijc.11108..
DOI: 10.1002/ijc.11108
Wang H.-X., Zuo Z.-Q., Du J.-Z., Wang Y.-C., Sun R., Cao Z.-T., Ye X.-D., Wang J.-L., Leong K. W., Wang J. Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today. 2016;11(2):133–144. DOI: 10.1016/j.nantod.2016.04.008..
DOI: 10.1016/j.nantod.2016.04.008
Large D. E., Soucy J. R., Hebert J., Auguste D. T. Advances in receptor-mediated, tumor-targeted drug delivery. Advanced Therapeutics. 2019;2(1):1800091. DOI: 10.1002/adtp.201800091..
DOI: 10.1002/adtp.201800091
Ishida T., Harashima H., Kiwada H. Liposome clearance. Bioscience Reports. 2002;22(2):197–224. DOI: 10.1023/a:1020134521778..
DOI: 10.1023/a:1020134521778
Ait-Oudhia S., Mager D. E., Straubinger R. M. Application of pharmacokinetic and pharmacodynamic analysis to the development of liposomal formulations for oncology. Pharmaceutics. 2014;6(1):137–174. DOI: 10.3390/pharmaceutics6010137..
DOI: 10.3390/pharmaceutics6010137
Akhter M. H., Ahmad I., Alshahrani M. Y., Al-Harbi A. I., Khalilullah H., Afzal O., Altamimi A. S. A., Najib Ullah S. N. M., Ojha A., Karim S. Drug Delivery Challenges and Current Progress in Nanocarrier-Based Ocular Therapeutic System. Gels. 2022;8(2):82. DOI: 10.3390/gels8020082..
DOI: 10.3390/gels8020082
Tavakoli S., Peynshaert K., Lajunen T., Devoldere J., del Amo E. M., Ruponen M., De Smedt S. C., Remaut K., Urtti A. Ocular barriers to retinal delivery of intravitreal liposomes: Impact of vitreoretinal interface. Journal of Controlled Release. 2020;328:952–961. DOI: 10.1016/j.jconrel.2020.10.028..
DOI: 10.1016/j.jconrel.2020.10.028
Dhaliwal H. K., Fan Y., Kim J., Amiji M. M. Intranasal delivery and transfection of mRNA therapeutics in the brain using cationic liposomes. Molecular Pharmaceutics. 2020; 17(6):1996–2005. DOI: 10.1021/acs.molpharmaceut.0c00170..
DOI: 10.1021/acs.molpharmaceut.0c00170
Carter P., Narasimhan B., Wang Q. Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. International Journal of Pharmaceutics. 2019;555:49–62. DOI: 10.1016/j.ijpharm.2018.11.032..
DOI: 10.1016/j.ijpharm.2018.11.032
Matharoo N., Mohd H., Michniak-Kohn B. Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2024;16(1):e1918. DOI: 10.1002/wnan.1918..
DOI: 10.1002/wnan.1918
Chen T., He B., Tao J., He Y., Deng H., Wang X., Zheng Y. Application of Förster Resonance Energy Transfer (FRET) technique to elucidate intracellular and In Vivo biofate of nanomedicines. Advanced Drug Delivery Reviews. 2019;143:177–205. DOI: 10.1016/j.addr.2019.04.009..
DOI: 10.1016/j.addr.2019.04.009
Peng T., Xu W., Li Q., Ding Y., Huang Y. Pharmaceutical liposomal delivery—specific considerations of innovation and challenges. Biomaterials Science. 2023;11(1):62–75. DOI: 10.1039/D2BM01252A..
DOI: 10.1039/D2BM01252A
Allen T. M., Cullis P. R. Liposomal drug delivery systems: from concept to clinical applications. Advanced Drug Delivery Reviews. 2013;65(1):36–48. DOI: 10.1016/j.addr.2012.09.037..
DOI: 10.1016/j.addr.2012.09.037
Hume D. A. The mononuclear phagocyte system. Current Opinion in Immunology. 2006;18(1):49–53. DOI: 10.1016/j.coi.2005.11.008..
DOI: 10.1016/j.coi.2005.11.008
Betker J. L., Jones D., Childs C. R., Helm K. M., Terrell K., Nagel M. A., Anchordoquy T. J. Nanoparticle uptake by circulating leukocytes: A major barrier to tumor delivery. Journal of Controlled Release. 2018;286:85–93. DOI: 10.1016/j.jconrel.2018.07.031..
DOI: 10.1016/j.jconrel.2018.07.031
Giambelluca M., Markova E., Louet C., Steinkjer B., Sundset R., Škalko-Basnet N., Hak S. Liposomes-Human phagocytes interplay in whole blood: effect of liposome design. Nanomedicine: Nanotechnology, Biology and Medicine. 2023;54:102712. DOI: 10.1016/j.nano.2023.102712..
DOI: 10.1016/j.nano.2023.102712
Mochalova E. N., Egorova E. A., Komarova K. S., Shipunova V. O., Khabibullina N. F., Nikitin P. I., Nikitin M. P. Comparative study of nanoparticle blood circulation after forced clearance of own erythrocytes (mononuclear phagocyte system-cytoblockade) or administration of cytotoxic doxorubicinor clodronate-loaded liposomes. International Journal of Molecular Sciences. 2023;24(13):10623. DOI: 10.3390/ijms241310623..
DOI: 10.3390/ijms241310623
Large D. E., Abdelmessih R. G., Fink E. A., Auguste D. T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Advanced Drug Delivery Reviews. 2021;176:113851. DOI: 10.1016/j.addr.2021.113851..
DOI: 10.1016/j.addr.2021.113851
Scherphof G. L., Kamps J. A. A. M. The role of hepatocytes in the clearance of liposomes from the blood circulation. Progress in Lipid Research. 2001;40(3):149–166. DOI: 10.1016/s0163-7827(00)00020-5..
DOI: 10.1016/s0163-7827(00)00020-5
Shi D., Beasock D., Fessler A., Szebeni J., Ljubimova J. Y., Afonin K. A., Dobrovolskaia M. A. To PEGylate or not to PEGylate: Immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Advanced Drug Delivery Reviews. 2022;180:114079. DOI: 10.1016/j.addr.2021.114079..
DOI: 10.1016/j.addr.2021.114079
Xu G., Yang D., He C., Zhong L., Zhu J., Shu Q., Ding H., Xin W., Tong Y., Zhu X., Fang L. Population pharmacokinetics and toxicity correlation analysis of free and liposome-encapsulated doxorubicin in Chinese patients with advanced breast cancer. Cancer Chemotherapy and Pharmacology. 2023;92(3):181–192. DOI: 10.1007/s00280-023-04559-y..
DOI: 10.1007/s00280-023-04559-y
Yamazoe E., Fang J.-Y., Tahara K. Oral mucus-penetrating PEGylated liposomes to improve drug absorption: Differences in the interaction mechanisms of a mucoadhesive liposome. International Journal of Pharmaceutics. 2021;593:120148. DOI: 10.1016/j.ijpharm.2020.120148..
DOI: 10.1016/j.ijpharm.2020.120148
Haroon H. B., Hunter A. C., Farhangrazi Z. S., Moghimi S. M. A brief history of long circulating nanoparticles. Advanced Drug Delivery Reviews. 2022;188:114396. DOI: 10.1016/j.addr.2022.114396..
DOI: 10.1016/j.addr.2022.114396