Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
Главная / Результаты поиска
СтатьяИскать документыПерейти к записи. 2024; Т. 34, № 6: 788–800. DOI:10.18093/0869-0189-2024-34-6-788-800
Персонифицированный выбор генно-инженерных иммунобиологических препаратов для лечения тяжелой бронхиальной астмы: инструменты реальной практики и новые перспективы
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[2]
Искать документыПерейти к записи[1,2]
Искать документыПерейти к записи[1,3]
Аффилированные организации
[1]Искать документыПерейти к записи
[2]Искать документыПерейти к записи
[3]Искать документыПерейти к записи
Аннотация

В настоящее время наиболее предпочтительным подходом к лечению неконтролируемой тяжелой бронхиальной астмы (ТБА) является применение генно-инженерной биологической терапии (ГИБП). Препараты данной группы высокоэффективны и безопасны, однако следует учитывать, что они не универсальны и блокируют различные звенья патогенеза бронхиальной астмы (БА). Также выявлены различия в эффективности в отношении сопутствующих патологий. В связи с этим выбор таргетного препарата должен быть не только персонифицированным, но и эндотипи фенотип-ориентированным.

Целью данного обзора явился анализ литературных данных о ГИБП, используемых в настоящее время в терапии ТБА, инструментах фенои эндотипирования, применяемых в реальной практике в целях персонализированного выбора таргетных препаратов, а также перспективных направлениях исследований в данной области.

Заключение. В настоящее время для фенои эндотипирования ТБА применяются методы лабораторного и инструментального обследования, благодаря которым выявляется ключевой патогенетический фактор развития заболевания, на основании чего делается выбор биологического препарата. Однако биомаркеры, определяемые в ходе рутинного обследования, не являются абсолютными и имеют исключения. Также в ряде случаев, когда у пациента с ТБА определяется смешанный фенотип заболевания, который соответствует критериям назначения всех имеющихся ГИБП, решение о выборе таргетной терапии основывается на субъективном определении превалирующего механизма развития заболевания. Актуальным направлением будущих исследований остается поиск биомаркеров, прогнозирующих эффект того или иного ГИБП. Комбинированное использование результатов клинического, молекулярно-генетического обследования и оценки эпигенетических маркеров может помочь в решении данной задачи. В данном обзоре представлены актуальные данные о ГИБП, используемых в настоящее время в терапии ТБА, инструментах фенои эндотипирования, применяемых в реальной практике, описаны перспективные направления исследований определения эпигенетических биомаркеров.

Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2023. Available at: https://ginasthma.org/wp-content/uploads/2023/05/GINA-2023-Full-Report-2023-WMS.pdf [Accessed: January 10, 2024.https://ginasthma.org/wp-content/uploads/2023/05/GINA-2023-Full-Report-2023-WMS.pdf

Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2023. Available at: https://ginasthma.org/wp-content/uploads/2023/05/GINA-2023-Full-Report-2023-WMS.pdf [Accessed: January 10, 2024.https://ginasthma.org/wp-content/uploads/2023/05/GINA-2023-Full-Report-2023-WMS.pdf

Министерство здравоохранения Российской Федерации. Клинические рекомендации. Бронхиальная астма. 2021. Доступно на: https://cr.minzdrav.gov.ru/schema/359_2 [Дата обращения: 10.01.24].https://cr.minzdrav.gov.ru/schema/359_2

Министерство здравоохранения Российской Федерации. Клинические рекомендации. Бронхиальная астма. 2021. Доступно на: https://cr.minzdrav.gov.ru/schema/359_2 [Дата обращения: 10.01.24].https://cr.minzdrav.gov.ru/schema/359_2

Хаитов М.Р., Шиловский И.П. Антицитокиновая терапия аллергических заболеваний: молекулярно-иммунологические механизмы и клинические основы. М.: Медиа Сфера; 2021.

Ray A., Raundhal M., Oriss T.B. et al. Current concepts of severe asthma. J. Clin. Investigation. 2016; 126 (7): 2394–2403. DOI: 10.1172/jci84144..
DOI: 10.1172/jci84144

Brusselle G.G., Maes T., Bracke K.R. Eosinophils in the spotlight: Eosinophilic airway inflammation in nonallergic asthma. Nat. Med. 2013; 19 (8): 977–979. DOI: 10.1038/nm.3300..
DOI: 10.1038/nm.3300

Курбачева О.М., Дынева М.Е., Шиловский И.П. и др. Особенности молекулярных механизмов патогенеза бронхиальной астмы в сочетании с полипозным риносинуситом. Пульмонология. 2021; 31 (1): 7–19. DOI: 10.18093/0869-0189-2021-31-1-7-19..
DOI: 10.18093/0869-0189-2021-31-1-7-19

Курбачева О.М., Дынева М.Е., Шиловский И.П. и др. Особенности молекулярных механизмов патогенеза бронхиальной астмы в сочетании с полипозным риносинуситом. Пульмонология. 2021; 31 (1): 7–19. DOI: 10.18093/0869-0189-2021-31-1-7-19..
DOI: 10.18093/0869-0189-2021-31-1-7-19 (in Russian)

Buhl R., Humbert M., Bjermer L. et al. Severe eosinophilic asthma: a roadmap to consensus. Eur. Respir. J. 2017; 49 (5): 1700634. DOI: 10.1183/13993003.00634-2017..
DOI: 10.1183/13993003.00634-2017

Potaczek D.P., Trąd G., Sanak M. et al. Local and systemic production of pro-inflammatory eicosanoids is inversely related to sensitization to aeroallergens in patients with aspirin-exacerbated respiratory disease. J. Personalized Med. 2022; 12 (3): 447. DOI: 10.3390/jpm12030447..
DOI: 10.3390/jpm12030447

Nair P., Prabhavalkar K.S. Neutrophilic asthma and potentially related target therapies. Curr. Drug Targets. 2020; 21 (4): 374–388. DOI: 10.2174/1389450120666191011162526..
DOI: 10.2174/1389450120666191011162526

Шиловский И.П., Ерошкина Д.В., Бабахин А.А., Хаитов М.Р. Антицитокиновая терапия бронхиальной астмы. Молекулярная биология. 2017; 51 (1): 3–17. DOI: 10.7868/S0026898416060197..
DOI: 10.7868/S0026898416060197

Шиловский И.П., Ерошкина Д.В., Бабахин А.А., Хаитов М.Р. Антицитокиновая терапия бронхиальной астмы. Молекулярная биология. 2017; 51 (1): 3–17. DOI: 10.7868/S0026898416060197..
DOI: 10.7868/S0026898416060197 (in Russian)

Agache I., Akdis C.A., Akdis M. et al. EAACI biologicals guidelines – recommendations for severe asthma. Allergy. 2021; 76 (1): 14–44. DOI: 10.1111/all.14425..
DOI: 10.1111/all.14425

Sardon-Prado O., Diaz-Garcia C., Corcuera-Elosegui P. et al. Severe asthma and biological therapies: now and the future. J. Clin. Med. 2023; 12 (18): 5846. DOI: 10.3390/jcm12185846..
DOI: 10.3390/jcm12185846

Rogers L., Jesenak M., Bjermer L. et al. Biologics in severe asthma: a pragmatic approach for choosing the right treatment for the right patient. Respir. Med. 2023; 218: 107414. DOI: 10.1016/j.rmed.2023.107414..
DOI: 10.1016/j.rmed.2023.107414

Humbert M., Beasley R., Ayres J. et al. Benefits of Omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy. 2005; 60 (3): 309–316. DOI: 10.1111/j.1398-9995.2004.00772.x..
DOI: 10.1111/j.1398-9995.2004.00772.x

Castro M., Corren J., Pavord I.D. et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. New England J. Med. 2018; 378 (26): 2486–2496. DOI: 10.1056/NEJMoa1804092..
DOI: 10.1056/NEJMoa1804092

Rabe K.F., Nair P., Brusselle G. et al. Efficacy and safety of Dupilumab in glucocorticoid-dependent severe asthma. N. Engl. J. Med. 2018; 378 (26): 2475–2485. DOI: 10.1056/NEJMoa1804093..
DOI: 10.1056/NEJMoa1804093

Ortega H.G., Liu M.C., Pavord I.D. et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N. Engl. J. Med. 2014; 371 (13): 1198–1207. DOI: 10.1056/NEJMoa1403290..
DOI: 10.1056/NEJMoa1403290

Chupp G.L., Bradford E.S., Albers F.C. et al. Efficacy of Mepolizumab add-on therapy on health-related quality of life and markers of asthma control in severe eosinophilic asthma (MUSCA): a randomised, double-blind, placebo-controlled, parallel-group, multicentre, phase 3b trial. Lancet Respir. Med. 2017; 5 (5): 390–400. DOI: 10.1016/S2213-2600(17)30125-X..
DOI: 10.1016/S2213-2600(17)30125-X

Bel E.H., Wenzel S.E., Thompson P.J. et al. Oral glucocorticoid-sparing effect of Mepolizumab in eosinophilic asthma. N. Engl. J. Medicine. 2014; 371 (13): 1189–1197. DOI: 10.1056/NEJMoa1403291..
DOI: 10.1056/NEJMoa1403291

Castro M., Zangrilli J., Wechsler M.E. et al. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir. Med. 2015; 3 (5): 355–366. DOI: 10.1016/S2213-2600(15)00042-9..
DOI: 10.1016/S2213-2600(15)00042-9

Bleecker E.R., FitzGerald J.M., Chanez P. et al. Efficacy and safety of Benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet. 2016; 388 (10056): 2115–2127. DOI: 10.1016/S0140-6736(16)31324-1..
DOI: 10.1016/S0140-6736(16)31324-1

FitzGerald J.M., Bleecker E.R., Nair P. et al. Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2016; 388 (10056): 2128–2141. DOI: 10.1016/S0140-6736(16)31322-8..
DOI: 10.1016/S0140-6736(16)31322-8

Menzies-Gow A., Corren J., Bourdin A. et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N. Engl. J. Med. 2021; 384 (19): 1800–1809. DOI: 10.1056/NEJMoa2034975..
DOI: 10.1056/NEJMoa2034975

Wechsler M.E., Menzies-Gow A., Brightling C.E. et al. Evaluation of the oral corticosteroid-sparing effect of Tezepelumab in adults with oral corticosteroid-dependent asthma (SOURCE): a randomised, placebo-controlled, phase 3 study. Lancet Respir. Med. 2022; 10 (7): 650–660. DOI: 10.1016/S2213-2600(21)00537-3..
DOI: 10.1016/S2213-2600(21)00537-3

Strunk R.C., Bloomberg G.R. Omalizumab for asthma. N. Engl. J. Med. 2006; 354 (25): 2689–2695. DOI: 10.1056/NEJMct055184..
DOI: 10.1056/NEJMct055184

Prussin C., Griffith D.T., Boesel K.M. et al. Omalizumab treatment downregulates dendritic cell FcεRI expression. J. Allergy Clin. Immunol. 2003; 112 (6): 1147–1154. DOI: 10.1016/j.jaci.2003.10.003..
DOI: 10.1016/j.jaci.2003.10.003

Djukanović R., Wilson S.J., Kraft M. et al. Effects of treatment with anti-immunoglobulin E antibody omalizumab on airway inflammation in allergic asthma. Am. J. Respir. Crit. Care Med. 2004; 170 (6): 583–593. DOI: 10.1164/rccm.200312-1651OC..
DOI: 10.1164/rccm.200312-1651OC

Busse W., Corren J., Lanier B.Q. et al. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J. Allergy Clin. Immunol. 2001; 108 (2): 184–190. DOI: 10.1067/mai.2001.117880..
DOI: 10.1067/mai.2001.117880

Rodrigo G.J., Neffen H., Castro-Rodriguez J.A. Efficacy and safety of subcutaneous Omalizumab vs placebo as add-on therapy to corticosteroids for children and adults with asthma: a systematic review. Chest. 2011; 139 (1): 28–35. DOI: 10.1378/chest.10-1194..
DOI: 10.1378/chest.10-1194

Deschildre A., Marguet C., Salleron J. et al. Add-on Omalizumab in children with severe allergic asthma: a 1-year real life survey. Eur. Respir. J. 2013; 42 (5): 1224–1233. DOI: 10.1183/09031936.00149812..
DOI: 10.1183/09031936.00149812

Nair P. Anti-interleukin-5 monoclonal antibody to treat severe eosinophilic asthma. N. Engl. J. Med. 2014; 371 (13): 1249–1251. DOI: 10.1056/NEJMe1408614..
DOI: 10.1056/NEJMe1408614

Nair P., Pizzichini M.M., Kjarsgaard M. et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N. Engl. J. Med. 2009; 360 (10): 985–993. DOI: 10.1056/NEJMoa0805435..
DOI: 10.1056/NEJMoa0805435

Albers F.C., Papi A., Taillé C. et al. Mepolizumab reduces exacerbations in patients with severe eosinophilic asthma, irrespective of body weight/body mass index: meta-analysis of MENSA and MUSCA. Respir. Res. 2019; 20 (1): 169. DOI: 10.1186/s12931-019-1134-7..
DOI: 10.1186/s12931-019-1134-7

Khurana S., Brusselle G.G., Bel E.H. et al. Long-term safety and clinical benefit of Mepolizumab in patients with the most severe eosinophilic asthma: the COSMEX study. Clin. Ther. 2019; 41 (10): 2041–2056. DOI: 10.1016/j.clinthera.2019.07.007..
DOI: 10.1016/j.clinthera.2019.07.007

Lugogo N., Domingo C., Chanez P. et al. Long-term efficacy and safety of Mepolizumab in patients with severe eosinophilic asthma: a multi-center, open-label, phase IIIb study. Clin. Ther. 2016; 38 (9): 2058–2070.e1. DOI: 10.1016/j.clinthera.2016.07.010..
DOI: 10.1016/j.clinthera.2016.07.010

Han J.K., Bachert C., Fokkens W. et al. Mepolizumab for chronic rhinosinusitis with nasal polyps (SYNAPSE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2021; 9 (10): 1141–1153. DOI: 10.1016/S2213-2600(21)00097-7..
DOI: 10.1016/S2213-2600(21)00097-7

Roufosse F., Kahn J.E., Rothenberg M.E. et al. Efficacy and safety of Mepolizumab in hypereosinophilic syndrome: a phase III, randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 2020; 146 (6): 1397–1405. DOI: 10.1016/j.jaci.2020.08.037..
DOI: 10.1016/j.jaci.2020.08.037

Wechsler M.E., Akuthota P., Jaune D. et al. Mepolizumab or placebo for eosinophilic granulomatosis with polyangiitis. N. Engl. J. Med. 2017; 376 (20): 1921–1932. DOI: 10.1056/NEJMoa1702079..
DOI: 10.1056/NEJMoa1702079

Castro M., Mathur S., Hargreave F. et al. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am. J. Respir. Crit. Care Med. 2011; 184 (10): 1125–1132. DOI: 10.1164/rccm.201103-0396OC..
DOI: 10.1164/rccm.201103-0396OC

Corren J., Weinstein S., Janka L. Phase 3 study of Reslizumab in patients with poorly controlled asthma: effects across a broad range of eosinophil counts. Chest. 2016; 150 (4): 799–810. DOI: 10.1016/j.chest.2016.03.018..
DOI: 10.1016/j.chest.2016.03.018

Bjermer L., Lemiere C., Maspero J. et al. Reslizumab for inadequately controlled asthma with elevated blood eosinophil levels: a randomized phase 3 study. Chest. 2016; 150 (4): 789–798. DOI: 10.1016/j.chest.2016.03.032..
DOI: 10.1016/j.chest.2016.03.032

Bourdin A., Shaw D., Menzies-Gow A. et al. Two-year integrated steroid-sparing analysis and safety of Benralizumab for severe asthma. J. Asthma. 2021; 58 (4): 514–522. DOI: 10.1080/02770903.2019.1705333..
DOI: 10.1080/02770903.2019.1705333

Nair P., Wenzel S., Rabe K.F. et al. Oral glucocorticoid-sparing effect of Benralizumab in severe asthma. N. Engl. J. Med. 2017; 376 (25): 2448–2458. DOI: 10.1056/NEJMoa1703501..
DOI: 10.1056/NEJMoa1703501

Nair P., Wenzel S., Rabe K.F. et al. Oral glucocorticoid-sparing effect of Benralizumab in severe asthma. N. Engl. J. Med. 2017; 376 (25): 2448–2458. DOI: 10.1056/NEJMoa1703501..
DOI: 10.1056/NEJMoa1703501

Cottu A., Groh M., Desaintjean C. et al. Benralizumab for eosinophilic granulomatosis with polyangiitis. Ann. Rheum. Dis. 2023; 82 (12): 1580–1586. DOI: 10.1136/ard-2023-224624..
DOI: 10.1136/ard-2023-224624

Kuang F.L., Legrand F., Makiya M. et al. Benralizumab for PDGFRA-negative hypereosinophilic syndrome. N. Engl. J. Med. 2019; 380 (14): 1336–1346. DOI: 10.1056/NEJMoa1812185..
DOI: 10.1056/NEJMoa1812185

Курбачева О.М., Дынева М.Е., Ильина Н.И. Дупилумаб: основные аспекты применения при T2-опосредованных заболеваниях. Медицинский совет. 2021; (16): 186–196. DOI: 10.21518/2079-701X-2021-16-186-196..
DOI: 10.21518/2079-701X-2021-16-186-196

Курбачева О.М., Дынева М.Е., Ильина Н.И. Дупилумаб: основные аспекты применения при T2-опосредованных заболеваниях. Медицинский совет. 2021; (16): 186–196. DOI: 10.21518/2079-701X-2021-16-186-196..
DOI: 10.21518/2079-701X-2021-16-186-196 (in Russian)

Дынева М.Е., Аминова Г.Э., Курбачева О.М., Ильина Н.И. Дупилумаб: новые возможности в терапии бронхиальной астмы и полипозного риносинусита. Российский аллергологический журнал. 2021; 18 (1): 18–31. DOI: 10.36691/RJA1408..
DOI: 10.36691/RJA1408

Дынева М.Е., Аминова Г.Э., Курбачева О.М., Ильина Н.И. Дупилумаб: новые возможности в терапии бронхиальной астмы и полипозного риносинусита. Российский аллергологический журнал. 2021; 18 (1): 18–31. DOI: 10.36691/RJA1408..
DOI: 10.36691/RJA1408 (in Russian)

Tozawa H., Kanki Y., Suehiro J. et al. Genome-wide approaches reveal functional interleukin-4-inducible STAT6 binding to the vascular cell adhesion molecule 1 promoter. Mol. Cell. Biol. 2011; 31 (11): 2196–2209. DOI: 10.1128/MCB.01430-10..
DOI: 10.1128/MCB.01430-10

Barthel S.R., Johansson M.W., McNamee D.M., Mosher D.F. Roles of integrin activation in eosinophil function and the eosinophilic inflammation of asthma. J. Leukoc. Biol. 2008; 83 (1): 1–12. DOI: 10.1189/jlb.0607344..
DOI: 10.1189/jlb.0607344

Koskeridis F., Evangelou E., Ntzani E.E. et al. Treatment with Dupilumab in patients with atopic dermatitis: systematic review and meta-analysis. J. Cutaneous Med. Surgery. 2022; 26 (6): 613–621. DOI: 10.1177/12034754221130969..
DOI: 10.1177/12034754221130969

Dellon E.S., Rothenberg M.E., Collins M.H. et al. Dupilumab in adults and adolescents with eosinophilic esophagitis. N. Engl. J. Med. 2022; 387 (25): 2317–2330. DOI: 10.1056/NEJMoa2205982..
DOI: 10.1056/NEJMoa2205982

Yosipovitch G., Mollanazar N., Ständer S. et al. Dupilumab in patients with prurigo nodularis: two randomized, double-blind, placebo-controlled phase 3 trials. Nat. Med. 2023; 29 (5): 1180–1190. DOI: 10.1038/s41591-023-02320-9..
DOI: 10.1038/s41591-023-02320-9

Bachert C., Han J.K., Desrosiers M. et al. Efficacy and safety of Dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet. 2019; 394 (10209): 1638–1650. DOI: 10.1016/S0140-6736(19)31881-1..
DOI: 10.1016/S0140-6736(19)31881-1

Olaguibel J.M., Sastre J., Rodríguez J.M., Del Pozo V. Eosinophilia induced by blocking the IL-4/IL-13 pathway: potential mechanisms and clinical outcomes. J. Investig. Allergol. Clin. Immunol. 2022; 32 (3): 165–180. DOI: 10.18176/jiaci.0823..
DOI: 10.18176/jiaci.0823

Agache I., Beltran J., Akdis C. et al. Efficacy and safety of treatment with biologicals (Benralizumab, Dupilumab, Mepolizumab, Omalizumab and Reslizumab) for severe eosinophilic asthma. A systematic review for the EAACI guidelines – recommendations on the use of biologicals in severe asthma. Allergy. 2020; 75 (5): 1023–1042. DOI: 10.1111/all.14221..
DOI: 10.1111/all.14221

Valent P., Klion A.D., Roufosse F. et al. Proposed refined diagnostic criteria and classification of eosinophil disorders and related syndromes. Allergy. 2023; 78 (1): 47–59. DOI: 10.1111/all.15544..
DOI: 10.1111/all.15544

Loewenthal L., Menzies-Gow A. FeNO in asthma. Semin. Respir. Crit. Care Med. 2022; 43 (5): 635–645. DOI: 10.1055/s-0042-1743290..
DOI: 10.1055/s-0042-1743290

Alizadeh Z., Mortaz E., Adcock I., Moin M. Role of epigenetics in the pathogenesis of asthma. Iran. J. Allergy Asthma Immunol. 2017; 16 (2): 82–91. Available at: https://ijaai.tums.ac.ir/index.php/ijaai/article/view/975/718https://ijaai.tums.ac.ir/index.php/ijaai/article/view/975/718

Alizadeh Z., Mortaz E., Adcock I., Moin M. Role of epigenetics in the pathogenesis of asthma. Iran. J. Allergy Asthma Immunol. 2017; 16 (2): 82–91. Available at: https://ijaai.tums.ac.ir/index.php/ijaai/article/view/975/718https://ijaai.tums.ac.ir/index.php/ijaai/article/view/975/718

Moore L.D., Le T., Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013; 38 (1): 23–38. DOI: 10.1038/npp.2012.112..
DOI: 10.1038/npp.2012.112

Šestáková Š., Šálek C., Remešová H. DNA methylation validation methods: a coherent review with practical comparison. Biol. Proced. Online. 2019; 21: 19. DOI: 10.1186/s12575-019-0107-z..
DOI: 10.1186/s12575-019-0107-z

Tiwari D., Gupta P. Nuclear receptors in asthma: empowering classical molecules against a contemporary ailment. Front. Immunol. 2021; 11: 594433. DOI: 10.3389/fimmu.2020.594433..
DOI: 10.3389/fimmu.2020.594433

Wieczfinska J., Kacprzak D., Pospiech K. et al. The whole-genome expression analysis of peripheral blood mononuclear cells from aspirin sensitive asthmatics versus aspirin tolerant patients and healthy donors after in vitro aspirin challenge. Respir. Res. 2015; 16: 147. DOI: 10.1186/s12931-015-0305-4..
DOI: 10.1186/s12931-015-0305-4

Christmas P., Weber B.M., McKee M. et al. Membrane localization and topology of leukotriene C4 synthase. J. Biol. Chem. 2002; 277 (32): 28902–28908. DOI: 10.1074/jbc.M203074200..
DOI: 10.1074/jbc.M203074200

Rådmark O., Samuelsson B. 5-Lipoxygenase: mechanisms of regulation. J. Lipid Res. 2009; (50, Suppl.): S40–45. DOI: 10.1194/jlr.R800062-JLR200..
DOI: 10.1194/jlr.R800062-JLR200

Mandal A.K., Jones P.B., Bair A.M. et al. The nuclear membrane organization of leukotriene synthesis. Proc. Nat. Acad. Sci. USA. 2008; 105 (51): 20434–20439. DOI: 10.1073/pnas.0808211106..
DOI: 10.1073/pnas.0808211106

Dominas C., Gadkaree S., Maxfield A.Z. et al. Aspirin-exacerbated respiratory disease: a review. Laryngoscope Investigative Otolaryngol. 2020; 5 (3): 360–367. DOI: 10.1002/lio2.387..
DOI: 10.1002/lio2.387

Dahlin A., Weiss S.T. Genetic and epigenetic components of aspirin-exacerbated respiratory disease. Immunol. Allergy Clin. North Am. 2016; 36 (4): 765–789. DOI: 10.1016/j.iac.2016.06.010..
DOI: 10.1016/j.iac.2016.06.010

Kanaoka Y., Boyce J.A. Cysteinyl leukotrienes and their receptors; emerging concepts. Allergy Asthma Immunol. Res. 2014; 6 (4): 288–295. DOI: 10.4168/aair.2014.6.4.288..
DOI: 10.4168/aair.2014.6.4.288

Дополнительная информация
Язык текста: Русский
ISSN: 0869-0189
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4e432d50554c4d4f4e4f4c4f47592d41525449434c452d323032342d33342d362d302d3738382d383030/