Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
Главная / Результаты поиска
СтатьяИскать документыПерейти к записи. 2021; Т. 13, № 3: 52–60. DOI:10.22328/2077-9828-2021-13-3-52-60
Состояние митохондрий CD4+ Т-лимфоцитов у ВИЧ/ВГС-коинфицированных пациентов с различной эффективностью восстановления иммунной системы при проведении антиретровирусной терапии
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Аффилированные организации
[1]Искать документыПерейти к записи
Аннотация
Цель работы: оценка параметров митохондрий CD4+ Т-лимфоцитов у ВИЧ/ВГС коинфицированных пациентов с дискордантным и стандартным ответом иммунной системы на антиретровирусную терапию.Материалы и методы. Обследованы ВИЧ/ВГС коинфицированные пациенты с дискордантным (n=21) и стандартным (n=20) ответом на лечение. Контрольную группу составили 23 неинфицированных добровольца. Методом проточной цито - флюорометрии в CD4+ Т-лимфоцитах было установлено содержание PGC-1a, определены масса и мембранный потенциал митохондрий.Результаты. Показано, что величина митохондриального мембранного потенциала CD4+ Т-лимфоцитов у ВИЧ/ВГС коинфицированных субъектов со стандартным и дискордантным ответом на лечение сопоставима с таковой у неинфицированных доноров. У ВИЧ/ВГС коинфицированных больных по сравнению со здоровыми донорами повышена экспрессия PGC-1a и увеличена масса органелл в CD4+ Т-клетках. Установлено, что в отличие от здоровых лиц у ВИЧ/ВГС коинфицированных субъектов отсутствует зависимость между массой митохондрий и содержанием PGC-1a в CD4+ Т-лимфоцитах.Заключение. В CD4+ Т-клетках ВИЧ/ВГС коинфицированных пациентов с дискордантным и стандартным ответом иммунной системы на антиретровирусную терапию рост массы органелл не связан с производством энергии. При ВИЧ/ВГС коинфекции отсутствует взаимосвязь между массой митохондрий и регулятором их биогенеза.
Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Рубрики Mesh
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Autran B., Carcelaint G., Li T.S., Gorochov G., Blanc C., Renaud M., Durali, M., Mathez D., Calvez V., Leibowitch J., Katlama C., Debre P. Restoration of the immune system with anti-retroviral therapy // Immunol. Lett. 1999. Vol. 66, No. 1–3. Р. 207–211.

Gaardbo J.C., Hartling H. J., Gerstoft J., Nielsen S.D. Incomplete immune recovery in HIV infection: mechanisms, relevance for clinical care, and possible solutions // Clin. Dev. Immunol. 2012. Vol. 2012. Р. 670957. doi: 10.1155/2012/670957..
DOI: 10.1155/2012/670957

Lederman M.M., Calabrese L., Funderburg N.T., Clagett B., Medvik K., Bonilla H., Gripshover B., Salata R.A., Taege A., Lisgaris M., McComsey G.A., Kirchner E., Baum J., Shive C., Asaad R., Kalayjian R.C., Sieg S.F., Rodriguez B. Immunologic failure despite suppressive antiretroviral therapy is related to activation and turnover of memory CD4 cells // J. Infect. Dis. 2011. Vol. 204, No. 8. Р. 1217–1226. doi: 10.1093/infdis/jir507..
DOI: 10.1093/infdis/jir507

Lapadula G., Cozzi-Lepri A., Marchetti G., Antinori A., Chiodera A., Nicastri E., Parruti G., Galli M., Gori A., Monforte Ad Icona Foundation Study. Risk of clinical progression among patients with immunological nonresponse despite virological suppression after combination antiretroviral treatment // AIDS. 2013. Vol. 27, No. 5. Р. 769–779. doi: 10.1097/QAD.0b013e32835cb747..
DOI: 10.1097/QAD.0b013e32835cb747

Santin M., Mestre M., Shaw E., Barbera M.J., Casanova A., Niubo J., Bolao F., Podzamczer D., Gudiol F. Impact of hepatitis C virus coinfection on immune restoration during successful antiretroviral therapy in chronic human immunodeficiency virus type 1 disease // Eur. J. Clin. Microbiol. Infect. Dis. 2008. Vol. 27, No. 1. Р. 65–73. doi: 10.1007/s10096-007-0384-3..
DOI: 10.1007/s10096-007-0384-3

Chen T.Y., Ding E.L., Seage Iii G.R., Kim A.Y. Meta-analysis: increased mortality associated with hepatitis C in HIV-infected persons is unrelated to HIV disease progression // Clin. Infect. Dis. 2009. Vol. 49, No. 10. Р. 1605–1615. doi: 10.1086/644771..
DOI: 10.1086/644771

Kuhlbrandt W., Structure and function of mitochondrial membrane protein complexes // BMC Biol. 2015. Vol. 13. Р. 89. doi: 10.1186/s12915-015-0201-x..
DOI: 10.1186/s12915-015-0201-x

Gottlieb E., Armour S.M., Harris M.H., Thompson C.B. Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis // Cell Death Differ. 2003. Vol. 10, No. 6. Р. 709–717. doi: 10.1038/sj.cdd.4401231..
DOI: 10.1038/sj.cdd.4401231

Palikaras K., Tavernarakis N. Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis // Exp. Gerontol. 2014. Vol. 56. Р. 182–188. doi: 10.1016/j.exger.2014.01.021..
DOI: 10.1016/j.exger.2014.01.021

Petrovas C., Mueller Y.M., Dimitriou I.D., Altork S.R., Banerjee A., Sklar P., Mounzer K.C., Altman J.D., Katsikis P.D. Increased mitochondrial mass characterizes the survival defect of HIV-specific CD8(+) T cells // Blood. 2007. Vol. 109, No. 6. Р. 2505–2513. doi: 10.1182/blood-2006-05-021626..
DOI: 10.1182/blood-2006-05-021626

Yu F., Hao Y., Zhao H., Xiao J., Han N., Zhang Y., Dai G., Chong X., Zeng H., Zhang F. Distinct Mitochondrial Disturbance in CD4+T and CD8+T Cells From HIV-Infected Patients // J. Acquir. Immune Defic. Syndr. 2017. Vol. 74, No. 2. Р. 206–212. doi: 10.1097/QAI.0000000000001175..
DOI: 10.1097/QAI.0000000000001175

Masson J.J.R., Murphy A.J., Lee M.K.S., Ostrowski M., Crowe S.M., Palmer C.S. Assessment of metabolic and mitochondrial dynamics in CD4+ and CD8+ T cells in virologically suppressed HIV-positive individuals on combination antiretroviral therapy // PLoS One. 2017. Vol. 12, No. 8. Р. e0183931. doi: 10.1371/journal.pone.0183931..
DOI: 10.1371/journal.pone.0183931

Sternfeld T., Schmid M., Tischleder A., Mudra S., Schlamp A., Kost B.P., Gruber R., Youle M., Bogner J.R., Goebel F.D. The influence of HIV infection and antiretroviral therapy on the mitochondrial membrane potential of peripheral mononuclear cells // Antivir. Ther. 2007. Vol. 12, No. 5. Р. 769–778.

Deguit C.D.T., Hough M., Hoh R., Krone M., Pilcher C.D., Martin J.N., Deeks S.G., McCune J.M., Hunt P.W., Rutishauser R.L. Some Aspects of CD8(+) T-Cell Exhaustion Are Associated With Altered T-Cell Mitochondrial Features and ROS Content in HIV Infection // Jaids-Journal of Acquired Immune Deficiency Syndromes. 2019. Vol. 82, No. 2. Р. 211–219. doi: 10.1097/Qai.0000000000002121..
DOI: 10.1097/Qai.0000000000002121

Barbaro G., Di Lorenzo G., Asti A., Ribersani M., Belloni G., Grisorio B., Filice G., Barbarini G. Hepatocellular mitochondrial alterations in patients with chronic hepatitis C: ultrastructural and biochemical findings // Am. J. Gastroenterol. 1999. Vol. 94, No. 8. Р. 2198–2205. doi: 10.1111/j.1572-0241.1999.01294.x..
DOI: 10.1111/j.1572-0241.1999.01294.x

Piccoli C., Quarato G., Ripoli M., D’Aprile A., Scrima R., Cela O., Boffoli D., Moradpour D., Capitanio N. HCV infection induces mitochondrial bioenergetic unbalance: causes and effects // Biochim. Biophys. Acta. 2009. Vol. 1787, No. 5. Р. 539–546. doi: 10.1016/j.bbabio.2008.11.008..
DOI: 10.1016/j.bbabio.2008.11.008

Cottet-Rousselle C., Ronot X., Leverve X., Mayol J.F. Cytometric assessment of mitochondria using fluorescent probes // Cytometry A. 2011. Vol. 79, No. 6. Р. 405–425. doi: 10.1002/cyto.a.21061..
DOI: 10.1002/cyto.a.21061

Presley A.D., Fuller K.M., Arriaga E.A. MitoTracker Green labeling of mitochondrial proteins and their subsequent analysis by capillary electrophoresis with laser-induced fluorescence detection // Journal of Chromatography B. 2003. Vol. 793, No. 1. Р. 141–150. doi: 10.1016/s1570-0232(03)00371-4..
DOI: 10.1016/s1570-0232(03)00371-4

Scarpulla R.C. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network // Biochim. Biophys. Acta. 2011. Vol. 1813, No. 7. Р. 1269–1278. doi: 10.1016/j.bbamcr.2010.09.019..
DOI: 10.1016/j.bbamcr.2010.09.019

Wu Z., Puigserver P., Andersson U., Zhang C., Adelmant G., Mootha V., Troy A., Cinti S., Lowell B., Scarpulla R.C., Bruce M. Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1 // Cell. 1999. Vol. 98, No. 1. Р. 115–124. doi: 10.1016/s0092-8674(00)80611-x..
DOI: 10.1016/s0092-8674(00)80611-x

Perry C.G.R., Hawley J.A. Molecular Basis of Exercise-Induced Skeletal Muscle Mitochondrial Biogenesis: Historical Advances, Current Knowledge, and Future Challenges // Cold Spring Harb. Perspect. Med. 2018. Vol. 8, No. 9. doi: 10.1101/cshperspect.a029686..
DOI: 10.1101/cshperspect.a029686

Gonzalez V.D., Falconer K., Blom K.G., Reichard O., Morn B., Laursen A.L., Weis N., Alaeus A., Sandberg J.K. High levels of chronic immune activation in the T-cell compartments of patients coinfected with hepatitis C virus and human immunodeficiency virus type 1 and on highly active antiretroviral therapy are reverted by alpha interferon and ribavirin treatment // J. Virol. 2009. Vol. 83, No. 21. Р. 11407–11411. doi: 10.1128/JVI.01211-09..
DOI: 10.1128/JVI.01211-09

Akkaya B., Roesler A.S., Miozzo P., Theall B.P., Al Souz J., Smelkinson M.G., Kabat J., Traba J., Sack M.N., Brzostowski J. A., Pena M., Dorward D.W., Pierce S.K., Akkaya M. Increased Mitochondrial Biogenesis and Reactive Oxygen Species Production Accompany Prolonged CD4(+) T Cell Activation // J. Immunol. 2018. Vol. 201, No. 11. Р. 3294–3306. doi: 10.4049/jimmunol.1800753..
DOI: 10.4049/jimmunol.1800753

Cheng C.F., Ku H.C., Lin H. PGC-1alpha as a Pivotal Factor in Lipid and Metabolic Regulation // Int. J. Mol. Sci. 2018. Vol. 19, No. 11. doi: 10.3390/ijms19113447..
DOI: 10.3390/ijms19113447

Дополнительная информация
Язык текста: Русский
ISSN: 2077-9828
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4e432d4849562d41525449434c452d323032312d31332d332d302d35322d3630/