Mayerhoefer M.E., Materka A., Langs G., Häggström I., Szczypiński P., Gibbs P. et al. Introduction to Radiomics. J. Nucl. Med. 2020;61(4):488–495. DOI: 10.2967/jnumed.118.222893..
DOI: 10.2967/jnumed.118.222893
van Timmeren J.E., Cester D., Tanadini-Lang S., Alkadhi H., Baessler B. Radiomics in medical imaging-“how-to” guide and critical refl ection. Insights Imaging. 2020;11(1):91. DOI: 10.1186/s13244-020-00887-2..
DOI: 10.1186/s13244-020-00887-2
Murray J.M., Kaissis G., Braren R., Kleesiek J. Wie funktioniert Radiomics? [A primer on radiomics]. Radiologe. 2020;60(1):32–41. (In German). DOI: 10.1007/s00117-019-00617-w..
DOI: 10.1007/s00117-019-00617-w
Avanzo M., Stancanello J., Pirrone G., Sartor G. Radiomics and deep learning in lung cancer. Strahlenther Onkol. 2020;196(10):879–887. DOI: 10.1007/s00066-020-01625-9..
DOI: 10.1007/s00066-020-01625-9
Огнерубов Н.А., Шатов А.В., Шатов И.А. Радиогеномика и радиомика в диагностике злокачественных опухолей: обзор литературы. Вестник Тамбовского университета. Серия: Естественные и технические науки. 2017;22(6–2):1453–1460. DOI: 10.20310/1810-0198-2017-22-6-1453-1460..
DOI: 10.20310/1810-0198-2017-22-6-1453-1460
Литвин А.А., Буркин Д.А., Кропинов А.А., Парамзин Ф.Н. Радиомика и анализ текстур цифровых изображений в онкологии (обзор). Современные технологии в медицине. 2021;13(2):97–106. DOI: 10.17691/stm2021.13.2.11..
DOI: 10.17691/stm2021.13.2.11
Замятина К.А., Годзенко М.В., Кармазановский Г.Г., Ревишвили А.Ш. Радиомика при заболеваниях печени и поджелудочной железы. Обзор литературы. Анналы хирургической гепатологии. 2022;27(1):40–47. DOI: 10.16931/1995-5464.2022-1-40-47..
DOI: 10.16931/1995-5464.2022-1-40-47
Shur J.D., Doran S.J., Kumar S., Ap Dafydd D., Downey K., O’Connor J.P.B. et al. Radiomics in oncology: A practical guide. Radiographics. 2021;41(6):1717–1732. DOI: 10.1148/rg.2021210037..
DOI: 10.1148/rg.2021210037
Salvatore C., Castiglioni I., Cerasa A. Radiomics approach in the neurodegenerative brain. Aging Clin. Exp. Res. 2021;33(6):1709–1711. DOI: 10.1007/s40520-019-01299-z..
DOI: 10.1007/s40520-019-01299-z
Feng Q., Ding Z. MRI Radiomics classification and prediction in Alzheimer’s disease and mild cognitive impairment: A review. Curr. Alzheimer Res. 2020;17(3):297–309. DOI: 10.2174/1567205017666200303105016..
DOI: 10.2174/1567205017666200303105016
Pinamonti B., Picano E., Ferdeghini E.M., Lattanzi F., Slavich G., Landini L. et al. Quantitative texture analysis in two-dimensional echocardiography: application to the diagnosis of myocardial amyloidosis. J. Am. Coll. Cardiol. 1989;14(3):666–671. DOI: 10.1016/0735-1097(89)90108-3..
DOI: 10.1016/0735-1097(89)90108-3
Ferdeghini E.M., Pinamonti B., Picano E., Lattanzi F., Bussani R., Slavich G. et al. Quantitative texture analysis in echocardiography: application to the diagnosis of myocarditis. J. Clin. Ultrasound. 1991;19(5):263–270. DOI: 10.1002/jcu.1870190503..
DOI: 10.1002/jcu.1870190503
Lattanzi F., Bellotti P., Picano E., Chiarella F., Paterni M., Forni G. et al. Quantitative texture analysis in two-dimensional echocardiography: Application to the diagnosis of myocardial hemochromatosis. Echocardiography. 1996;13(1):9–20. DOI: 10.1111/j.1540-8175.1996.tb00863.x..
DOI: 10.1111/j.1540-8175.1996.tb00863.x
Kagiyama N., Shrestha S., Cho J.S., Khalil M., Singh Y., Challa A. et al. A low-cost texture-based pipeline for predicting myocardial tissue remodeling and fibrosis using cardiac ultrasound. EBioMedicine. 2020;54:102726. DOI: 10.1016/j.ebiom.2020.102726..
DOI: 10.1016/j.ebiom.2020.102726
Amichi A., Laugier P. Quantitative texture analysis and transesophageal echocardiography to characterize the acute myocardial contusion. Open Med. Inform. J. 2009;3:13–18. DOI: 10.2174/1874431100903010013..
DOI: 10.2174/1874431100903010013
Li L., Hu X., Tao X., Shi X., Zhou W., Hu H. Radiomic features of plaques derived from coronary CT angiography to identify hemodynamically significant coronary stenosis, using invasive FFR as the reference standard. Eur. J. Radiol. 2021;140:109769. DOI: 10.1016/j.ejrad.2021.109769..
DOI: 10.1016/j.ejrad.2021.109769
Shang J., Guo Y., Ma Y., Hou Y. Cardiac computed tomography radiomics: a narrative review of current status and future directions. Quant. Imaging Med. Surg. 2022;12(6):3436–3453. DOI: 10.21037/qims-21-1022..
DOI: 10.21037/qims-21-1022
Yunus M.M., Mohamed Yusof A.K., Ab Rahman M.Z., Koh X.J., Sabarudin A., Nohuddin P.N.E. et al. Automated classification of atherosclerotic radiomics features in coronary computed tomography angiography (CCTA). Diagnostics (Basel). 2022;12(7):1660. DOI: 10.3390/diagnostics12071660..
DOI: 10.3390/diagnostics12071660
Oikonomou E.K., Williams M.C., Kotanidis C.P., Desai M.Y., Marwan M., Antonopoulos A.S. et al. A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography. Eur. Heart J. 2019;40(43):3529–3543. DOI: 10.1093/eurheartj/ehz592..
DOI: 10.1093/eurheartj/ehz592
Hu G.Q., Ge Y.Q., Hu X.K., Wei W. Predicting coronary artery calcified plaques using perivascular fat CT radiomics features and clinical risk factors. BMC Med. Imaging. 2022;22(1):134. DOI: 10.1186/s12880-022-00858-7..
DOI: 10.1186/s12880-022-00858-7
Попов Е.В., Анашбаев Ж.Ж., Мальцева А.Н., Сазонова С.И. Радиомические характеристики текстурных изменений эпикардиальной жировой ткани при атеросклеротическом поражении коронарных артерий. Комплексные проблемы сердечно-сосудистых заболеваний. 2021;10(4):6–16. DOI: 10.17802/2306-1278-2021-10-4-6-16..
DOI: 10.17802/2306-1278-2021-10-4-6-16
Leiner T. Radiomics in cardiac MRI: Sisyphean struggle or close to the summit of Olympus? Radiol. Cardiothorac. Imaging. 2020;25;2(3):e200244. DOI: 10.1148/ryct.2020200244..
DOI: 10.1148/ryct.2020200244
Chang S., Han K., Suh Y.J., Choi B.W. Quality of science and reporting for radiomics in cardiac magnetic resonance imaging studies: a systematic review. Eur. Radiol. 2022;32(7):4361–4373. DOI: 10.1007/s00330-022-08587-9..
DOI: 10.1007/s00330-022-08587-9
Jang J., Ngo L.H., Mancio J., Kucukseymen S., Rodriguez J., Pierce P. et al. Reproducibility of segmentation-based myocardial radiomic features with cardiac MRI. Radiol. Cardiothorac. Imaging. 2020;2(3):e190216. DOI: 10.1148/ryct.2020190216..
DOI: 10.1148/ryct.2020190216
Baessler B., Mannil M., Maintz D., Alkadhi H., Manka R. Texture analysis and machine learning of noncontrast T1-weighted MR images in patients with hypertrophic cardiomyopathy-Preliminary results. Eur. J. Radiol. 2018;102:61–67. DOI: 10.1016/j.ejrad.2018.03.013..
DOI: 10.1016/j.ejrad.2018.03.013
Alis D., Guler A., Yergin M., Asmakutlu O. Assessment of ventricular tachyarrhythmia in patients with hypertrophic cardiomyopathy with machine learning-based texture analysis of late gadolinium enhancement cardiac MRI. Diagn. Interv. Imaging. 2020;101:137–146. DOI: 10.1016/j.diii.2019.10.005..
DOI: 10.1016/j.diii.2019.10.005
Baessler B., Luecke C., Lurz J., Klingel K., von Roeder M., de Waha S. et al. Cardiac MRI texture analysis of T1 and T2 maps in patients with infarctlike acute myocarditis. Radiology. 2018;289(2):357–365. DOI: 10.1148/radiol.2018180411..
DOI: 10.1148/radiol.2018180411
Hassani C., Saremi F., Varghese B.A, Duddalwar V. Myocardial radiomics in cardiac MRI. AJR Am. J. Roentgenol. 2020;214(3):536–545. DOI: 10.2214/AJR.19.21986..
DOI: 10.2214/AJR.19.21986
Koçak B., Durmaz E.Ş., Ateş E., Kılıçkesmez Ö. Radiomics with artificial intelligence: a practical guide for beginners. Diagn. Interv. Radiol. 2019;25(6):485–495. DOI: 10.5152/dir.2019.19321..
DOI: 10.5152/dir.2019.19321
Buch K., Kuno H., Qureshi M.M., Li B., Sakai O. Quantitative variations in texture analysis features dependent on MRI scanning parameters: A phantom model. J. Appl. Clin. Med. Phys. 2018;19(6):253–264. DOI: 10.1002/acm2.12482..
DOI: 10.1002/acm2.12482
Florez E., Fatemi A., Claudio P.P., Howard C.M. Emergence of radiomics: Novel methodology identifying imaging biomarkers of disease in diagnosis, response, and progression. SM J. Clin. Med. Imaging. 2018;4(1):1019.
Scapicchio C., Gabelloni M., Barucci A., Cioni D., Saba L., Neri E. A deep look into radiomics. Radiol. Med. 2021;126(10):1296–1311. DOI: 10.1007/s11547-021-01389-x..
DOI: 10.1007/s11547-021-01389-x
Rizzo S., Botta F., Raimondi S., Origgi D., Fanciullo C., Morganti A.G. et al. Radiomics: the facts and the challenges of image analysis. Eur. Radiol. Exp. 2018;2:36. DOI: 10.1186/s41747-018-0068-z..
DOI: 10.1186/s41747-018-0068-z
Aerts H., Velazquez E., Leijenaar R.T.H., Parmar C., Grossmann P., Carvalho S. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014;5:4006. DOI: 10.1038/ncomms5006..
DOI: 10.1038/ncomms5006
Parmar C., Grossmann P., Bussink J., Lambin P., Aerts H.J.W.L. Machine learning methods for quantitative radiomic biomarkers. Sci. Rep. 2015;5:13087. DOI: 10.1038/srep13087..
DOI: 10.1038/srep13087
Jolliffe I. Principal component analysis. In: Encyclopedia of Statistics in Behavioral Science. Wiley StatsRef: Stastistics Reference Online. 2005:501. DOI: 10.1002/0470013192.bsa501..
DOI: 10.1002/0470013192.bsa501
Rau A., Soschynski M., Taron J., Ruile P., Schlett C.L., Bamberg F. et al. Künstliche Intelligenz und Radiomics: Stellenwert in der kardialen MRT [Artificial intelligence and radiomics: Value in cardiac MRI]. Radiologie (Heidelb.). 2022;62(11):947–953. (In German). DOI: 10.1007/s00117-022-01060-0..
DOI: 10.1007/s00117-022-01060-0
Арутюнов Г.П., Палеев Ф.Н., Моисеева О.М., Драгунов Д.О., Соколова А.В., Арутюнов А.Г. и др. Миокардиты у взрослых. Клинические рекомендации 2020. Российский кардиологический журнал. 2021;26(11):4790. DOI: 10.15829/1560-4071-2021-4790..
DOI: 10.15829/1560-4071-2021-4790
Baessler B., Luecke C., Lurz J., Klingel K., Das A., von Roeder M. et al. Cardiac MRI and texture analysis of myocardial T1 and T2 maps in myocarditis with acute versus chronic symptoms of heart failure. Radiology. 2019:292(3):608–617. DOI: 10.1148/radiol.2019190101..
DOI: 10.1148/radiol.2019190101
Di Noto T., von Spiczak J., Mannil M., Gantert E., Soda P., Manka R. et al. Radiomics for distinguishing myocardial infarction from myocarditis at late gadolinium enhancement at MRI: Comparison with subjective visual analysis. Radiol. Cardiothorac. Imaging. 2019;1(5):e180026. DOI: 10.1148/ryct.2019180026..
DOI: 10.1148/ryct.2019180026
McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M. et al. ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021;42(36):3599–3726. DOI: 10.1093/eurheartj/ehab368..
DOI: 10.1093/eurheartj/ehab368
Belloni E., De Cobelli F., Esposito A., Mellone R., Perseghin G., Canu T. et al. MRI of cardiomyopathy. AJR Am. J. Roentgenol. 2008;191(6):1702–1710. DOI: 10.2214/AJR.07.3997..
DOI: 10.2214/AJR.07.3997
Amano Y., Yanagisawa F., Omori Y., Suzuki Y., Ando C., Yamamoto H. et al. Detection of myocardial tissue alterations in hypertrophic cardiomyopathy using texture analysis of T2-weighted short inversion time inversion recovery magnetic resonance imaging. J. Comput. Assist. Tomogr. 2020;44(3):341–345. DOI: 10.1097/RCT.0000000000001007..
DOI: 10.1097/RCT.0000000000001007
Schofield R., Ganeshan B., Fontana M., Nasis A., Castelletti S., Rosmini S. et al. Texture analysis of cardiovascular magnetic resonance cine images differentiates aetiologies of left ventricular hypertrophy. Clin. Radiol. 2019;74(2):140–149. DOI: 10.1016/j.crad.2018.09.016..
DOI: 10.1016/j.crad.2018.09.016
Izquierdo C., Casas G., Martin-Isla C., Campello V.M., Guala A., Gkontra P. et al. Radiomics-based classification of left ventricular non-compaction, hypertrophic cardiomyopathy, and dilated cardiomyopathy in cardiovascular magnetic resonance. Front. Cardiovasc. Med. 2021;8:764312. DOI: 10.3389/fcvm.2021.764312..
DOI: 10.3389/fcvm.2021.764312
Neisius U., El-Rewaidy H., Kucukseymen S., Tsao C.W., Mancio J. et al. Texture signatures of native myocardial T1 as novel imaging markers for identification of hypertrophic cardiomyopathy patients without scar. J. Magn. Reson. Imaging. 2020;52(3):906–919. DOI: 10.1002/jmri.27048..
DOI: 10.1002/jmri.27048
Wang J., Yang F., Liu W., Sun J., Han Y., Li D. et al. Radiomic analysis of native T1 mapping images discriminates between MYH7 and MYB-PC3-related hypertrophic cardiomyopathy. J. Magn. Reson. Imaging. 2020;52(6):1714–1721. DOI: 10.1002/jmri.27209..
DOI: 10.1002/jmri.27209
Spadarella G., Perillo T., Ugga L., Cuocolo R. Radiomics in cardiovascular disease imaging: from pixels to the heart of the problem. Curr. Cardiovasc. Imaging Rep. 2022;15:11–21. DOI: 10.1007/s12410-022-09563-z..
DOI: 10.1007/s12410-022-09563-z
Larroza A., López-Lereu M.P., Monmeneu J.V., Gavara J., Chorro F.J., Bodí V. et al. Texture analysis of cardiac cine magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction. Med. Phys. 2018;45(4):1471–1480. DOI: 10.1002/mp.12783..
DOI: 10.1002/mp.12783
Chen B., An D., He J., Wu C.-W., Yue T., Wu R. et al. Myocardial extracellular volume fraction radiomics analysis for differentiation of reversible versus irreversible myocardial damage and prediction of left ventricular adverse remodeling after ST-elevation myocardial infarction. Eur. Radiol. 2021;31:504–514. DOI: 10.1007/s00330-020-07117-9..
DOI: 10.1007/s00330-020-07117-9
Eftestøl T., Woie L., Engan K., Kvaløy J.T., Nilsen D.W., Ørn S. Texture analysis to assess risk of serious arrhythmias after myocardial infarction. In: Computing in Cardiology IEEE. Krakow, Poland; 2012:365–368. URL: https://ieeexplore.ieee.org/abstract/document/6420406 (06.07.2023).https://ieeexplore.ieee.org/abstract/document/6420406
Eftestøl T., Woie L., Engan K., Kvaløy J.T., Nilsen D.W., Ørn S. Texture analysis to assess risk of serious arrhythmias after myocardial infarction. In: Computing in Cardiology IEEE. Krakow, Poland; 2012:365–368. URL: https://ieeexplore.ieee.org/abstract/document/6420406 (06.07.2023).https://ieeexplore.ieee.org/abstract/document/6420406
Engan K., Eftestol T., Orn S., Kvaloy J.T., Woie L. Exploratory data analysis of image texture and statistical features on myocardium and infarction areas in cardiac magnetic resonance images. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2010;2010:5728–5731. DOI: 10.1109/IEMBS.2010.5627866..
DOI: 10.1109/IEMBS.2010.5627866
Ma Q., Ma Y., Yu T., Sun Z., Hou Y. Radiomics of non-contrast-enhanced T1 mapping: diagnostic and predictive performance for myocardial injury in acute ST-segment-elevation myocardial infarction. Korean J. Radiol. 2021;22(4):535–546. DOI:10.3348/kjr.2019.0969..
DOI: 10.3348/kjr.2019.0969
Raisi-Estabragh Z., Gkontra P., Jaggi A., Cooper J., Augusto J., Bhuva A.N. et al. Repeatability of cardiac magnetic resonance radiomics: A multi-centre multi-vendor test-retest study. Front. Cardiovasc. Med. 2020;7:586236. DOI: 10.3389/fcvm.2020.586236..
DOI: 10.3389/fcvm.2020.586236
Park J.E., Park S.Y., Kim H.J., Kim H.S. Reproducibility and generalizability in radiomics modeling: Possible strategies in radiologic and statistical perspectives. Korean J. Radiol. 2019;20(7):1124–1137. DOI: 10.3348/kjr.2018.0070..
DOI: 10.3348/kjr.2018.0070
Park S.H., Han K. Methodologic Guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology. 2018;286(3):800–809. DOI: 10.1148/radiol.2017171920..
DOI: 10.1148/radiol.2017171920
Varghese B.A., Cen S.Y., Hwang D.H., Duddalwar V.A. Texture analysis of imaging: What radiologists need to know. AJR Am. J. Roentgenol. 2019;212(3):520–528. DOI: 10.2214/AJR.18.20624..
DOI: 10.2214/AJR.18.20624
Kumar V., Gu Y., Basu S., Berglund A., Eschrich S.A., Schabath M.B. et al. Radiomics: the process and the challenges. Magn. Reson. Imaging. 2012;30(9):1234–1248. DOI: 10.1016/j.mri.2012.06.010..
DOI: 10.1016/j.mri.2012.06.010
Amano Y., Suzuki Y., Yanagisawa F., Omori Y., Matsumoto N. Relationship between extension or texture features of late gadolinium enhancement and ventricular tachyarrhythmias in hypertrophic cardiomyopathy. Biomed. Res. Int. 2018;2018:4092469. DOI: 10.1155/2018/4092469..
DOI: 10.1155/2018/4092469