Lai C.-C., Shih T.-P., Ko W.-C., Tang H.-J., Hsueh P.-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents. 2020;55(3):105924. DOI: 10.1016/j.ijantimicag.2020.105924..
DOI: 10.1016/j.ijantimicag.2020.105924
Вe Jaegere T.M.H., Krdzalic J., Fasen B.A.C.M., Kwee R.M.; COVID-19 CT Investigators South-East Netherlands (CISEN) study group. Radiological society of north america chest ct classification system for reporting COVID-19 pneumonia: Interobserver variability and correlation with reverse-transcription polymerase hain reaction. Radiol. Cardiothorac. Imaging. 2020;2(3):e200213. DOI: 10.1148/ryct.2020200213..
DOI: 10.1148/ryct.2020200213
Samir A., El-Husseiny R.M., Sweed R.A., El-Maaboud N.A.E.-M.A., Masoud M. Ultra-low-dose chest CT protocol during the second wave of COVID-19 pandemic: A double-observer prospective study on 250 patients to evaluate its detection accuracy. Egypt. J. Radiol. Nucl. Med. 2021;52(1):136. DOI: 10.1186/s43055-021-00512-2..
DOI: 10.1186/s43055-021-00512-2
Prokop M., van Everdingen W., van Rees Vellinga T., Quarles van Ufford H., Stöger L., Beenen L. et al. CO-RADS: A categorical СТ assessment scheme for patients suspected of having COVID-19-definition and evaluation. Radiol. 2020;296(2):E97–E104. DOI: 10.1148/radiol.2020201473..
DOI: 10.1148/radiol.2020201473
Yang R., Li X., Liu H., Zhen Y., Zhang X., Xiong Q. et al. Chest ct severity score: An imaging tool for assessing severe covid-19. Radiol. Cardiothorac. Imaging. 2020;2(2):e200047. DOI: 10.1148/ryct.2020200047..
DOI: 10.1148/ryct.2020200047
Colombi D., Bodini F.C., Petrini M., Maffi G., Morelli N., Milanese G. et al. Well-aerated lung on admitting chest CN to predict adverse outcome in COVID-19 pneumonia. Radiol. 2020;296(2):E86–E96. DOI: 10.1148/radiol.2020201433..
DOI: 10.1148/radiol.2020201433
Priority medical devices list for the COVID-19 response and associated technical specifications: Interim guidance. URL: https://apps.who.int/iris/bitstream/handle/10665/336745/WHO-2019-nCoV-MedDev-TS-O2T.V2-eng.pdf (22.11.2022).https://apps.who.int/iris/bitstream/handle/10665/336745/WHO-2019-nCoV-MedDev-TS-O2T.V2-eng.pdf
Priority medical devices list for the COVID-19 response and associated technical specifications: Interim guidance. URL: https://apps.who.int/iris/bitstream/handle/10665/336745/WHO-2019-nCoV-MedDev-TS-O2T.V2-eng.pdf (22.11.2022).https://apps.who.int/iris/bitstream/handle/10665/336745/WHO-2019-nCoV-MedDev-TS-O2T.V2-eng.pdf
Lee E.Y.P, Ng M.Y., Khong P.L. COVID-19 pneumonia: what has CT taught us? Lancet Infect. Dis. 2020;20(4):384–385. DOI: 10.1016/S1473-3099(20)30134-1..
DOI: 10.1016/S1473-3099(20)30134-1
Xia T., Li J., Gao J., Xu X. Small solitary ground-glass nodule on СТ as an initial manifestation of coronavirus disease 2019 (COVID-19) pneumonia. Korean. J. Radiol. 2020;21(5):545. DOI:10.3348/kjr.2020.0240..
DOI: 10.3348/kjr.2020.0240
Li B., Li X., Wang Y., Han Y., Wang Y., Wang C. et al. Diagnostic value and key features of computed tomography in Coronavirus Disease 2019. Emerg. Microbes Infec. 2020;9(1):787–793. DOI: 10.1080/22221751.2020.1750307..
DOI: 10.1080/22221751.2020.1750307
Parekh M., Donuru A., Balasubramanya R., Kapur S. Review of the chest CT differential diagnosis of ground-glass opacities in the COVID era. Radiol. 2020;297(3):E289–E302. DOI: 10.1148/radiol.2020202504..
DOI: 10.1148/radiol.2020202504
Лучевая диагностика коронавирусной болезни (COVID-19): организация, методология, интерпретация результатов; 2 изд. URL: https://tele-med.ai/biblioteka-dokumentov/luchevaya-diagnostika-koronavirusnoj-bolezni-covid-19-organizaciya-metodologiya-interpretaciya-rezultatov2 (22.11.2022)https://tele-med.ai/biblioteka-dokumentov/luchevaya-diagnostika-koronavirusnoj-bolezni-covid-19-organizaciya-metodologiya-interpretaciya-rezultatov2
Лучевая диагностика коронавирусной болезни (COVID-19): организация, методология, интерпретация результатов; 2 изд. URL: https://tele-med.ai/biblioteka-dokumentov/luchevaya-diagnostika-koronavirusnoj-bolezni-covid-19-organizaciya-metodologiya-interpretaciya-rezultatov2 (22.11.2022)https://tele-med.ai/biblioteka-dokumentov/luchevaya-diagnostika-koronavirusnoj-bolezni-covid-19-organizaciya-metodologiya-interpretaciya-rezultatov2
Huang L., Han R., Ai T., Yu P., Kang H., Tao Q. et al. Serial quantitative chest CT assessment of COVID -19: A deep learning approach. Radiol: Cardiothorac. Imaging. 2020;2(2):e200075. DOI: 10.1148/ ryct.2020200075..
DOI: 10.1148/ ryct.2020200075
Морозов С.П., Кузьмина Е.С., Ледихова Н.В., Владзимирский А.В., Трофименко И.А., Мокиенко О.А. и др. Мобилизация научно-практического потенциала службы лучевой диагностики г. Москвы в пандемию COVID-19. Digital Diagnostics. 2020;1(1):5−12. DOI: 10.17816/DD51043..
DOI: 10.17816/DD51043
Prasad K.N., Cole W.C., Haase G.M. Radiation protection in humans: Extending the concept of as low as reasonably achievable (Alara) from dose to biological damage. BJR. 2004;77(914):97–99. DOI: 10.1259/bjr/88081058..
DOI: 10.1259/bjr/88081058
Prasad K.N., Cole W.C., Haase G.M. Radiation protection in humans: Extending the concept of as low as reasonably achievable (Alara) from dose to biological damage. BJR. 2004;77(914):97–99. DOI: 10.1259/bjr/88081058..
DOI: 10.1259/ bjr/88081058
Preface, executive summary and glossary. Ann. ICRP. 2007;37(2–4):9– 34. DOI: 10.1016/j.icrp.2007.10.003..
DOI: 10.1016/j.icrp.2007.10.003
Sakane H., Ishida M., Shi L., Fukumoto W., Sakai C., Miyata Y. et al. Biological effects of low-dose chest CT on chromosomal DNA. Radiology. 2020;295(2):439–445. DOI: 10.1148/radiol.2020190389..
DOI: 10.1148/radiol.2020190389
Tofighi S., Najafi S., Johnston S.K., Gholamrezanezhad A. Low-dose CT in COVID-19 outbreak: Radiation safety, image wisely, and image gently pledge. Emerg. Radiol. 2020;27(6):601–605. DOI: 10.1007/s10140-02001784-3..
DOI: 10.1007/s10140-02001784-3
Tabatabaei S.M.H, Talari H., Gholamrezanezhad A., Farhood B., Rahimi H., Razzaghi R. et al. A low-dose chest CT protocol for the diagnosis of COVID-19 pneumonia: A prospective study. Emerg. Radiol. 2020;27(6):607–615. DOI: 10.1007/s10140-020-01838-6..
DOI: 10.1007/s10140-020-01838-6
Schulze-Hagen M., Hübel C., Meier-Schroers M., Yüksel C., Sander A. et al. Low-dose chest CT for the diagnosis of COVID-19. Deutsches Ärzteblatt International. 2020;117(22–23):389–395. DOI: 10.3238/arztebl.2020.0389..
DOI: 10.3238/arztebl.2020.0389
Aslan S., Bekçi T., Çakır İ.M., Ekiz M., Yavuz İ., Şahin A.M. Diagnostic performance of low-dose chest CT to detect COVID-19: A Turkish population study. Diagn. Interv. Radiol. 2021;27(2):181–187. DOI: 10.5152/dir.2020.20350..
DOI: 10.5152/dir.2020.20350
Blokhin I., Gombolevskiy V., Chernina V., Gusev M., Gelezhe P., Aleshina O. et al. Inter-observer agreement between low-dose and standard-dose СТ with soft and sharp convolution kernels in СOVID-19 pneumonia. J. Clin. Med. 2022;11(3):669. DOI: 10.3390/jcm11030669..
DOI: 10.3390/jcm11030669
Усанов М.С., Кульберг Н.С., Морозов С.П. Разработка алгоритма анизотропной нелинейной фильтрации данных компьютерной томографии с применением динамического порога. Компьютерные исследования и моделирование. 2019;11(2):233–248. DOI: 10.20537/2076-7633-2019-11-2-233-248..
DOI: 10.20537/2076-7633-2019-11-2-233-248
Усанов М.С., Кульберг Н.С., Морозов С.П. Разработка алгоритма анизотропной нелинейной фильтрации данных компьютерной томографии с применением динамического порога. Компьютерные исследования и моделирование. 2019;11(2):233–248. DOI: 10.20537/2076-7633-2019-11-2-233-248..
DOI: 10.20537/2076-7633-2019-11-2233-248
Schilham A.M.R, van Ginneken B., Gietema H., Prokop M. Local noise weighted filtering for emphysema scoring of low-dose CT images. IEEE Trans. Med. Imaging. 2006;25(4):451–463. DOI: 10.1109/TMI.2006.871545..
DOI: 10.1109/TMI.2006.871545
Николаев А.Е., Чернина В.Ю., Блохин И.А., Шапиев А.Н., Гончар А.П., Гомболевский В.А. и др. Перспективы использования комплексной компьютер-ассистированной диагностики в оценке структур грудной клетки. Хирургия. Журнал им. Н.И. Пирогова. 2019;(12):91–99. DOI: 10.17116/hirurgia201912191..
DOI: 10.17116/hirurgia201912191
Bai T., Wang B., Nguyen D., Jiang S. Probabilistic self‐learning framework for low‐dose CT denoising. Med. Phys. 2021;48(5):2258–2270. DOI: 10.1002/mp.14796..
DOI: 10.1002/mp.14796
Tang C., Li J., Wang L., Li Z., Jiang L., Cai A. et al. Unpaired low-dose CT denoising network based on cycle-consistent generative adversarial network with prior image information. Comput. Math. Methods Med. 2019;2019:1–11. DOI: 10.1155/2019/8639825..
DOI: 10.1155/2019/8639825
Gombolevskiy V., Morozov S., Chernina V., Blokhin I., Vassileva J. A phantom study to optimise the automatic tube current modulation for chest CT in COVID-19. Eur. Radiol. Exp. 2021;5(1):21. DOI: 10.1186/ s41747-021-00218-0..
DOI: 10.1186/ s41747-021-00218-0
Gombolevskiy V., Morozov S., Chernina V., Blokhin I., Vassileva J. A phantom study to optimise the automatic tube current modulation for chest CT in COVID-19. Eur. Radiol. Exp. 2021;5(1):21. DOI: 10.1186/ s41747-021-00218-0..
DOI: 10.1186/s41747-021-00218-0
Maldjian P.D., Goldman A.R. Reducing radiation dose in body СТ: primer on dose metrics and key CT technical parameters. Am. Jour. of Rent. 2013;200(4):741–747. DOI: 10.2214/AJR.12.9768..
DOI: 10.2214/AJR.12.9768
Gierada D.S., Bierhals A.J., Choong C.K., Bartel S.T., Ritter J.H., Das N.A. et al. Effects of CT section thickness and reconstruction kernel on emphysema quantification. Acad. Radiol. 2010;17(2):146–156. DOI: 10.1016/j.acra.2009.08.007..
DOI: 10.1016/j.acra.2009.08.007
Fedorov A., Beichel R., Kalpathy-Cramer J., Finet J., Fillion-Robin J.-C., Pujol S. et al. 3D slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging. 2012;30(9):1323–1341. DOI: 10.1016/j.mri.2012.05.001..
DOI: 10.1016/j.mri.2012.05.001
Kikinis R., Pieper S.D., Vosburgh K.G. 3D slicer: F platform for subject-specific image analysis, visualization, and clinical support. In: F.A. Jolesz by ed. Intraoperative imaging andiImage-guided therapy. New York: Springer; 2014:277–289. DOI: 10.1007/978-1-4614-76573_19..
DOI: 10.1007/978-1-4614-76573_19
Bumm R., Lasso A., Kawel-Böhm N., Wäckerlin A., Ludwig P., Furrer M. First results of spatial reconstruction and quantification of COVID-19 chest CT infiltrates using lung CT analyzer and 3D slicer. Brit. J. Surg. 2021;108(4):znab202.077. DOI: 10.1093/bjs/znab202.077..
DOI: 10.1093/bjs/znab202.077
Kaza E., Dunlop A., Panek R., Collins D.J., Orton M., Symonds-Tayler R. et al. Lung volume reproducibility under ABC control and self-sustained breath-holding. J. Appl. Clin. Med. Phys. 2017;18(2):154–162. DOI: 10.1002/acm2.12034..
DOI: 10.1002/acm2.12034
Lanza E., Muglia R., Bolengo I., Santonocito O.G., Lisi C., Angelotti G. et al. Quantitative chest CT analysis in COVID-19 to predict the need for oxygenation support and intubation. Eur. Radiol. 2020;30(12):6770– 6778. DOI: 10.1007/s00330-020-07013-2..
DOI: 10.1007/s00330-020-07013-2
Berta L., Rizzetto F., De Mattia C., Lizio D., Felisi M., Colombo P.E. et al. Automatic lung segmentation in COVID-19 patients: Impact on quantitative computed tomography analysis. Phys. Medica. 2021;87:115–122. DOI: 10.1016/j.ejmp.2021.06.001..
DOI: 10.1016/j.ejmp.2021.06.001
Ozsahin I., Sekeroglu B., Musa M.S., Mustapha M.T., Uzun Ozsahin D. Review on diagnosis of covid-19 from chest CT images using artificial intelligence. Comput. Math. Methods Med. 2020;2020:1–10. DOI: 10.1155/2020/9756518..
DOI: 10.1155/2020/9756518
Shi F., Wang J., Shi J., Wu Z., Wang Q., Tang Z. et al. Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19. IEEE Rev. Biomed. Eng. 2021;14:4–15. DOI: 10.1109/RBME.2020.2987975..
DOI: 10.1109/RBME.2020.2987975
Кульберг Н.С., Решетников Р.В., Новик В.П., Елизаров А.Б., Гусев М.А., Гомболевский В.А. и др. Вариабельность заключений при интерпретации КТ-снимков: один за всех и все за одного. Digital Diagnostics. 2021;2(2):105–118. DOI: 10.17816/DD60622..
DOI: 10.17816/DD60622
Boufarasse Y.B., Ettahir A., Bekkali D., Bennani J. Teleradiology and AI as solution to overcome the COVID-19 pandemic impact during the lockdowns in Africa. Health Sci. J. 2020;14(6):771. DOI: 10.36648/1791809X.14.6.771..
DOI: 10.36648/1791809X.14.6.771
Tan B.S., Dunnick N.R., Gangi A., Goergen S., Jin Z.Y., Neri E. et al. RSNA International Trends: A global perspective on the COVID-19 pandemic and radiology in late 2020. Radiol. 2021;299(1):E193–E203. DOI: 10.1148/radiol.2020204267..
DOI: 10.1148/radiol.2020204267
Martín-Noguerol T., Lopez-Ortega R., Ros P.R., Luna A. Teleworking beyond teleradiology: Managing radiology departments during the COVID-19 outbreak. Eur. Radiol. 2021;31(2):601–604. DOI: 10.1007/s00330-020-07205-w..
DOI: 10.1007/s00330-020-07205-w