Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
ГлавнаяРезультаты поиска
Статья; ОбзорИскать документыПерейти к записи. 2023; Т. 16, № 1: 157–167. DOI:10.21516/2072-0076-2023-16-1-157-167
Поражение органа зрения при COVID-19. Часть 2: осложнения со стороны заднего отрезка глаза, нейроофтальмологические проявления, вакцинация и факторы риска
Искать документыПерейти к записи[1,2]
Искать документыПерейти к записи[1,2]
Искать документыПерейти к записи[1,2]
Аффилированные организации
[1]Искать документыПерейти к записи
[2]Искать документыПерейти к записи
Аннотация
Поражения заднего отрезка глаза при COVID-19 имеют различные проявления: сосудистые, воспалительные и нейрональные. Все они вызваны вирусом SARS-CoV-2 , тем не менее их невозможно характеризовать как специфичные для COVID-19. Средний возраст пациентов, согласно данным литературы, колеблется от 17 до 75 лет и составляет 50 лет. Средняя продолжительность между появлением офтальмологических симптомов и выявлением COVID-19 составила 12 дней. Заболевание в равной степени поражает как мужчин, так и женщин. Прямое воздействие вируса, иммуноопосредованное повреждение тканей, активация системы свертывания и протромботическое состояние, вызванное вирусной инфекцией, сопутствующие заболевания и лекарственные препараты, используемые при лечении, влияют на развитие офтальмопатологии. Офтальмологи должны быть осведомлены о возможных связях патологии заднего отрезка глаза, орбиты и нейроофтальмологических расстройств с SARS-CoV-2, а также о возможном обострении хронических форм воспалительных заболеваний глаз и аутоиммунных нарушений вследствие вакцинации от COVID-19.
Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Tao L., Qiu Y., Fu X., et al. Angiotensin-converting Enzyme 2 activator Diminazene Aceturate prevents lipopolysaccharide-induced inflammation by inhibiting MAPK and NF-kappaB pathways in human retinal pigment epithelium. J. Neuroinflammation. 2016; 13 (1): 35. https://doi.org/10.1186/s12974-016-0489-7.
DOI: 10.1186/s12974-016-0489-7

Reichhart N., Figura A., Skosyrski S., Strauß O. Control of the Retinal Local RAS by the RPE: An Interface to Systemic RAS Activity. Exp. Eye Res. 2019; 189: 107838. https://doi.org/10.1016/j.exer.2019.107838.
DOI: 10.1016/j.exer.2019.107838

Fletcher E.L., Phipps J.A., Ward M.M., et al. The Renin-Angiotensin system in retinal health and disease: its influence on neurons, glia and the vasculature. Prog. Retin. Eye Res. 2010; 29 (4): 284–311. https://doi.org/10.1016/j.preteyeres.2010.03.003.
DOI: 10.1016/j.preteyeres.2010.03.003

Zhang Y.H., Zhang Y., Dong X.F., et al. ACE2 and Ang-(1–7) protect endothelial cell function and prevent early atherosclerosis by inhibiting inflammatory response. Inflamm. Res. 2015; 64 (3–4): 253-60. https://doi.org/10.1007/s00011-015-0805-1.
DOI: 10.1007/s00011-015-0805-1

Seah I., Agrawal R. Can the Coronavirus disease 2019 (COVID-19) affect the eyes? A review of coronaviruses and ocular implications in humans and animals. Ocul. Immunol. Inflamm. 2020; 28 (3): 391–5. https://doi.org/10.1080/09273948.2020.1738501.
DOI: 10.1080/09273948.2020.1738501

Lovren F., Pan Y., Quan A., et al. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am. J. Physiol. Heart Circ Physiol. 2008; 295 (4): H1377-84. https://doi.org/10.1152/ajpheart.00331.2008.
DOI: 10.1152/ajpheart.00331.2008

Holappa M., Valjakka J., Vaajanen A. Angiotensin(1-7) and ACE2, “The Hot Spots” of renin-angiotensin system, detected in the human aqueous humor. Open Ophthalmol. J. 2015; 9 (1): 28–32. https://doi.org/10.2174/1874364101509010028.
DOI: 10.2174/1874364101509010028

Invernizzi A., Pellegrini M., Messenio D., et al. Impending central retinal vein occlusion in a patient with coronavirus disease 2019 (COVID-19). Ocul. Immunol. Inflamm. 2020; 28: 1290–2. doi: 10.1080/09273948.2020.1807023.
DOI: 10.1080/09273948.2020.1807023

Walinjkar J.A., Makhija S.C., Sharma H.R., Morekar S.R., Natarajan S. Central retinal vein occlusion with COVID-19 infection as the presumptive etiology. Indian J. Ophthalmol. 2020; 68: 2572–4. doi: 10.4103/ijo.IJO_2575_20.
DOI: 10.4103/ijo.IJO_2575_20

Sheth J.U., Narayanan R., Goyal J., Goyal V. Retinal vein occlusion in COVID-19: A novel entity. Indian J. Ophthalmol. 2020; 68 (10): 2291–3. doi: 10.4103/ijo.IJO_2380_20.
DOI: 10.4103/ijo.IJO_2380_20

Gaba W.H., Ahmed D., Al Nuaimi R.K., Al Dhahani A.A., Eatmadi H. Bilateral central retinal vein occlusion in a 40-year-old man with severe coronavirus disease 2019 (COVID-19) pneumonia. Am. J. Case Rep. 2020; 21: e927691. doi: 10.12659/AJCR.927691.
DOI: 10.12659/AJCR.927691

Acharya S., Diamond M., Anwar S., Glaser A., Tyagi P. Unique case of central retinal artery occlusion secondary to COVID-19 disease. IDCases. 2020; 21: e00867. doi: 10.1016/j.idcr.2020.e00867.
DOI: 10.1016/j.idcr.2020.e00867

Dumitrascu O.M., Volod O., Bose S., et al. Acute ophthalmic artery occlusion in a COVID-19 patient on apixaban. J. Stroke Cerebrovasc. Dis. 2020; 29: 104982. doi: 10.1016/j.jstrokecerebrovasdis.2020.104982.
DOI: 10.1016/j.jstrokecerebrovasdis.2020.104982

Gascon P., Briantais A., Bertrand E., et al. Covid-19-associated retinopathy: A case report. Ocul. Immunol. Inflamm. 2020; 28: 1293-7. doi: 10.1080/09273948.2020.1825751.
DOI: 10.1080/09273948.2020.1825751

Zamani G., Azimi S.A., Aminizadeh A., et al. Acute macular neuroretinopathy in a patient with acute myeloid leukemia and deceased by COVID-19: A case report. J. Ophthalmic Inflamm Infect. 2020; 10 (1): 39. doi: 10.1186/s12348-020-00231-1.
DOI: 10.1186/s12348-020-00231-1

Virgo J., Mohamed M. Paracentral acute middle maculopathy and acute macular neuroretinopathy following SARS-CoV-2 infection. Eye (Lond). 2020; 34 (12): 2352–3. doi: 10.1016/j.preteyeres.2020.100884.
DOI: 10.1016/j.preteyeres.2020.100884

Zago Filho L.A., Lima L.H., Melo G.B., Zett C., Farah M.E. Vitritis and outer retinal abnormalities in a patient with COVID-19. Ocul. Immunol. Inflamm. 2020; 28 (8): 1298–300. doi: 10.1080/09273948.2020.1821898.
DOI: 10.1080/09273948.2020.1821898

Gupta A., Dixit B., Stamoulas K., Akshikar R. Atypical bilateral acute retinal necrosis in a coronavirus disease 2019 positive immunosuppressed patient. Eur. J. Ophthalmol. 2022; 32 (1): NP94-NP96. doi: 10.1177/1120672120974941.
DOI: 10.1177/1120672120974941

Sen M., Honavar S.G., Sharma N., et al. COVID-19 and eye: A review of ophthalmic manifestations of COVID-19. Indian Journal of Ophthalmology. 2021; 69 (3): 488–509. doi: 10.4103/ijo.IJO_297_21.
DOI: 10.4103/ijo.IJO_297_21

Pereira L.A., Soares L.C.M., Nascimento P.A., et al. Retinal findings in hospitalised patients with severe COVID-19. Br. J. Ophthal. 2022; 106 (1): 102–5. doi: 10.1136/bjophthalmol-2020-317576.
DOI: 10.1136/bjophthalmol-2020-317576

Providência J., Fonseca C., Henriques F., Proença R. Serpiginous choroiditis presenting after SARS- CoV-2 infection: A new immunological trigger? Eur. J. Ophthalmol. 2022; 32 (1): NP97–NP101. doi: 10.1177/1120672120977817.
DOI: 10.1177/1120672120977817

Casagrande M., Fitzek A., Püschel K., et al. Detection of SARS-CoV-2 in human retinal biopsies of deceased COVID-19 patients. Ocul. Immunol. Inflamm. 2020; 28 (5): 721–5. doi: 10.1080/09273948.2020.1770301.
DOI: 10.1080/09273948.2020.1770301

Cavalcanti D.D., Raz E., Shapiro M., et al. Cerebral venous thrombosis associated with COVID-19. AJNR Am. J. Neuroradiol. 2020; 41 (8): 1370–6. doi: 10.3174/ajnr.A6644.
DOI: 10.3174/ajnr.A6644

de Souza E. C., de Campos V. E., Duker J. S. Atypical unilateral multifocal choroiditis in a COVID-19 positive patient. Am. J. Ophthalmol. Case Reports. 2021; 22: 101034. doi: 10.1016/j.ajoc.2021.101034.
DOI: 10.1016/j.ajoc.2021.101034

Marinho P.M., Marcos A.A., Romano A.C., Nascimento H., Belfort R. Retinal findings in patients with COVID-19. Lancet. 2020; 395 (10237): 1610. https://doi.org/10.1016/S0140-6736(20)31014-X.
DOI: 10.1016/S0140-6736(20)31014-X

Zapata M.Á., García S.B., Sánchez-Moltalva A., et al. Retinal microvascular abnormalities in patients after COVID-19 depending on disease severity. Br. J. Ophthalmol. 2022; 106 (4): 559–63. doi: 10.1136/bjophthalmol-2020-317953.
DOI: 10.1136/bjophthalmol-2020-317953

Insausti-García A., Reche-Sainz J.A., Ruiz-Arranz C., Vázquez Á.L., Ferro-Osuna M. Papillophlebitis in a COVID-19 patient: Inflammation and hypercoagulable state. Eur. J. Ophthalmol. 2022; 32 (1): NP168-NP172. doi: 10.1177/1120672120947591.
DOI: 10.1177/1120672120947591

Sawalha K., Adeodokun S., Kamoga G.R. COVID-19-induced acute bilateral optic neuritis? J. Invest. Med. High. Impact. Case Rep. 2020; 8: 2324709620976018. doi: 10.1177/2324709620976018.
DOI: 10.1177/2324709620976018

Zhou S., Jones-Lopez E.C., Soneji D.J., Azevedo C.J., Patel V.R. Myelin oligodendrocyte glycoprotein antibody–associated optic neuritis and myelitis in COVID-19. J. Neuroophthalmol. 2020; 40 (3): 398–402. doi: 10.1097/WNO.0000000000001049.
DOI: 10.1097/WNO.0000000000001049

Méndez-Guerrero A., Laespada-García M.I., Gómez-Grande A., et al. Acute hypokinetic-rigid syndrome following SARS-CoV-2 infection. Neurology. 2020; 95 (15): e2109–18. doi: 10.1212/WNL.0000000000010282.
DOI: 10.1212/WNL.0000000000010282

Ortiz-Seller A., Martínez Costa L., Hernández-Pons A., et al. Ophthalmic and neuro-ophthalmic manifestations of coronavirus disease 2019 (COVID-19). Ocul. Immunol. Inflamm. 2020; 28 (8): 1285–9. doi: 10.1080/09273948.2020.1817497.
DOI: 10.1080/09273948.2020.1817497

Tisdale A.K., Chwalisz B.K. Neuro-ophthalmic manifestations of coronavirus disease 19. Curr. Opin. Ophthalmol. 2020; 31: 489–94. doi: 10.1097/ICU.0000000000000707.
DOI: 10.1097/ICU.0000000000000707

Politi L.S., Salsano E., Grimaldi M. Magnetic resonance imaging alteration of the brain in a patient with coronavirus disease 2019 (COVID-19) and anosmia. JAMA Neurol. 2020; 77 (8): 1028–9. doi: 10.1001/jamaneurol.2020.2125.
DOI: 10.1001/jamaneurol.2020.2125

Dinkin M., Gao V., Kahan J., et al. COVID-19 presenting with ophthalmoparesis from cranial nerve palsy. Neurology. 2020; 95 (5): 221–3. doi: 10.1212/WNL.0000000000009700.
DOI: 10.1212/WNL.0000000000009700

Gutiérrez-Ortiz C., Méndez-Guerrero A., Rodrigo-Rey S., et al. Miller Fisher Syndrome and polyneuritis cranialis in COVID-19. Neurology. 2020; 95 (5): e601–5. doi: 10.1212/WNL.0000000000009619.
DOI: 10.1212/WNL.0000000000009619

Greer C.E., Bhatt J.M., Oliveira C.A., Dinkin M.J. Isolated cranial nerve 6 palsy in 6 patients with COVID19 infection. J Neuroophthalmol. 2020; 40 (4): 520–2. doi: 10.1097/WNO.0000000000001146.
DOI: 10.1097/WNO.0000000000001146

Falcone M.M., Rong A.J., Salazar H., et al. Acute abducens nerve palsy in a patient with the novel coronavirus disease (COVID-19) J AAPOS. 2020; 24 (4): 216–7. doi:10.1016/j.jaapos.2020.06.001.
DOI: 10.1016/j.jaapos.2020.06.001

Belghmaidi S., Nassih H., Boutgayout S., et al. Third cranial nerve palsy presenting with unilateral diplopia and strabismus in a 24-year-old woman with COVID-19? Am. J. Case Rep. 2020; 21: e925897. doi: 10.12659/AJCR.925897.
DOI: 10.12659/AJCR.925897

Theophanous C., Santoro J.D., Itani R. Bell's palsy in a pediatric patient with hyper IgM syndrome and severe acute respiratory syndrome coronavirus 2 (SARSCoV-2). Brain Dev. 2021; 43 (2): 357–9. doi: 10.1016/j.braindev.2020.08.017.
DOI: 10.1016/j.braindev.2020.08.017

Assini A., Benedetti L., Di Maio S., Schirinzi E., Del Sette M. New clinical manifestation of COVID-19 related Guillain-Barrè syndrome highly responsive to intravenous immunoglobulins: Two Italian cases. Neurol Sci. 2020; 41 (7): 1657–8. doi: 10.1007/s10072-020-04484-5.
DOI: 10.1007/s10072-020-04484-5

Huber M., Rogozinski S., Puppe W., et al. Postinfectious onset of myasthenia gravis in a COVID-19 patient? Front Neurol. 2020; 11: 576153. doi: 10.3389/fneur.2020.576153.
DOI: 10.3389/fneur.2020.576153

Cyr D.G., Vicidomini C.M., Siu N.Y., Elmann S.E. Severe bilateral vision loss in 2 patients with coronavirus disease 2019. J. Neuroophthalmol. 2020; 40 (3): 403–5. doi: 10.1097/WNO.0000000000001039.
DOI: 10.1097/WNO.0000000000001039

Yang Y., Qidwai U., Burton B.J., Canepa C. Bilateral, vertical supranuclear gaze palsy following unilateral midbrain infarct. BMJ Case Reports. 2020; 13 (11): e238422. doi: 10.1136/bcr-2020-238422.
DOI: 10.1136/bcr-2020-238422

McGill COVID19 Vaccine Tracker Team. 2020. Available at: https://covid19.trackvaccines.org/vaccines/. Accessed 31 Dec 2020.https://covid19.trackvaccines.org/vaccines/

Zhao J., Zhao S., Ou J., et al. COVID-19: coronavirus vaccine development updates. Front Immunol. 2020; 11: 602256. doi: 10.3389/fimmu.2020.602256.
DOI: 10.3389/fimmu.2020.602256

Petousis-Harris H. Assessing the safety of COVID-19 vaccines: a primer. Drug Saf. 2020; 43 (12): 1205–10. doi: 10.1007/s40264-020-01002-6.
DOI: 10.1007/s40264-020-01002-6

Sallusto F., Lanzavecchia A., Araki K., Ahmed R. From vaccines to memory and back. Immunity. 2010; 33 (4): 451–63. doi: 10.1016/j.immuni.2010.10.008.
DOI: 10.1016/j.immuni.2010.10.008

Perez V.L., Caspi R.R. Immune mechanisms in inflammatory and degenerative eye disease. Trends Immunol. 2015; 36 (6): 354–63. doi: 10.1016/j.it.2015.04.003.
DOI: 10.1016/j.it.2015.04.003

DeFrancesco L. Whither COVID-19 vaccines? Nat. Biotechnol. 2020; 38 (10): 1132–45. doi: 10.1038/s41587-020-0697-7.
DOI: 10.1038/s41587-020-0697-7

Thng Z.X., De Smet M.D., Lee C.S., et al. COVID-19 and immunosuppression: a review of current clinical experiences and implications for ophthalmology patients taking immunosuppressive drugs. Br. J. Ophthalmol. 2021; 105 (3): 306–10. doi: 10.1136/bjophthalmol-2020-316586.
DOI: 10.1136/bjophthalmol-2020-316586

Liang Y., Meng F.Y., Pan H.F., Ye D.Q. A literature review on the patients with autoimmune diseases following vaccination against infections. Hum. Vaccin. Immunother. 2015; 11 (9): 2274–80. doi: 10.1080/21645515.2015.1009337.
DOI: 10.1080/21645515.2015.1009337

Hung J.C.H., Li K.K.W. Implications of COVID-19 for uveitis patients: perspectives from Hong Kong. Eye. 2020; 34 (7): 1163–4. doi: 10.1038/s41433-020-0905-1.
DOI: 10.1038/s41433-020-0905-1

Agarwal A.K., Sudharshan S., Mahendradas P., et al. Impact of COVID-19 pandemic on uveitis patients receiving immunomodulatory and biological therapies (COPE STUDY). Br. J. Ophthalmol. 2022. 106 (1): 97–101. https://doi.org/10.1136/bjophthalmol-2020-317417.
DOI: 10.1136/bjophthalmol-2020-317417

Furer V., Rondaan C., Heijstek M.W., et al. 2019 update of EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases. Ann. Rheum. Dis. 2020; 79 (1): 39. doi: 10.1136/annrheumdis-2019-215882.
DOI: 10.1136/annrheumdis-2019-215882

Aggarwal K., Agarwal A., Jaiswal N., et al. Ocular surface manifestations of coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. PLoS One. 2020; 15 (11): e0241661. doi: 10.1371/journal.pone.0241661.
DOI: 10.1371/journal.pone.0241661

Belser J.A., Rota P.A., Tumpey T.M. Ocular tropism of respiratory viruses. Microbiol Mol Biol Rev MMBR. 2013; 77 (1): 144–56. doi: 10.1128/MMBR.00058-12.
DOI: 10.1128/MMBR.00058-12

Chen L., Deng C., Chen X., et al. Ocular manifestations and clinical characteristics of 535 cases of COVID-19 in Wuhan, China: a cross-sectional study. Acta Ophthalmol. 2020; 98 (8): e951–9. doi: 10.1111/aos.14472.
DOI: 10.1111/aos.14472

Дополнительная информация
Язык текста: Русский
ISSN: 2072-0076
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4e432d524f4a4947422d41525449434c452d323032332d31362d312d302d3135372d313637/