Djøseland O., Gordeladze J.O., Høglo S. et al. Evidence for androgen-dependent phosphodiesterase activity in rat seminal vesicle and epididymis. Int J Androl 1980;3(1–6):363–6.
DOI: 10.1111/j.1365-2605.1980.tb00125.x
Benau D., Szabo E.I., Terner C. Endogenous inhibitors of cyclic adenosine 3’,5’-monophosphate-phosphodiesterase in rat epididymis. Biol Reprod 1986;35(4):799–805.
DOI: 10.1095/biolreprod35.4.799
Razzaboni B., Terner C. Cyclic adenosine 3’,5’-monophosphate-phosphodiesterases in epididymis and prostate of castrate and of aged rats. Mech Ageing Dev 1988;43(1):61–9.
DOI: 10.1016/0047-6374(88)90097-8
Setchell B., Breed W. Anatomy, vasculature, and innervation of the male reproductive tract. In: Knobil and Neill’s Physiology of Reproduction. Ed. by J.D. Neill. 3rd edn. Elsevier, 2006. P. 771–825.
Zhang C., Yeh S., Chen Y.T. et al. Oligozoospermia with normal fertility in male mice lacking the androgen receptor in testis peritubular myoid cells. Proc Natl Acad Sci U S A 2006;103(47):17718–123.
DOI: 10.1073/pnas.0608556103
Mewe M., Bauer C.K., Müller D., Middendorff R. Regulation of spontaneous contractile activity in the bovine epididymal duct by cyclic guanosine 5’-monophosphate-dependent pathways. Endocrinology 2006;147(4):2051–62.
DOI: 10.1210/en.2005-1324
Swinnen J.V., Joseph D.R., Conti M. Molecular cloning of rat homologues of the Drosophila melanogaster dunce cAMP phosphodiesterase: evidence for a family of genes. Proc Natl Acad Sci U S A 1989;86(14):5325–9.
DOI: 10.1073/pnas.86.14.5325
Geremia R., Rossi P., Pezzotti R., Conti M. Cyclic nucleotide phosphodiesterase in developing rat testis identification of somatic and germ-cell forms. Mol Cell Endocrinol 1982;28(1):37–53.
DOI: 10.1016/0303-7207(82)90039-9
Morena A.R. Boitani C., de Grossi S. et al. Stage and cell-specific expression of the adenosine 3’,5’ monophosphate-phosphodiesterase genes in the rat seminiferous epithelium. Endocrinology 1995;136(2):687–95.
DOI: 10.1210/endo.136.2.7835302
Fujishige K., Kotera J., Michibata H. et al. Cloning and characterization of a novel human phosphodiesterase that hydrolyzes both cAMP and cGMP (PDE10A). J Biol Chem 1999;274(26):18438–45.
DOI: 10.1074/jbc.274.26.18438
Soderling S.H., Bayuga S.J., Beavo J.A. Cloning and characterization of a cAMP-specific cyclic nucleotide phosphodiesterase. Proc Natl Acad Sci U S A 1998;95(15):8991–6.
DOI: 10.1073/pnas.95.15.8991
Siuciak J.A., McCarthy S.A., Chapin D.S. et al. Genetic deletion of the striatum-enriched phosphodiesterase PDE10A: evidence for altered striatal function. Neuropharmacology 2006;51(2):374–85.
DOI: 10.1016/j.neuropharm.2006.01.012
Baxendale R.W., Fraser L.R. Mammalian sperm phosphodiesterases and their involvement in receptor-mediated cell signaling important for capacitation. Mol Reprod Dev 2005;71(4):495–508.
DOI: 10.1002/mrd.20265
Francis S.H. Phosphodiesterase 11 (PDE11): is it a player in human testicular function? Int J Impot Res 2005;17(5):467–8.
DOI: 10.1038/sj.ijir.3901377
Wayman C., Phillips S., Lunny C. et al. Phosphodiesterase 11 (PDE11) regulation of spermatozoa physiology. Int J Impot Res 2005;17(3): 216–23.
DOI: 10.1038/sj.ijir.3901307
Tzortzis V., Mitrakas L., Gravas S. et al. Oral phosphodiesterase type 5 inhibitors alleviate recurrent priapism complicating thalassemia intermedia: a case report. J Sex Med 2009;6(7):2068–71.
DOI: 10.1111/j.1743-6109.2009.01285.x
Georgiadis G., Zisis I.E., Docea A.O. et al. Current concepts on the reno-protective effects of phosphodiesterase 5 inhibitors in acute kidney injury: systematic search and review. J Clin Med 2020;9(5):1284.
DOI: 10.3390/jcm9051284
Iordache A.M., Buga A.M., Albulescu D. et al. Phosphodiesterase-5 inhibitors ameliorate structural kidney damage in a rat model of contrast-induced nephropathy. Food Chem Toxicol 2020;143:111535.
DOI: 10.1016/j.fct.2020.111535
Mamoulakis C., Tsarouhas K., Fragkiadoulaki I. et al. Contrast-induced nephropathy: basic concepts, pathophysiological implications and prevention strategies. Pharmacol Ther 2017;180:99–112.
DOI: 10.1016/j.pharmthera.2017.06.009
Fisch J.D., Behr B., Conti M. Enhancement of motility and acrosome reaction in human spermatozoa: differential activation by type-specific phosphodiesterase inhibitors. Hum Reprod 1998;13(5):1248–54.
DOI: 10.1093/humrep/13.5.1248
Sikka S.C., Hellstrom W.J. The application of pentoxifylline in the stimulation of sperm motion in men undergoing electroejaculation. J Androl 1991;12(3):165–70.
Tesariki J., Thébault A., Testart J. Effect of pentoxifylline on sperm movement characteristics in normozoospermic and asthenozoospermic specimens. Hum Reprod 1992;7(9):1257–63.
DOI: 10.1093/oxfordjournals.humrep.a137837
Tournaye H., Devroey P., Camus M. et al. Use of pentoxifylline in assisted reproductive technology. Hum Reprod 1995;10(suppl 1): 72–9.
DOI: 10.1093/humrep/10.suppl_1.72
Haesungcharern A., Chulavatnatol M. Stimulation of human spermatozoal motility by caffeine. Fertil Steril 1973;24(9):662–5.
DOI: 10.1016/s0015-0282(16)39909-5
Schill W.B. Caffeine- and kallikrein-induced stimulation of human sperm motility: a comparative study. Andrologia 2009;7(3):229–36.
DOI: 10.1111/j.1439-0272.1975.tb00933.x
De Turner E.A., Aparicio N.J., Turner D., Schwarzstein L. Effect of two phosphodiesterase inhibitors, cyclic adenosine 3’:5’-monophosphate, and a β-blocking agent on human sperm motility. Fertil Steril 1978;29(3):328–31.
DOI: 10.1016/s0015-0282(16)43161-4
Schill W.B., Pritsch W., Preissler G. Effect of caffeine and kallikrein on cryo-preserved human spermatozoa. Int J Fertil 1979;24(1):27–32.
Marrama P., Baraghini G.F., Carani C. et al. Further studies on the effects of pentoxifylline on sperm count and sperm motility in patients with idiopathic oligo-asthenozoospermia. Andrologia 2009;17(6):612–6.
DOI: 10.1111/j.1439-0272.1985.tb01728.x
Yovich J.M., Edirisinghe W.R., Cummins J.M., Yovich J.L. Influence of pentoxifylline in severe male factor infertility. Fertil Steril 1990;53(4):715–22.
DOI: 10.1016/s0015-0282(16)53470-0
Shen M., Chiang P.H., Yang R.C. et al. Pentoxifylline stimulates human sperm motility both in vitro and after oral therapy. Br J Clin Pharmacol 1991;31(6):711–4.
DOI: 10.1111/j.1365-2125.1991.tb05600.x
Fuse H., Sakamoto M., Ohta S., Katayama T. Effect of pentoxifylline on sperm motion. Arch Androl 1993;31(1):9–15.
DOI: 10.3109/01485019308988374
Pang S.C., Chan P.J., Lu A. Effects of pentoxifylline on sperm motility and hyperactivation in normozoospermic and normokinetic semen. Fertil Steril 1993;60(2):336–43.
DOI: 10.1016/s0015-0282(16)56108-1
Tasdemir M., Tasdemir I., Kodama H., Tanaka T. Andrology: Pentoxifylline-enhanced acrosome reaction correlates with fertilization in vitro. Hum Reprod 1993;8(12):2102–7.
DOI: 10.1093/oxfordjournals.humrep.a137990
Yunes R., Fernández P., Doncel G.F., Acosta A.A. Cyclic nucleotide phosphodiesterase inhibition increases tyrosine phosphorylation and hyper motility in normal and pathological human spermatozoa. Biocell 2005;29(3):287–93.
Wang C., Chan C.W., Wong K.K., Yeung K.K. Comparison of the effectiveness of placebo, clomiphene citrate, mesterolone, pentoxifylline, and testosterone rebound therapy for the treatment of idiopathic oligospermia. Fertil Steril 1983;40(3):358–65.
DOI: 10.1016/s0015-0282(16)47300-0
Lopes S., Jurisicova A., Sun J.G., Casper R.F. Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum Reprod 1998;13(4):896–900.
DOI: 10.1093/humrep/13.4.896
Twigg J., Fulton N., Gomez E. et al. Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod 1998;13(6):1429–36.
DOI: 10.1093/humrep/13.6.1429
Jannini E.A., Lombardo F., Salacone P. et al. Treatment of sexual dysfunctions secondary to male infertility with sildenafil citrate. Fertil Steril 2004;81(3):705–7.
DOI: 10.1016/j.fertnstert.2003.08.032
Lenzi A., Lombardo F., Salacone P. et al. Stress, sexual dysfunctions, and male infertility. J Endocrinol Invest 2003;26(3 Suppl):72–6.
Du Plessis S.S., de Jongh P.S., Franken D.R. Effect of acute in vivo sildenafil citrate and in vitro 8-bromo-cGMP treatments on semen parameters and sperm function. Fertil Steril 2004;81(4):1026–33.
DOI: 10.1016/j.fertnstert.2003.09.054
Dimitriadis F., Giannakis D., Pardalidis N. et al. Effects of phosphodiesterase 5 inhibitors on sperm parameters and fertilizing capacity. Asian J Androl 2008;10(1):115–33.
DOI: 10.1111/j.1745-7262.2008.00373.x
Sofikitis N.V., Miyagawa I. Endocrinological, biophysical, and biochemical parameters of semen collected via masturbation versus sexual intercourse. J Androl 1993;14(5):366–73.
Pomara G., Morelli G., Canale D. et al. Alterations in sperm motility after acute oral administration of sildenafil or tadalafil in young, infertile men. Fertil Steril 2007;88(4):860–5.
DOI: 10.1016/j.fertnstert.2006.12.019
Burger M., Sikka S.C., Bivalacqua T.J. et al. The effect of sildenafil on human sperm motion and function from normal and infertile men. Int J Impot Res 2000;12(4):229–34.
DOI: 10.1038/sj.ijir.3900551
Lefièvre L., De Lamirande E., Gagnon C. The cyclic GMP-specific phosphodiesterase inhibitor, sildenafil, stimulates human sperm motility and capacitation but not acrosome reaction. J Androl 2000;21(6):929–37.
Cuadra D.L., Chan P.J., Patton W.C. et al. Type 5 phosphodieste-rase regulation of human sperm motility. Am J Obstet Gynecol 2000;182(5):1013–5.
DOI: 10.1067/mob.2000.105435
Glenn D.R.J., McVicar C.M., McClure N., Lewis S.E. Sildenafil citrate improves sperm motility but causes a premature acrosome reaction in vitro. Fertil Steril 2007;87(5):1064–70.
DOI: 10.1016/j.fertnstert.2006.11.017
Salonia A., Bettocchi C., Boeri L. et al. European Association of Urology Guidelines on Sexual and Reproductive Health – 2021 Update: Male Sexual Dysfunction. Eur Urol 2021;80(3):333–57.
DOI: 10.1016/j.eururo.2021.06.007