Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
Главная / Результаты поиска
Статья; ОбзорИскать документыПерейти к записи. 2023; Т. 16, № 3: 165–172. DOI:10.21516/2072-0076-2023-16-3-165-172
Модифицирующее лечение дегенеративных заболеваний сетчатки. Часть 2. Методы кондиционирующей терапии и проблемы максимизации пластичности сетчатки
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Аффилированные организации
[1]Искать документыПерейти к записи
Аннотация
В первой части обзора [РОЖ, 2023; 16 (2): 160–2] обсуждались общие признаки и специфические особенности адаптивной и неадаптивной ретинальной пластичности, характеризующие такие заболевания, как глаукома, возрастная макулярная дегенерация, пигментный ретинит, диабетическая ретинопатия и ретинопатия недоношенных. В этой части обзора обсуждаются проблемы регенерации аксонов ганглиозных клеток сетчатки и анализируются терапевтические подходы, направленные на максимизацию пластичности и стимулирование репаративных способностей сетчатки. Обсуждаются защитные эффекты «кондиционирующих» стимулов в модифицирующем лечении заболеваний сетчатки. Представлены некоторые современные стратегии зрительной реабилитации, основанные на тренировках зрительной перцепции и зрительной фиксации с использованием систем с биологической обратной связью.
Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Crair MC, Mason CA. Reconnecting eye to brain. J Neurosci. 2016; 36 (42): 10707–22. doi: 10.1523/JNEUROSCI.1711-16.2016.
DOI: 10.1523/JNEUROSCI.1711-16.2016

Sauv Y, Gaillard F. Regeneration in the visual system of adult mammals. Webvision: The Organization of the Retina and Visual System [Internet. Salt Lake City (UT): University of Utah Health Sciences Center; 1995 [updated 2007 Jun 21. PMID: 21413374

Chen DF, Jhaveri S, Schneider GE. Intrinsic changes in developing retinal neurons result in regenerative failure of their axons. Proc Natl Acad Sci USA. 1995; 92 (16): 7287–91. doi: 10.1073/pnas.92.16.7287.
DOI: 10.1073/pnas.92.16.7287

Vidal-Sanz M, Bray GM, Villegas-Perez MP, Thanos S, Aguayo AJ. Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat. J Neurosci. 1987; 7: 2894–909. doi: 10.1523/JNEUROSCI.07-09-02894.1987.
DOI: 10.1523/JNEUROSCI.07-09-02894.1987

Aguayo AJ, Rasminsky M, Bray GM, et al. Degenerative and regenerative responses of injured neurons in the central nervous system of adult mammals. Philos Trans R Soc Lond B Biol Sci. 1991; 331: 337–43. doi: 10.1098/rstb.1991.0025.
DOI: 10.1098/rstb.1991.0025

Keirstead SA, Rasminsky M, Fukuda Y, et al. Electrophysiologic responses in hamster superior colliculus evoked by regenerating retinal axons. Science. 1989; 246: 255–7. doi:10.1126/science.2799387.
DOI: 10.1126/science.2799387

Sauv Y, Sawai H, Rasminsky M. Functional synaptic connections made by regenerated retinal ganglion cell axons in the superior colliculus of adult hamsters. J Neurosci. 1995; 15: 665–75. doi: 10.1523/JNEUROSCI.15-01-00665.1995.
DOI: 10.1523/JNEUROSCI.15-01-00665.1995

Espinosa JS, Stryker MP. Development and plasticity of the primary visual cortex. Neuron. 2012; 75: 230–249. doi: 10.1016/j.neuron.2012.06.009.
DOI: 10.1016/j.neuron.2012.06.009

Davis MF, Figueroa Velez DX, Guevarra RP, et al. Inhibitory neuron transplantation into adult visual cortex creates a new critical period that rescues impaired vision. Neuron. 2015; 86: 1055–66. doi: 10.1016/j.neuron.2015.03.062.
DOI: 10.1016/j.neuron.2015.03.062

Diekmann H, Leibinger M, Fischer D. Do growth-stimulated retinal ganglion cell axons find their central targets after optic nerve injury? New insights by three-dimensional imaging of the visual pathway. Exp. Neurol. 2013; 248: 254–7. doi: 10.1016/j.expneurol.2013.06.021.
DOI: 10.1016/j.expneurol.2013.06.021

Venugopalan P, Wang Y, Nguyen T, et al. Transplanted neurons integrate into adult retinas and respond to light. Nat Commun. 2016; 7: 1047. doi: 10.1038/ncomms10472.
DOI: 10.1038/ncomms10472

Hooks B, Chen C. Critical periods in the visual system: changing views for a model of experience-dependent plasticity. Neuron. 2007; 56: 312–26. doi: 10.1016/j.neuron.2007.10.003.
DOI: 10.1016/j.neuron.2007.10.003

Y cel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res. 2003; 22: 465–81. doi: 10.1016/s1350-9462(03)00026-0.
DOI: 10.1016/s1350-9462(03)00026-0

Prins D, Hanekamp S, Cornelissen FW. Structural brain MRI studies in eye diseases: are they clinically relevant? A review of current findings. Acta Ophthalmol. 2016; 94: 113–21. doi: 10.1111/aos.12825.
DOI: 10.1111/aos.12825

Зуева М.В., Нероева Н.В., Катаргина Л.А. и др. Модифицирующее лечение дегенеративных заболеваний сетчатки. Часть 1. Адаптивная и неадаптивная пластичность сетчатки. Российский офтальмологический журнал. 2023; 16 (2): 160–2.
DOI: 10.21516/2072-0076-2023-16-2-160-165

LeGates TA, Fernandez DC, Hattar S. Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci. 2014; 15: 443–54. doi: 10.1038/nrn3743.
DOI: 10.1038/nrn3743

Endo M, Hattori M, Toriyabe H, et al. Optogenetic activation of axon guidance receptors controls direction. Sci Rep. 2016; 36 (42): 10707–22. doi: 10.1038/srep23976.
DOI: 10.1038/srep23976

Nirenberg S, Pandarinath C. Retinal prosthetic strategy with the capacity to restore normal vision. Proc Nat Acad Sci. USA. 2012; 109: 15012–7. doi: 10.1073/pnas.1207035109.
DOI: 10.1073/pnas.1207035109

Yan B, Vakulenko M, Min SH, Hauswirth WW, Nirenberg S. Maintaining ocular safety with light exposure, focusing on devices for optogenetic stimulation. Vision Res. 2016; 121: 57–71. doi: 10.1016/j.visres.2016.01.006.
DOI: 10.1016/j.visres.2016.01.006

Gidday JM. Adaptive plasticity in the retina: Protection against acute injury and neurodegenerative disease by conditioning stimuli. Conditioning Medicine. 2018; 1: 85–97. PMID: 31423482.

Roth S, Li B, Rosenbaum PS, et al. Preconditioning provides complete protection against retinal ischemic injury in rats. Invest Ophthalmol Vis Sci. 1998; 39: 775–85. PMID: 9538885.

Roth S. Endogenous neuroprotection in the retina. Brain Res Bull. 2004; 62: 461–6. doi: 10.1016/j.brainresbull.2003.07.006.
DOI: 10.1016/j.brainresbull.2003.07.006

Del Sole MJ, Sande PH, Felipe AE, et al. Characterization of uveitis induced by use of a single intravitreal injection of bacterial lipopolysaccharide in cats. Am J Vet Res. 2008; 69 (11): 1487–95. doi: 10.2460/ajvr.69.11.1487.
DOI: 10.2460/ajvr.69.11.1487

Dreixler JC, Poston JN, Balyasnikova I, et al. Delayed administration of bone marrow mesenchymal stem cell conditioned medium significantly improves outcome after retinal ischemia in rats. Invest Ophthalmol Vis Sci. 2014; 55: 3785–96. doi: 10.1167/iovs.13-11683.
DOI: 10.1167/iovs.13-11683

Gidday JM. Extending injury- and disease-resistant CNS phenotypes by repetitive epigenetics conditioning. Front Neurol. 2015; 6. doi: 10.3389/fneur.2015.00042.
DOI: 10.3389/fneur.2015.00042

Zhu Y, Zhang L, Schmidt J, Gidday J. Glaucoma-induced degeneration of retinal ganglion cell soma and axons prevented by hypoxic preconditioning: A model of 'glaucoma tolerance'. Mol. Med. 2012; 18: 697–706. doi: 10.2119[%]2Fmolmed.2012.00050.
DOI: 10.2119[%]2Fmolmed.2012.00050

Gidday J, Zhang L, Chiang CW, Zhu Y. Enhanced retinal ganglion cell survival in glaucoma by hypoxic postconditioning after disease onset. NeuroTherapeutics. 2015; 12: 502–514. doi: 10.1007/s13311-014-0330-x.
DOI: 10.1007/s13311-014-0330-x

Belforte N, Sande PH, de Zavalia N, et al. Ischemic tolerance protects the rat retina from glaucomatous damage. PLoS One. 2011; 6. doi: 10.1371/journal.pone.0023763.
DOI: 10.1371/journal.pone.0023763

Salido EM, Dorfman D, Bordone M, et al. Ischemic conditioning protects the rat retina in an experimental model of early type 2 diabetes. Exp Neurol. 2013; 240: 1–8. doi: 10.1016/j.expneurol.2012.11.006.
DOI: 10.1016/j.expneurol.2012.11.006

Kim DY, Jung SY, Kim CJ, Sung YH, Kim JD. Treadmill exercise ameliorates apoptotic cell death in the retinas of diabetic rats. Mol Med Rep. 2013; 7: 1745–1750. doi: 10.3892/mmr.2013.1439.
DOI: 10.3892/mmr.2013.1439

Hanif AM, Lawson EC, Prunty M, et al. Neuroprotective effects of voluntary exercise in an inherited retinal degeneration mouse model. Invest Ophthalmol Vis Sci. 2015; 56: 6839–6846. doi: 10.1167/iovs.15-16792.
DOI: 10.1167/iovs.15-16792

Dreixler JC, Shaikh AR, Alexander M, Savoie B, Roth S. Post-ischemic conditioning in the rat retina is dependent upon ischemia duration and is not additive with ischemic pre-conditioning. Exp. Eye Res. 2010; 91: 844–52. doi: 10.1016/j.exer.2010.06.015.
DOI: 10.1016/j.exer.2010.06.015

Heusch G, B tker HE, Przyklenk K, Redington A, Yellon D. Remote ischemic conditioning. J Am Coll Cardiol. 2015; 65 (2): 177–95. doi: 10.1016/j.jacc.2014.10.031.
DOI: 10.1016/j.jacc.2014.10.031

Brandli A, Johnston DM, Stone J. Remote ischemic preconditioning protects retinal photoreceptors: Evidence from a rat model of light-induced photoreceptor degeneration. Invest Ophthalmol Vis Sci. 2016; 57: 5302–13. doi: 10.1167/iovs.16-19361.
DOI: 10.1167/iovs.16-19361

Bourne RR, Stevens GA, White RA, et al. Vision Loss Expert Group. Causes of vision loss worldwide, 1990-2010: a systematic analysis. Lancet Glob Health. 2013; 1 (6): e339–49. doi: 10.1016/S2214-109X(13)70113-X.
DOI: 10.1016/S2214-109X(13)70113-X

Menon A, Vijayavenkataraman S. Novel vision restoration techniques: 3D bioprinting, gene and stem cell therapy, optogenetics, and the bionic eye. Artif Organs. 2022; 46 (8): 1463–74. doi: 10.1111/aor.14241.
DOI: 10.1111/aor.14241

Cehajic-Kapetanovic J, Xue K, Martinez-Fernandez de la Camara C, et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat Med. 2020; 26 (3): 354–9. doi: 10.1038/s41591-020-0763-1.
DOI: 10.1038/s41591-020-0763-1

Zhang X, Tenerelli K, Wu S, et al. Cell transplantation of retinal ganglion cells derived from hESCs. Restor Neurol Neurosci. 2020; 38: 131–40. doi: 10.3233/RNN-190941.
DOI: 10.3233/RNN-190941

Suen HC, Qian Y, Liao J, et al. Transplantation of retinal ganglion cells derived from male germline stem cell as a potential treatment to glaucoma. Stem Cells Dev. 2019; 28 (20): 1365–75. doi: 10.1089/scd.2019.0060.
DOI: 10.1089/scd.2019.0060

Wu S, Chang KC, Nahmou M, Goldberg JL. Induced pluripotent stem cells promote retinal ganglion cell survival after transplant. Invest Ophthalmol Vis Sci. 2018; 59 (3): 1571–76. doi:10.1167/iovs.17-23648.
DOI: 10.1167/iovs.17-23648

Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017; 390 (10097): 849–60. doi: 10.1016/S0140-6736(17)31868-8.
DOI: 10.1016/S0140-6736(17)31868-8

Kantor A, McClements ME, Peddle CF, et al. CRISPR genome engineering for retinal diseases. Prog Mol Biol Transl Sci. 2021; 182: 29–79. doi: 10.1016/bs.pmbts.2021.01.024.
DOI: 10.1016/bs.pmbts.2021.01.024

Gaub BM, Berry MH, Holt AE, Isacoff EY, Flannery JG. Optogenetic vision restoration using rhodopsin for enhanced sensitivity. Mol Ther. 2015; 23 (10): 1562–71. doi: 10.1038/mt.2015.121.
DOI: 10.1038/mt.2015.121

Кирпичников М.П., Островский М.А. Оптогенетика и зрение. Вестник Россий ской академии наук. 2019; 89 (2): 125–30 Kirpichnikov M.P.,

Gauvain G, Akolkar H, Chaffiol A, et al. Optogenetic therapy: high spatiotemporal resolution and pattern discrimination compatible with vision restoration in non-human primates. Commun Biol. 2021; 4: 125. doi: 10.1038/s42003-020-01594-w.
DOI: 10.1038/s42003-020-01594-w

Sahel JA, Boulanger-Scemama E, Pagot C, et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat Med. 2021; 27: 1223–9. doi: 10.1038/s41591-021-01351-4.
DOI: 10.1038/s41591-021-01351-4

Lorber B, Hsiao WK, Martin KR. Three-dimensional printing of the retina. Curr Opin Ophthalmol. 2016; 27 (3): 262–7. doi: 10.1097/ICU.0000000000000252.
DOI: 10.1097/ICU.0000000000000252

Larochelle RD, Mann SE, Ifantides C. 3D printing in eye care. Ophthalmol Ther. 2021; 10: 733–52. doi: 10.1007/s40123-021-00379-6.
DOI: 10.1007/s40123-021-00379-6

Wang V, Kuriyan AE. Optoelectronic devices for vision restoration. Curr Ophthalmol Rep. 2020; 8: 69-77. doi: 10.1007/s40135-020-00232-2.
DOI: 10.1007/s40135-020-00232-2

Niketeghad S, Pouratian N. Brain machine interfaces for vision restoration: The current state of cortical visual prosthetics. Neurotherapeutics. 2019; 16: 134–43. doi: 10.1007/s13311-018-0660-1.
DOI: 10.1007/s13311-018-0660-1

Trauzettel-Klosinski S. Rehabilitative techniques. Handb Clin Neurol. 2011b; 102: 263–78. doi: 10.1016/B978-0-444-52903-9.00016-9.
DOI: 10.1016/B978-0-444-52903-9.00016-9

Sahraie A, Trevethan CT, MacLeod MJ, et al. Increased sensitivity after repeated stimulation of residual spatial channels in blind-sight. Proc Natl Acad Sci USA. 2006; 103 (40): 14971–6. doi: 10.1073/pnas.0607073103.
DOI: 10.1073/pnas.0607073103

Dehn LB, Piefke M, Toepper M, et al. Cognitive training in an everyday-like virtual reality enhances visual-spatial memory capacities in stroke survivors with visual field defects. Top Stroke Rehabil. 2020; 27 (6): 442–52. doi: 10.1080/10749357.2020.1716531.
DOI: 10.1080/10749357.2020.1716531

Zihl J, von Cramon D. Restitution of visual function in patients with cerebral blindness. J Neurol Neurosurg Psychiatry. 1979; 42 (4): 312–22. doi: 10.1136/jnnp.42.4.312.
DOI: 10.1136/jnnp.42.4.312

Kasten E, Sabel BA. Visual field enlargement after computer training in braindamaged patients with homonymous deficits: an open pilot trial. Restor Neurol Neurosci. 1995; 8 (3): 113–27. doi: 10.3233/RNN-1995-8302.
DOI: 10.3233/RNN-1995-8302

Sabel BA, Henrich-Noack P, Fedorov A, Gall C. Vision restoration after brain and retina damage: the “residual vision activation theory”. Prog Brain Res. 2011; 192: 199–262. doi: 10.1016/B978-0-444-53355-5.00013-0.
DOI: 10.1016/B978-0-444-53355-5.00013-0

Kasten E, Poggel DA, Sabel BA. Computer-based training of stimulus detection improves color and simple pattern recognition in the defective field of hemianopic subjects. J Cogn Neurosci. 2000; 12 (6): 1001–12. doi: 10.1162/08989290051137530.
DOI: 10.1162/08989290051137530

Sabel BA, Gudlin J. Vision restoration training for glaucoma: a randomized clinical trial. Jama Ophthalmology. 2014; 132: 381–9. doi: 10.1001/jamaophthalmol.2013.7963.
DOI: 10.1001/jamaophthalmol.2013.7963

Tarita-Nistor L, Gonz lez EG, Markowitz SN, Steinbach MJ. Plasticity of fixation in patients with central vision loss. Vis Neurosci. 2009; 26: 487–94. doi: 10.1017/S0952523809990265.
DOI: 10.1017/S0952523809990265

Plank T, Rosengarth K, Schmalhofer C, et al. Perceptual learning in patients with macular degeneration. Front Psychol. 2014; 5: 1189.

Maniglia M, Soler V, Cottereau B, Trotter Y. Spontaneous and training-induced cortical plasticity in MD patients: Hints from lateral masking. Sci Report. 2018; 8: 90. doi: 10.1038/s41598-017-18261-6.
DOI: 10.1038/s41598-017-18261-6

Vingolo EM, Cavarretta S, Domanico D, Parisi F, Malagola R. Microperimetric biofeedback in AMD patients. Appl Psychophysiol Biofeedback. 2007; 32 (3–4), 185–89. doi: 10.1007/s10484-007-9038-6.
DOI: 10.1007/s10484-007-9038-6

Vingolo EM, Salvatore S, Limoli PG. MP-1 biofeedback: luminous pattern stimulus versus acoustic biofeedback in age related macular degeneration (AMD). Appl Psychophysiol Biofeedback. 2013; 38 (1): 11–6. doi: 10.1007/s10484-012-9203-4.
DOI: 10.1007/s10484-012-9203-4

Morales MU, Saker S, Amoaku WM. Bilateral eccentric vision training on pseudo vitelliform dystrophy with microperimetry biofeedback. BMJ Case Rep. 2015; 2015: bcr2014207969. doi: 10.1136/bcr-2014-207969.
DOI: 10.1136/bcr-2014-207969

Sborgia G, Niro A, Tritto T, et al. Microperimetric biofeedback training after successful inverted flap technique for large macular hole. J Clin Med. 2020; 9: 556. doi: 10.3390/jcm9020556.
DOI: 10.3390/jcm9020556

Qian T, Xu X, Liu X, et al. Efficacy of MP-3 microperimeter biofeedback fixation training for low vision rehabilitation in patients with maculopathy. BMC Ophthalmol. 2022; 22: 197. doi: 10.1186/s12886-022-02419-6.
DOI: 10.1186/s12886-022-02419-6

Verdina T, Piaggi S, Ferraro V, et al. Efficacy of biofeedback rehabilitation based on visual evoked potentials analysis in patients with advanced age-related macular degeneration. Sci Rep. 2020; 10 (1): 20886. doi: 10.1038/s41598-020-78076-w.
DOI: 10.1038/s41598-020-78076-w

Дополнительная информация
Язык текста: Русский
ISSN: 2072-0076
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4e432d524f4a4947422d41525449434c452d323032332d31362d332d302d3136352d313732/