Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
Главная / Результаты поиска
Статья; ОбзорИскать документыПерейти к записи. 2024; Обзоры литературы, мнение по проблеме: 5945. DOI:10.15829/1560-4071-2024-5945
Нейротрофический фактор головного мозга в патогенезе коморбидности ишемической болезни сердца и депрессии: обзор
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Аффилированные организации
[1]Искать документыПерейти к записи
Аннотация

Ишемическая болезнь сердца (ИБС) и депрессия характеризуются высокой коморбидностью, имеющей двусторонний характер, однако ее патогенез практически не изучен.

В последнее десятилетие стали изучаться нейрогенные механизмы воспалительной реакции и нейротрофический фактор головного мозга (от англ. brainderived neurotrophic factor, BDNF), который может объяснить связь между депрессией и ИБС. Обзор обобщает имеющуюся в литературе информацию, посвященную роли BDNF в патогенезе ИБС и депрессии, а также их коморбидного течения за период 2019-2024гг. На основании анализа литературы нами выделены компоненты и системы, наиболее перспективные для изучения роли BDNF в патогенезе данных мультифакториальных заболеваний (генетический компонент, воспаление, нейровоспаление, эндотелиальная дисфункция и чрезмерная активация тромбоцитов, гипоталамо-гипофизарнонадпочечниковая система, липопротеины низкой плотности и триглицериды). В обзоре подчеркивается важная роль BDNF в развитии депрессии при ИБС и необходимость проведения дальнейших исследований в этом направлении.

Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 392;1789-858. doi:10.1016/S0140-6736(18)32279-7..
DOI: 10.1016/S0140-6736(18)32279-7

Tschorn M, Rieckmann, N, Arolt, et al. Diagnostic accuracy of German depression screenings in patients with coronary heart disease. Psychiatrische Praxis. 2019;46(1): 41-8. doi:10.1055/s-0042-123434..
DOI: 10.1055/s-0042-123434

Baltramonaityte V, Pingault JB, Cecil CAM, et al. EarlyCause Consortium. A multivariate genome-wide association study of psycho-cardiometabolic multimorbidity. PLoS Genet. 2023;19(6). doi:10.1371/journal.pgen.1010508..
DOI: 10.1371/journal.pgen.1010508

Wu Y, Zhu B, Chen Z, et al. New Insights Into the Comorbidity of Coronary Heart Disease and Depression. Curr Probl Cardiol. 2021;46(3):100413. doi:10.1016/j.cpcardiol.2019.03.002..
DOI: 10.1016/j.cpcardiol.2019.03.002

Cao H, Baranova A, Zhao Q, et al. Bidirectional associations between mental disorders, antidepressants and cardiovascular disease. BMJ Ment Health. 2024;27(1):e300975. doi:10.1136/bmjment-2023-300975..
DOI: 10.1136/bmjment-2023-300975

Нагибина Ю.В., Кубарева М.И., Князева Д.С. Медико-социальные особенности больных ишемической болезнью сердца с различным уровнем депрессии. Кардиоваскулярная терапия и профилактика. 2019;18(6):142-51. doi:10.15829/1728-8800-2019-1930..
DOI: 10.15829/1728-8800-2019-1930

Нагибина Ю.В., Кубарева М.И., Князева Д.С. Гендерные особенности медико-социальных показателей больных ишемической болезнью сердца с различным уровнем депрессии. Кардиоваскулярная терапия и профилактика. 2021;20(1):2425. doi:10.15829/1728-8800-2021-2425..
DOI: 10.15829/1728-8800-2021-2425

Khandaker GM, Zuber V, Rees JMB, et al. Shared mechanisms between coronary heart disease and depression: findings from a large UK general population-based cohort. Mol Psychiatry. 2020;25(7):1477-86. doi:10.1038/s41380-019-0395-3..
DOI: 10.1038/s41380-019-0395-3

Traub J, Schürmann P, Schmitt D, et al. Features of metabolic syndrome and inflammation independently affect left ventricular function early after first myocardial infarction. Int J Cardiol. 2023;370:43-50. doi:10.1016/j.ijcard.2022.10.142..
DOI: 10.1016/j.ijcard.2022.10.142

Xu L, Zhai X, Shi D, Zhang Y.Depression and coronary heart disease: mechanisms, interventions, and treatments. Front Psychiatry. 2024;15:1328048. doi:10.3389/fpsyt.2024.1328048..
DOI: 10.3389/fpsyt.2024.1328048

Ferrari R, Pavasini R, Censi S, et al. The New ESC Guidelines for the Diagnosis and Management of Chronic Coronary Syndromes: the Good and the Not So Good. Curr Probl Cardiol. 2021;46(3):100554. doi:10.1016/j.cpcardiol.2020.100554..
DOI: 10.1016/j.cpcardiol.2020.100554

Jurisch D, Laufs U.Chronic coronary syndrome: New classification of stable coronary artery disease. Internist (Berl). 2021;62(1):47-57. doi:10.1007/s00108-020-00910-0..
DOI: 10.1007/s00108-020-00910-0

Chaturvedi S, De Marchis GM. Inflammatory Biomarkers and Stroke Subtype: An Important New Frontier. Neurology. 2024;102(2):208098. doi:10.1212/WNL.0000000000208098..
DOI: 10.1212/WNL.0000000000208098

Christou GA, Andriopoulou CE, Liakopoulou A, et al. Unraveling the role of resistin, retinol-binding protein 4 and adiponectin produced by epicardial adipose tissue in cardiac structure and function: evidence of a paracrine effect. Hormones (Athens). 2023; 22(2):321-30. doi:10.1007/s42000-023-00447-5..
DOI: 10.1007/s42000-023-00447-5

Атамась О.В., Антонюк М.В., Новгородцева Т.П. и др. BDNF/TrkB-сигналинг при стабильной ишемической болезни сердца. Российский кардиологический журнал. 2023;28(12):5535. doi:10.15829/1560-4071-2023-5535..
DOI: 10.15829/1560-4071-2023-5535

Halloway S, Jung M, Yeh AY, et al. An Integrative Review of Brain-Derived Neurotrophic Factor and Serious Cardiovascular Conditions. Nurs Res. 2020;69(5):376-90. doi:10.1097/NNR.0000000000000454..
DOI: 10.1097/NNR.0000000000000454

Hang PZ, Zhu H, Li PF, et al. The Emerging Role of BDNF/TrkB Signaling in Cardiovascular Diseases. Life (Basel). 2021;11(1):70. doi:10.3390/life11010070..
DOI: 10.3390/life11010070

Sampogna G, Toni C, Catapano P, et al. New trends in personalized treatment of depression. Curr Opin Psychiatry. 2024;37(1):3-8. doi:10.1097/YCO.0000000000000903..
DOI: 10.1097/YCO.0000000000000903

Perez-Caballero L, Torres-Sanchez S, Romero-López-Alberca C, et al. Monoaminergic system and depression. Cell Tissue Res. 2019;377(1):107-13. doi:10.1007/s00441-018-2978-8..
DOI: 10.1007/s00441-018-2978-8

Menke A. The HPA Axis as Target for Depression. Curr Neuropharmacol. 2024;22(5): 904-15. doi:10.2174/1570159X21666230811141557..
DOI: 10.2174/1570159X21666230811141557

Khandia R, Gurjar P, Kamal MA. Relative synonymous codon usage and codon pair analysis of depression associated genes. Sci Rep. 2024;14(1):3502. doi:10.1038/s41598-024-51909-8..
DOI: 10.1038/s41598-024-51909-8

Chen HS, Wang F, Chen JG. Epigenetic mechanisms in depression: Implications for pathogenesis and treatment. Curr Opin Neurobiol. 2024;85:102854. doi:10.1016/j.conb.2024.102854..
DOI: 10.1016/j.conb.2024.102854

Wei Y, Gao H, Luo Y. Systemic inflammation and oxidative stress markers in patients with unipolar and bipolar depression: A large-scale study. J Affect Disord. 2024;346:154-66. doi:10.1016/j.jad.2023.10.156..
DOI: 10.1016/j.jad.2023.10.156

Murawska-Ciałowicz E, Wiatr M, Ciałowicz M. BDNF Impact on Biological Markers of Depression-Role of Physical Exercise and Training. 2021;18(14):7553. doi:10.3390/ijerph18147553..
DOI: 10.3390/ijerph18147553

Буровенко И.Ю., Борщев Ю.Ю., Галагудза М.М. Нейро и кардиотропные эффекты мозгового нейротрофического фактора. University Therapeutic Journal. 2021; 3(4):83-102.

He T, Wu Z, Zhang X, et al. A Bibliometric Analysis of Research on the Role of BDNF in Depression and Treatment. Biomolecules. 2022;12(10):1464. doi:10.3390/biom12101464..
DOI: 10.3390/biom12101464

Wang Y, Cai X, Ma Y, et al. Metbolomics on depression: A comparison of clinical and animal research. J Affect Disord. 2024;349:559-68. doi:10.1016/j.jad.2024.01.053..
DOI: 10.1016/j.jad.2024.01.053

Hassan Almalki W. A study of abnormal cannabidiols system-mediated cardiovascular protection in disrupted gut/brain axis associated depression. J Biochem Mol Toxicol. 2021;35(12):e22930. doi:10.1002/jbt.22930..
DOI: 10.1002/jbt.22930

Tschorn M, Kuhlmann SL, Rieckmann N, et al. Brain-derived neurotrophic factor, depressive symptoms and somatic comorbidity in patients with coronary heart disease. Acta Neuropsychiatr. 2021;33(1):22-30. doi:10.1017/neu.2020.31..
DOI: 10.1017/neu.2020.31

Caruso G, Fresta CG, Grasso M, et al. Inflammation as the Common Biological Link Between Depression and Cardiovascular Diseases: Can Carnosine Exert a Protective Role? Curr Med Chem. 2020;27(11):1782-800. doi:10.2174/0929867326666190712091515..
DOI: 10.2174/0929867326666190712091515

Beurel E, Toups M, Nemeroff CB. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron. 2020;107(2):234-56. doi:10.1016/j.neuron.2020.06.002..
DOI: 10.1016/j.neuron.2020.06.002

Akosile W, Tiyatiye B, Colquhoun D, Young R. Management of depression in patients with coronary artery disease: A systematic review. Asian J Psychiatr. 2023;83:103534. doi:10.1016/j.ajp.2023.103534..
DOI: 10.1016/j.ajp.2023.103534

Kytikova O, Novgorodtseva T, Denisenko Y, et al. Brain-derived neurotrophic factor and coronary artery disease. Russian Open Medical Journal. 2022;11(2):202. doi:10.15275/rusomj.2022.0202..
DOI: 10.15275/rusomj.2022.0202

Zietz A, Gorey S, Kelly PJ, et al. Targeting inflammation to reduce recurrent stroke. Int J Stroke. 2024;19(4):379-87. doi:10.1177/17474930231207777..
DOI: 10.1177/17474930231207777

Troubat R, Barone P, Leman S, et al. Neuroinflammation and depression: A review. Eur J Neurosci. 2021;53(1):151-71. doi:10.1111/ejn.14720..
DOI: 10.1111/ejn.14720

Wang M, Pan W, Xu Y, et al. Microglia-Mediated Neuroinflammation: A Potential Target for the Treatment of Cardiovascular Diseases. J Inflamm Res. 2022;15:3083-94. doi:10.2147/JIR.S350109..
DOI: 10.2147/JIR.S350109

Шпак А.А., Гехт А.Б., Дружкова Т.А. и др. Нейротрофический фактор головного мозга и цилиарный нейротрофический фактор у пациентов с депрессией. Нейрохимия. 2020;37(2):188-92. doi:10.31857/S1027813320020119..
DOI: 10.31857/S1027813320020119

Вялова Н.М., Левчук Л.А. Роль BDNF в формировании депрессивных расстройств. Фундаментальные исследования. 2014;(10-4): 771-5.

Шепелева И.И., Чехонин И.В., Чернышева А.А. и др. Роль мозгового нейротрофического фактора в патогенезе депрессивных расстройств. Молекулярная медицина. 2021;19(3):8-16.

Osimo EF, Pillinger T, Rodriguez IM, et al. Inflammatory markers in depression: A metaanalysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav Immun. 2020;87:901-9. doi:10.1016/j.bbi.2020.02.010..
DOI: 10.1016/j.bbi.2020.02.010

Kojima M, Ishii C, Sano Y, et al. Journey of brain-derived neurotrophic factor: from intracellular trafficking to secretion. Cell Tissue Res. 2020;382(1):125-34. doi:10.1007/s00441-020-03274-x..
DOI: 10.1007/s00441-020-03274-x

Sahay A, Kale A, Joshi S. Role of neurotrophins in pregnancy and offspring brain development. Neuropeptides. 2020;83:102075. doi:10.1016/j.npep.2020.102075..
DOI: 10.1016/j.npep.2020.102075

Müller P, Duderstadt Y, Lessmann V, Müller NG. Lactate and BDNF: Key Mediators of Exercise Induced Neuroplasticity? J Clin Med. 2020;9(4):1136. doi:10.3390/jcm9041136..
DOI: 10.3390/jcm9041136

Brigadski T, Leßmann V.The physiology of regulated BDNF release. Cell Tissue Res. 2020;382(1):15-45. doi:10.1007/s00441-020-03253-2..
DOI: 10.1007/s00441-020-03253-2

Amadio P, Cosentino N, Eligini S, et al. Potential Relation between Plasma BDNF Levels and Human Coronary Plaque Morphology. Diagnostics (Basel). 2021;11(6):1010. doi:10.3390/diagnostics11061010..
DOI: 10.3390/diagnostics11061010

Colucci-D'Amato L, Speranza L, Volpicelli, F.Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int. J.Mol. Sci. 2020;21:7777. doi:10.3390/ijms21207777..
DOI: 10.3390/ijms21207777

Britt RD Jr, Thompson MA, Wicher SA, et al. Smooth muscle brain-derived neurotrophic factor contributes to airway hyperreactivity in a mouse model of allergic asthma. FASEB J. 2019;33(2):3024-34. doi:10.1096/fj.201801002R..
DOI: 10.1096/fj.201801002R

László A, Lénárt L, Illésy L, et al. The role of neurotrophins in psychopathology and cardiovascular diseases: psychosomatic connections. J Neural Transm (Vienna). 2019; 126(3):265-78. doi:10.1007/s00702-019-01973-6..
DOI: 10.1007/s00702-019-01973-6

Kermani P, Hempstead B. BDNF Actions in the Cardiovascular System: Roles in Development, Adulthood and Response to Injury. Front Physiol. 2019;10:455. doi:10.3389/ fphys.2019.00455..
DOI: 10.3389/ fphys.2019.00455

Mauricio D, Castelblanco E, Alonso N. Cholesterol and Inflammation in Atherosclerosis: An Immune-Metabolic Hypothesis. Nutrients. 2020;12(8):2444. doi:10.3390/nu12082444..
DOI: 10.3390/nu12082444

Ruscica M, Corsini A, Ferri N, et al. Clinical approach to the inflammatory etiology of cardiovascular diseases. Pharmacol. Res. 2020;159:104916. doi:10.1016/j.phrs.2020.104916..
DOI: 10.1016/j.phrs.2020.104916

Ruparelia N, Choudhury R. Inflammation and atherosclerosis: What is on the horizon? Heart. 2020;106:80-5. doi:10.1136/heartjnl-2018-314230..
DOI: 10.1136/heartjnl-2018-314230

Monisha KG, Prabu P, Chokkalingam M, et al. Clinical utility of brain-derived neurotrophic factor as a biomarker with left ventricular echocardiographic indices for potential diagnosis of coronary artery disease. Sci Rep. 2020;10(1):16359. doi:10.1038/s41598-020-73296-6..
DOI: 10.1038/s41598-020-73296-6

Kim HW, Shi H, Winkler MA, et al. Perivascular Adipose Tissue and Vascular Perturbation/ Atherosclerosis. Arterioscler Thromb Vasc Biol. 2020;40(11):2569-76. doi:10.1161/ATVBAHA.120.312470..
DOI: 10.1161/ATVBAHA.120.312470

Shafi O.Switching of vascular cells towards atherogenesis, and other factors contributing to atherosclerosis: a systematic review. Thromb J. 2020;18(1):28. doi:10.1186/s12959-020-00240-z..
DOI: 10.1186/s12959-020-00240-z

Bi C, Fu Y, Zhang Z, et al. Prostaglandin E2 confers protection against diabetic coronary atherosclerosis by stimulating M2 macrophage polarization via the activation of the CREB/BDNF/TrkB signaling pathway. FASEB J. 2020;34(6):7360-71. doi:10.1096/fj.201902055R..
DOI: 10.1096/fj.201902055R

Zhao J, Du J, Pan Y. Activation of cardiac TrkB receptor by its small molecular agonist 7,8-dihydroxyflavone inhibits doxorubicin-induced cardiotoxicity via enhancing mitochondrial oxidative phosphorylation. Free Radic Biol Med. 2019;130:557-67. doi:10.1016/j.freeradbiomed.2018.11.024..
DOI: 10.1016/j.freeradbiomed.2018.11.024

Lin B, Zhao H, Li L, et al. Sirt1 improves heart failure through modulating the NF-kappaB p65/microRNA-155/BNDF signaling cascade. Aging (Albany NY). 2020;12. doi:10.18632/aging.103640..
DOI: 10.18632/aging.103640

Bahls M, Könemann S, Markus MR, et al. Brain-derived neurotrophic factor is related with adverse cardiac remodeling and high NTproBNP. Scientific Reports. 2018;9(1):1-9. doi:10.1038/s41598-019-51776-8..
DOI: 10.1038/s41598-019-51776-8

Kim JM, Stewart R, Kim JW, et al. Modifying effects of depression on the association between BDNF methylation and prognosis of acute coronary syndrome. Brain Behav Immun. 2019;81:422-9. doi:10.1016/j.bbi.2019.06.038..
DOI: 10.1016/j.bbi.2019.06.038

Kotlega D, Zembron-Lacny A, Morawin B, et al. Free Fatty Acids and Their Inflammatory Derivatives Affect BDNF in Stroke Patients. Mediators Inflamm. 2020;2020:6676247. doi:10.1155/2020/6676247..
DOI: 10.1155/2020/6676247

Rytter N, Carter H, Piil P, et al. Ischemic Preconditioning Improves Microvascular Endothelial Function in Remote Vasculature by Enhanced Prostacyclin Production. J Am Heart Assoc. 2020;9(15):e016017. doi:10.1161/JAHA.120.016017..
DOI: 10.1161/JAHA.120.016017

Schmalhofer ML, Markus MR, Gras JC, et al. Sex-Specific associations of brain-derived neurotrophic factor and cardiorespiratory fitness in the general population. Biomolecules. 2019;9(10):630. doi:10.3390/biom9100630..
DOI: 10.3390/biom9100630

Han M, Deng C. BDNF as a pharmacogenetic target for antipsychotic treatment of schizophrenia. Neurosci Lett. 2020;726:133870. doi:10.1016/j.neulet.2018.10.015..
DOI: 10.1016/j.neulet.2018.10.015

Notaras M, van den Buuse M.Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol. Psychiatry. 2020;25(10):2251-74. doi:10.1038/s41380-019-0639-2..
DOI: 10.1038/s41380-019-0639-2

Liu YK, Gao H, Jin SB, et al. Association of neonatal blood levels of brain-derived neurotrophic factor with development of autism spectrum disorder: a systematic review and meta-analysis. World J Pediatr. 2021;17(2):164-70. doi:10.1007/s12519-021-00415-2..
DOI: 10.1007/s12519-021-00415-2

Halloway S, Schoeny ME, Barnes LL, et al. A study protocol for MindMoves: A lifestyle physical activity and cognitive training intervention to prevent cognitive impairment in older women with cardiovascular disease. Contemp Clin Trials. 2021;101:106254. doi:10.1016/j.cct.2020.106254..
DOI: 10.1016/j.cct.2020.106254

Wenceslau CV, de Souza DM, Mambelli-Lisboa NC, et al. Restoration of BDNF, DARPP32, and D2R Expression Following Intravenous Infusion of Human Immature Dental Pulp Stem Cells in Huntington's Disease 3-NP Rat Model. Cells. 2022;11:1664. doi:10.3390/cells11101664..
DOI: 10.3390/cells11101664

Kussainova A, Kassym L, Akhmetova A, et al. Associations between serum levels of brainderived neurotrophic factor, corticotropin releasing hormone and mental distress in vitiligo patients. Sci Rep. 2022;12(1):7260. doi:10.1038/s41598-022-11028-8..
DOI: 10.1038/s41598-022-11028-8

Duman RS, Deyama S, Fogaça MV. Role of BDNF in the pathophysiology and treatment of depression: Activity-dependent effects distinguish rapid-acting antidepressants. Eur J Neurosci. 2021;53(1):126-39. doi:10.1111/ejn.14630..
DOI: 10.1111/ejn.14630

Dvojkovic A, Nikolac Perkovic M, Sagud M, et al. Effect of vortioxetine vs. escitalopram on plasma BDNF and platelet serotonin in depressed patients. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2021;105:110016. doi:10.1016/j.pnpbp.2020.110016..
DOI: 10.1016/j.pnpbp.2020.110016

Tiwari S, Qi L, Wong J, et al. Association of peripheral manifestation of brain-derived neurotrophic factor with depression: A meta-analysis. Brain Behav. 2022;12(6):e32581. doi:10.1002/brb3.2581..
DOI: 10.1002/brb3.2581

Brattico E, Bonetti L, Ferretti G, et al. Putting Cells in Motion: Advantages of Endogenous Boosting of BDNF Production. Cells. 2021;10(1):183. doi:10.3390/cells10010183..
DOI: 10.3390/cells10010183

Koyama S, Ito K, Terao C, et aI. Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease. Nat Genet. 2021;52(11):1169-77. doi:10.1038/s41588-020-0705-3..
DOI: 10.1038/s41588-020-0705-3

Li L, Chen Z, von Scheidt M, et al. Transcriptome-wide association study of coronary artery disease identifies novel susceptibility genes. Basic Res Cardiol. 2022;117(1):6. doi:10.1007/s00395-022-00917-8..
DOI: 10.1007/s00395-022-00917-8

Christiansen MK, Nyegaard M, Jensen HK. Polygenic risk scores in coronary artery disease. Curr Opin Cardiol. 2023;38(1):39-46. doi:10.1097/HCO.0000000000001007..
DOI: 10.1097/HCO.0000000000001007

Howard DM, Adams MJ, Clarke TK, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22(3):343-52. doi:10.1038/s41593-018-0326-7..
DOI: 10.1038/s41593-018-0326-7

Hagenaars SP, Coleman JRI, Choi SW, et al. Genetic comorbidity between major depression and cardio-metabolic traits, stratified by age at onset of major depression. Am J Med Genet B Neuropsychiatr Genet. 2020;183(6):309-30. doi:10.1002/ajmg.b.32807..
DOI: 10.1002/ajmg.b.32807

Arosio B, Guerini FR, Voshaar RCO, Aprahamian I. Blood Brain-Derived Neurotrophic Factor (BDNF) and Major Depression: Do We Have a Translational Perspective? Front Behav Neurosci. 2021. doi:10.3389/fnbeh.2021.626906:33643008..
DOI: 10.3389/fnbeh.2021.626906:33643008

Sandrini L, Castiglioni L, Amadio P, et al. Impact of BDNF Val66Met Polymorphism on Myocardial Infarction: Exploring the Macrophage Phenotype. Cells. 2020;9(5):1084. doi:10.3390/cells9051084..
DOI: 10.3390/cells9051084

Raucci FJ Jr, Singh AP, Soslow J, et al. The BDNF rs6265 Polymorphism is a Modifier of Cardiomyocyte Contractility and Dilated Cardiomyopathy. Int J Mol Sci. 2020;21(20): 7466. doi:10.3390/ijms21207466..
DOI: 10.3390/ijms21207466

Kim OY, Song J. The importance of BDNF and RAGE in diabetes-induced dementia. Pharmacol Res. 2020;160:105083. doi:10.1016/j.phrs.2020.105083..
DOI: 10.1016/j.phrs.2020.105083

Canobbio I.Blood platelets: Circulating mirrors of neurons? Res Pract Thromb Haemost. 2019;3(4):564-5. doi:10.1002/rth2.12254..
DOI: 10.1002/rth2.12254

Wei YG, Cai DB, Liu J. Cholesterol and triglyceride levels in first-episode patients with major depressive disorder: A meta-analysis of case-control studies. J Affect Disord. 2020;266:465-72. doi:10.1016/j.jad.2020.01.114..
DOI: 10.1016/j.jad.2020.01.114

Wu X, Qiu W, He H.Associations of the triglyceride-glucose index and remnant cholesterol with coronary artery disease: a retrospective study. Lipids Health Dis. 2024;23(1): 45. doi:10.1186/s12944-024-02036-w..
DOI: 10.1186/s12944-024-02036-w

de Oliveira J, Moreira ELG, de Bem AF. Beyond cardiovascular risk: Implications of Familial hypercholesterolemia on cognition and brain function. Ageing Res Rev. 2024; 93:102149. doi:10.1016/j.arr.2023.102149..
DOI: 10.1016/j.arr.2023.102149

Korade Z, Anderson A, Balog M, et al. Chronic Aripiprazole and Trazodone Polypharmacy Effects on Systemic and Brain Cholesterol Biosynthesis. Biomolecules. 2023; 13(9):1321. doi:10.3390/biom13091321..
DOI: 10.3390/biom13091321

Mulchandani R, Lyngdoh T, Nangia R, et al. Relationship between serum lipids and depression: A cross sectional survey among adults in Haryana, India. Indian J Psychiatry. 2023;65(1):61-7. doi:10.4103/indianjpsychiatry.indianjpsychiatry_967_21..
DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_967_21

Cai L, Wei L, Yao J, et al. Impact of depression on the quality of sleep and immune functions in patients with coronary artery disease. Gen Psychiatr. 2022;35(6):e100918. doi:10.1136/gpsych-2022-100918..
DOI: 10.1136/gpsych-2022-100918

Libby P.Inflammation and the pathogenesis of atherosclerosis. Vascul Pharmacol. 2024;154:107255. doi:10.1016/j.vph.2023.107255..
DOI: 10.1016/j.vph.2023.107255

Neumann J, Hofmann B, Dhein S, et al. Cardiac Roles of Serotonin (5-HT) and 5-HT-Receptors in Health and Disease. Int J Mol Sci. 2023;24(5):4765. doi:10.3390/ijms24054765..
DOI: 10.3390/ijms24054765

Tanaka M, Sackett S, Zhang Y. Endocannabinoid Modulation of Microglial Phenotypes in Neuropathology. Front Neurol. 2020;11:87. doi:10.3389/fneur.2020.00087..
DOI: 10.3389/fneur.2020.00087

Deng SL, Chen JG, Wang F. Microglia: A Central Player in Depression. Curr Med Sci. 2020;40(3):391-400. doi:10.1007/s11596-020-2193-1..
DOI: 10.1007/s11596-020-2193-1

Lu W, Wen J. Neuroinflammation and Post-Stroke Depression: Focus on the Microglia and Astrocytes. Aging Dis. 2024. doi:10.14336/AD.2024.0214-1..
DOI: 10.14336/AD.2024.0214-1

Дополнительная информация
Язык текста: Русский
ISSN: 1560-4071
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4e432d525553534a43415244494f4c2d41525449434c452d323032342d32392d3131532d505249565449544c2d353934352d30/