Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
Главная / Результаты поиска
Статья; ОбзорИскать документыПерейти к записи. 2016; Т. 17, № 3: 23–37. DOI:10.17650/2070-9781-2016-17-3-23-37
Роль микроРНК в сперматогенезе
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Аффилированные организации
[1]Искать документыПерейти к записи
Аннотация
Мужские половые клетки имеют сложный транскриптом. Помимо кодирующих белки матричных РНК в нем присутствует много некодирующих РНК, включая микроРНК. Известно, что микроРНК – важные регуляторы экспрессии генов. Они функционируют в основном посттранскрипционно, контролируя трансляцию их целевых мессенджеров – матричных РНК – и участвуя в каждом этапе дифференцировки мужских половых клеток. В данном обзоре продемонстрировано значение путей микроРНК для нормального сперматогенеза. Определена функциональная роль ряда микроРНК на различных этапах дифференцировки половых клеток. Рассмотрены микроРНК в сперматозоидах и семенной плазме человека в качестве потенциальных биомаркеров мужского бесплодия.
Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Рубрики Mesh
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Jan S.Z., Hamer G., Repping S. et al. Molecular control of rodent spermatogenesis. Biochim Biophys Acta 2012;1822(12): 1838–50.

Kanatsu-Shinohara M., Shinohara T. Spermatogonial stem cell self-renewal and development. Annu Rev Cell Dev Biol 2013;29:163–87.

Miller M.P., Amon A., Unal E. Meiosis I: when chromosomes undergo extreme makeover. Curr Opin Cell Biol 2013;25(6): 687–96.

Rathke C., Baarends W.M., Awe S., Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. Biochim Biophys Acta 2014;1839:155–68.

Kotaja N., Kimmins S., Brancorsini S. et al. Preparation, isolation and characterization of stage-specific spermatogenic cells for cellular and molecular analysis. Nat Methods 2004;1:249–54.

Ruwanpura S.M., McLachlan R.I., Meachem S.J. Hormonal regulation of male germ cell development. J Endocrinol 2010;205(2):117–31.

Guyonnet B., Dacheux F., Dacheux J.L., Gatti J.L. The epididymal transcriptome and proteome provide some insights into new epididymal regulations. J Androl 2011;32(6):651–64.

Rato L., Alves M.G., Socorro S. et al. Metabolic regulation is important for spermatogenesis. Nat Rev 2012;9(6):330–8.

Tilly J.L., Sinclair D.A. Germline energetics, aging, and female infertility. Cell Metab 2013;17(6):838–50.

Chalmel F., Rolland A.D., NiederhauserWiederkehr C. et al. The conserved transcriptome in human and rodent male gametogenesis. Proc Natl Acad Sci USA 2007;104(20):8346–51.

Laiho A., Kotaja N., Gyenesei A., Sironen A. Transcriptome profiling of the murine testis during the first wave of spermatogenesis. PLoS One 2013;8(4):e61558.

Matzuk M.M., Lamb D.J. The biology of infertility: research advances and clinical challenges. Nature Med 2008;14(11): 1197–213.

Kimmins S., Kotaja N., Davidson I., Sassone-Corsi P. Testis-specific transcription mechanisms promoting male germ-cell differentiation. Reproduction 2004;128(1):5–12.

Kimmins S., Sassone-Corsi P. Chromatin remodelling and epigenetic features of germ cells. Nature 2005;434(7033):583–9.

Rinn J.L., Chang H.Y. Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012;81:145–66.

Bao J., Wu J., Schuster A.S. et al. Expression profiling reveals developmentally regulated lncRNA repertoire in the mouse male germline. Biol Reprod 2013; 89(5):107.

Sun J., Lin Y., Wu J. Long non-coding RNA expression profiling of mouse testis during postnatal development. PLoS One 2013;8(10):e75750.

Soumillon M., Necsulea A., Weier M. et al. Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep 2013;3(6):2179–90.

Ascano M., Gerstberger S., Tuschl T. Multi-disciplinary methods to define RNA-protein interactions and regulatory networks. Curr Opin Genet Dev 2013;23(1):20–8.

Paronetto M.P., Sette C. Role of RNAbinding proteins in mammalian spermatogenesis. Int J Androl 2010;33(1):2–12.

Idler R.K., Yan W. Control of messenger RNA fate by RNA-binding proteins: an emphasis on mammalian spermatogenesis. J Androl 2012;33(3):309–37.

Meikar O., Da Ros M., Korhonen H., Kotaja N. Chromatoid body and small RNAs in male germ cells. Reproduction 2011;142(2):195–209.

Kotaja N., Bhattacharyya S.N., Jaskiewicz L. et al. The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc Natl Acad Sci USA 2006;103(8):2647–52.

Kotaja N., Sassone-Corsi P. The chromatoid body: a germ-cell-specific RNAprocessing centre. Nat Rev Mol Cell Biol 2007;8(1):85–90.

Ghildiyal M., Zamore P.D. Small silencing RNAs: an expanding universe. Nat Rev Genet 2009;10(2):94–108.

Vasudevan S., Tong Y., Steitz J.A. Switching from repression to activation: MicroRNAs can up-regulate translation. Science 2007;318(5858):1931–4.

Zheng H., Fu R., Wang J.T. et al. Advances in the techniques for the prediction of microRNA targets. Int J Mol Sci 2013;14(4):8179–87.

Макарова Ю.А., Крамеров Д.А. Некодирующие РНК. Биохимия 2007;72(11):1427–48..

Lee Y., Kim M., Han J. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004;23(20):4051–60.

Chen K., Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007;8(2):93–103.

Pratt A.J., MacRae I.J. The RNAinduced silencing complex: a versatile genesilencing machine. J Biol Chem 2009;284(27):17897–901.

Sood P., Krek A., Zavolan M. et al. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci USA 2006;103(8):2746–51.

Wang Z., Yao H., Lin S. et al. Transcriptional and epigenetic regulation of human microRNAs. Cancer Lett 2013;331(1):1–10.

Ishizu H., Siomi H., Siomi M.C. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev 2012;26(21):2361–73.

Siomi M.C., Sato K., Pezic D., Aravin A.A. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell biol 2011;12(4):246–58.

Yadav R.P., Kotaja N. Small RNAs in spermatogenesis. Mol Cell Endocrinol 2014;382(1):498–508.

Papaioannou M.D., Nef S. McroRNAs in the testis: building up male fertility. J Androl 2010;31(1):26–33.

Mclver S.C., Roman S.D., Nixon B., McLaughlin E. A. miRNA and mammalian male germ cells. Hum Reprod Update 2012;18(1):44–59.

Yan N., Lu Y., Sun H. et al. A microarray for microRNA profiling in mouse testis tissues. Reproduction 2007;134(1):73–9.

Yan N., Lu Y., Sun H. et al. Microarray profiling of microRNAs expressed in testis tissues of developing primates. J Assist Reprod Genet 2009;26(4):179–86.

Mclver S.C., Stanger S.J., Santarelli D.M. et al. A unique combination of male germ cell miRNAs coordinates gonocyte differentiation. PLoS One 2012;7(4):e35553.

Niu Z., Goodyear S.M., Rao S. et al. MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc Natl Acad Sci USA 2011;108(31):12740–5.

He Z., Jiang J., Kokkinaki M. et al. MiRNA-20 and miRNA-106a regulate spermatogonial stem cell renewal at the posttranscriptional level via targeting STAT3 and Ccnd1. Stem Cells 2013;31(10):2205–17.

Kotaja N. MicroRNAs and spermatogenesis. Fertil Steril 2014;101(6): 1552–62.

Ro S., Park C., Sanders K.M. et al. Cloning and expression profiling of testisexpressed microRNAs. Dev Biol 2007;311(2):592–602.

Smorag L., Zheng Y., Nolte J. et al. MicroRNA signature in various cell types of mouse spermatogenesis: evidence for stage-specifically expressed miRNA-221, -203 and -34b-5p mediated spermatogenesis regulation. Biol Cell 2012;104(11):677–92.

Marcon E., Babak T., Chua G. et al. miRNA and piRNA localization in the male mammalian meiotic nucleus. Chromosome Res 2008;16(2):243–60.

Ro S., Park C., Young D. et al. Tissue-dependent paired expression of miRNAs. Nucleic Acids Res 2007;35(17):5944–53.

Ortogero N., Hennig G.W., Langille C. et al. Computerassisted annotation of murine Sertoli cell small RNA transcriptome. Biol Reprod 2013;88(1):3.

Papaioannou M.D., Pitetti J.L., Ro S. et al. Sertoli cell Dicer is essential for spermatogenesis in mice. Dev Biol 2009;326(1):250–9.

Papaioannou M.D., Lagarrigue M., Vejnar C.E. et al. Loss of Dicer in Sertoli cells has a major impact on the testicular proteome of mice. Mol Cell Proteomics 2011;10(4):M900587MCP200.

Panneerdoss S., Chang Y.F., Buddavarapu K.C. et al. Androgen-responsive microRNAs in mouse Sertoli cells. PLoS One 2012;7(7):e41146.

Nicholls P.K., Harrison C.A., Walton K.L. et al. Hormonal regulation of sertoli cell micro-RNAs at spermiation. Endocrinology 2011;152(4):1670–83.

Schwarz D.S., Zamore P.D. Why do miRNAs live in the miRNP? Genes Dev 2002;16(9):1025–31.

Stark A., Brennecke J., Bushati N. et al. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3’UTR evolution. Cell 2005;123(6):1133–46.

Lewis B.P., Shih I.H., Jones-Rhoades M. et al. Prediction of Mammalian MicroRNA Targets. Cell 2003;115(7):787–98.

Chen C., Ridzon D.A., Broomer A.J. et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005;33(20):e179.

Shingara J., Keiger K., Shelton J. et al. An optimized isolation and labeling platform

for accurate microRNA expression profiling. RNA 2005;11(9):1461–70.

Nozawa M., Miura S., Nei M. Origins and evolution of microRNA genes in Drosophila species. Genome Biol Evol 2010;2:180–9.

Song R., Hennig G.W., Wu Q. et al. Male germ cells express abundant endogenous siRNAs. Proc Natl Acad Sci USA 2011;108(32):13159–64.

Ewen K.A., Koopman P. Mouse germ cell development: from specification to sex determination. Mol Cell Endocrinol 2010;323(1):76–93.

Wainwright E.N., Jorgensen J.S., Kim Y. et al. SOX9 regulates microRNA miR-202-5p/3p expression during mouse testis differentiation. Biol Reprod 2013;89(2):34.

Rakoczy J., Fernandez-Valverde S.L., Glazov E.A. et al. MicroRNAs-140-5p/140-3p modulate Leydig cell numbers in the developing mouse testis. Biol Reprod 2013;88(6):143.

Matsui Y. The molecular mechanisms regulating germ cell development and potential. J Androl 2010;31(1):61–5.

De Rooij D.G., Russell L.D. All you wanted to know about spermatogonia but were afraid to ask. J Androl 2000;21(6): 776–98.

Huszar J.M., Payne C.J. MicroRNA 146(Mir146) modulates spermatogonial differentiation by retinoic acid in mice. Biol Reprod 2013;88(1):15.

Yang Q.E., Racicot K.E., Kaucher A.V. et al. MicroRNAs-221 and -222 regulate the undifferentiated state in mammalian male germ cells. Development 2013;140(2):280–90.

Tong M.H., Mitchell D.A., McGowan S.D. et al. Two miRNA clusters, Mir-17–92 (Mirc1) and Mir-106b-25 (Mirc3), are involved in the regulation of spermatogonial differentiation in mice. Biol Reprod 2012;86(3):72.

Tong M.H., Mitchell D., Evanoff R., Griswold M.D. Expression of Mirlet7 family microRNAs in response to retinoic acidinduced spermatogonial differentiation in mice. Biol Reprod 2011;85(1):189–97.

Mayr F., Heinemann U. Mechanisms of Lin28-mediated miRNA and mRNA regulation – a structural and functional perspective. Int J Mol Sci 2013;14(8): 16532–53.

Zheng K., Wu X., Kaestner K.H., Wang P.J. The pluripotency factor LIN28 marks undifferentiated spermatogonia in mouse. BMC Dev Biol 2009;9:38.

Gillis A.J., Stoop H., Biermann K. et al. Expression and interdependencies of pluripotency factors LIN28, OCT3/4, NANOG and SOX2 in human testicular germ cells and tumours of the testis. Int J Androl 2011;34(4 Pt 2):e160–74.

Gaytan F., Sangiao-Alvarellos S., Manfredi-Lozano M. et al. Distinct expression patterns predict differential roles of the miRNA-binding proteins, LIN28 and LIN28b, in the mouse testis: studies during postnatal development and in a model of hypogonadotropic hypogonadism. Endocrinology 2013;154(3):1321–36.

Aeckerle N., Eildermann K., Drummer C. et al. The pluripotency factor LIN28 in monkey and human testes: a marker for spermatogonial stem cells? Mol Hum Reprod 2012;18(10):477–88.

Chakraborty P., Buaas F.W., Sharma M. et al. LIN28A marks the spermatogonial progenitor population and regulates its cyclic expansion. Stem Cells 2014;32(4):860–73.

Murchison E.P., Stein P., Xuan Z. et al. Critical roles for Dicer in the female germline. Genes Dev 2007;21(6):682–93.

Platts A.E., Dix D.J., Chemes H.E. et al. Success and failure in human spermatogenesis as revealed by teratozoospermic RNAs. Hum Mol Genet 2007;16(7):763–73.

Romero Y., Meikar O., Papaioannou M.D. et al. Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects. PLoS One 2011;6(10):e25241.

Bouhallier F., Allioli N., Lavial F. et al. Role of miR-34c microRNA in the late steps of spermatogenesis. RNA 2010;16(4):720–31.

Liang X., Zhou D., Wei C. et al. MicroRNA-34c enhances murine male germ cell apoptosis through targeting ATF1. PLoS One 2012;7(3):e33861.

Bao J., Li D., Wang L. et al. MicroRNA-449 and microRNA-34b/c function redundantly in murine testes by targeting E2F transcription factorretinoblastoma protein(E2F-pRb) pathway. J Biol Chem 2012;287(26):21686–98.

Meikar O., Da Ros M., Kotaja N. Epigenetic regulation of male germ cell differentiation. Subcell Biochem 2012;61:119–38.

Dai L., Tsai-Morris C.H., Sato H. et al. Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25) – null mice silences transition protein 2 and protamine 2 messages at sites within coding region: implications of its role in germ cell development. J Biol Chem 2011;286(52):44306–18.

Yu Z., Raabe T., Hecht N.B. MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod 2005;73(3):427–33.

Bjork J.K. Sandqvist A., Elsing A.N. miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis. Development 2010;137(19):3177–84.

Akerfelt M., Morimoto R.I., Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 2010;11(8):545–55.

Missirlis P.I., Smailus D.E., Holt R.A. A high-throughput screen identifying sequence and promiscuity characteristics of the loxP spacer region in Cre-mediated recombination. BMC Genomics 2006;7:73.

Landel C.P., Chen S.Z., Evans G.A. Reverse genetics using transgenic mice. Annu Rev Physiol 1990;52:841–51.

Hoess R.H., Ziese M., Sternberg N. P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci USA 1982;79(11):3398–402.

Kuhn R., Wurst W. Gene Knockout Protocols. 2nd Edition. New-York: Humana Press, 2009. 517 p.

Hayashi K., Chuva de Sousa Lopes S.M., Kaneda M. et al. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 2008;3(3):e1738.

Maatouk D.M., Loveland K.L., McManus M.T. et al. Dicer1 is required for differentiation of the mouse male germline. Biol Reprod 2008;79(4):696–703.

Liu D., Li L., Fu H. et al. Inactivation of Dicer1 has a severe cumulative impact on the formation of mature germ cells in mouse testes. Biochem Biophys Res Commun 2012;422(1):114–20.

Korhonen H.M., Meikar O., Yadav R.P. et al. Dicer is required for haploid male germ cell differentiation in mice. PLoS One 2011;6(9):e24821.

Wu Q., Song R., Ortogero N. et al. The RNase III enzyme Drosha is essential for microRNA production and spermatogenesis. J Biol Chem 2012;287(30):25173–90.

Greenlee A.R., Shiao M.S., Snyder E. et al. Deregulated sex chromosome gene expression with male germ cell-specific loss of Dicer1. PLoS One 2012;7(10):e46359.

Chang Y.F., Lee-Chang J.S., Imam J.S. et al. Interaction between microRNAs and actinassociated protein Arpc5 regulates translational suppression during male germ cell differentiation. Proc Natl Acad Sci USA 2012;109(15):5750–5.

Meunier J., Lemoine F., Soumillon M. et al. Birth and expression evolution of mammalian microRNA genes. Genome Res 2013;23(1):34–45.

Song R., Ro S., Michaels J.D. et al. Many X-linked microRNAs escape meiotic sex chromosome inactivation. Nat Genet 2009;41(4):488–93.

Modzelewski A.J., Holmes R.J., Hilz S. et al. AGO4 regulates entry into meiosis and influences silencing of sex chromosomes in the male mouse germline. Dev Cell 2012;23(2):251–64.

Johanson T.M., Lew A.M., Chong M.M. MicroRNA-independent roles of the RNase III enzymes Drosha and Dicer. Open Biol 2013;3(10):130144.

Luteijn M.J., Ketting R.F. PIWIinteracting RNAs: from generation to transgenerational epigenetics. Nat Rev Genet 2013;14(8):523–34.

Liu W.M., Pang R.T., Chiu P.C. et al. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci USA 2012;109(2):490–4.

Ostermeier G.C., Dix D.J., Miller D. et al. Spermatozoal RNA profiles of normal fertile men. Lancet 2002;360(9335):772–7.

Jodar M., Selvaraju S., Sendler E. et al. The presence, role and clinical use of spermatozoal RNAs. Hum Reprod Update 2013;19(6):604–24.

Sendler E., Johnson G.D., Mao S. et al. Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res 2013;41(7):4104–17.

Krawetz S.A., Kruger A., Lalancette C. et al. A survey of small RNAs in human sperm. Hum Reprod 2011;26(12):3401–12.

Lian J., Zhang X., Tian H. et al. Altered microRNA expression in patients with nonobstructive azoospermia. Reprod Biol Endocrinol 2009;7:13.

Wang C., Yang C., Chen X. et al. Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clin Chem 2011;57(12):1722–31.

Wu W., Hu Z., Qin Y. et al. Seminal plasma microRNAs: potential biomarkers for spermatogenesis status. Mol Hum Reprod 2012;18(10):489–97.

Zhang H., Liu Y., Su D. et al. A single nucleotide polymorphism in a miR-1302 binding site in CGA increases the risk of idiopathic male infertility. Fertil Steril 2011;96(1):34–9.

Abu-Halima M., Hammadeh M., Schmitt J. et al. Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments. Fertil Steril 2013;99(5): 1249–55.

Montjean D., De La Grange P., Gentien D. et al. Sperm transcriptome profiling in oligozoospermia. J Assist Reprod Genet 2012;29(1):3–10.

Jodar M., Kalko S., Castillo J. et al. Differential RNAs in the sperm cells of asthenozoospermic patients. Hum Reprod 2012;27(5):1431–8.

Дополнительная информация
Язык текста: Русский
ISSN: 2070-9781
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4147582d41525449434c452d323031362d31372d332d302d32332d3337/