Parker R. The Global HIV/AIDS Pandemic, Structural Inequalities, and the Politics of International Health // American Journal of Public Health. 2002. Vol. 92, No. 3. Р. 343–347. DOI: 10.2105/ajph.92.3.343..
DOI: 10.2105/ajph.92.3.343
Nyamweya S., Hegedus A., Jaye A., Rowland-Jones S., Flanagan K., Macallan D. Comparing HIV-1, and HIV-2 infection: Lessons for viral immunopathogenesis // Reviews in Medical Virology. 2013. Vol. 23, No. 4. Р. 221–240. DOI: 10.1002/rmv.1739..
DOI: 10.1002/rmv.1739
Shaw G., Hunter E. HIV Transmission // Cold Spring Harbor Perspectives in Medicine. 2012. Vol. 2, No. 11. Р. a006965-a006965. DOI: 10.1101/Csh Perspect.a006965..
DOI: 10.1101/Csh Perspect.a006965
Global HIV & AIDS statistics — 2020 fact sheet [Internet]. Unaids.org. 2021 [cited 20 April 2021]. Available from: http://www.unaids.org/en/resources/fact-sheet.http://www.unaids.org/en/resources/fact-sheet
Dragojevic S., Ryu J., Raucher D. Polymer-Based Prodrugs: Improving Tumor Targeting and the Solubility of Small Molecule Drugs in Cancer Therapy // Molecules. 2015. Vol. 20, No. 12. Р. 21750–21769. DOI: 10.3390/molecules201219804..
DOI: 10.3390/molecules201219804
Gilbert P., McKeague I., Eisen G., Mullins C., Guéye-NDiaye A., Mboup S. et al. Comparison of HIV-1 and HIV-2 infectivity from a prospective cohort study in Senegal // Statistics in Medicine. 2003. Vol. 22, No. 4. Р. 573–593. DOI: 10.1002/sim.1342..
DOI: 10.1002/sim.1342
Macheras P. Modeling in biopharmaceutics, pharmacokinetics,s, and pharmacodynamics. [Place of publication not identified]. // SPRINGER. Vol. 2018.
Kim P., Read S. Nanotechnology and HIV: potential applications for treatment and prevention // Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2010. Vol. 2, No. 6. Р. 693–702. DOI: 10.1002/wnan.118..
DOI: 10.1002/wnan.118
Nowacek A., Gendelman H. NanoART, neuroAID, S and CNS drug delivery // Nanomedicine. 2009. Vol. 4, No. 5. Р. 557–574. DOI: 10.2217/nnm.09.38..
DOI: 10.2217/nnm.09.38
Roy U., Rodríguez J., Barber P., das Neves J., Sarmento B., Nair M. The potential of HIV-1 nanotherapeutics: fromin vitrostudies to clinical trials // Nanomedicine. 2015. Vol. 10, No. 24. Р. 3597–3609. doi: 10.2217/nnm.15.160..
DOI: 10.2217/nnm.15.160
Aderibigbe B.A., Mukaya H.E. Nano-and microscale drug delivery systems // Polymer Therapeutics. 2017. Vol. 3. Р. 33–48. DOI: 10.1016/B978-0-323-52727-9.00003-0..
DOI: 10.1016/B978-0-323-52727-9.00003-0
Foster V., Carraher C., Gebelein C. Applied bioactive polymeric materials // Plenum Press. 1989. Р. 103–114. New York. DOI: 10.1007/978- 1-4684-5610-3..
DOI: 10.1007/978- 1-4684-5610-3
Van Damme L., Govinden R., Mirembe F., Guédou F., Solomon S., Becker M et al. Lack of Effectiveness of Cellulose Sulfate Gel for the Prevention of Vaginal HIV Transmission // New England Journal of Medicine. 2008. Vol. 359, No. 5. Р. 463–472. DOI: 10.1056/NEJMoa0707957..
DOI: 10.1056/NEJMoa0707957
Skoler-Karpoff S., Ramjee G., Ahmed K., Altini L., Plagianos M., Friedland B. et al. Efficacy of Carraguard for prevention of HIV infection in women in South Africa: a randomized, double-blind, placebo-controlled trial // The Lancet. 2008. Vol. 372, No. 9654. Р. 1977–1987. DOI: 10.1016/S0140-6736(08)61842-5..
DOI: 10.1016/S0140-6736(08)61842-5
Gunaseelan S., Debrah O., Wan L., Leibowitz M., Rabson A., Stein S. et al. Synthesis of Poly, No. ethylene glycol)-Based Saquinavir Prodrug Conjugates and Assessment of Release and Anti-HIV-1 Bioactivity Using a Novel Protease Inhibition Assay // Bioconjugate Chemistry. 2004. Vol. 15, No. 6. Р. 1322–1333. DOI: 10.1021/bc0498875..
DOI: 10.1021/bc0498875
Chen Y., Hung Y., Liau I., Huang G. Assessment of the In Vivo Toxicity of Gold Nanoparticles // Nanoscale Research Letters. 2009. Vol. 4, No. 8. Р. 858–864. DOI: 10.1007/s11671-009-9334-6..
DOI: 10.1007/s11671-009-9334-6
Zhou Y., Peng Z., Seven E., Leblanc R. Crossing the blood-brain barrier with nanoparticles // Journal of Controlled Release. 2018. Vol. 270. Р. 290–303. DOI: 10.1016/j.jconrel.2017.12.015..
DOI: 10.1016/j.jconrel.2017.12.015
Martins C., Araújo F., Gomes M., Fernandes C., Nunes R., Li W. et al. Using microfluidic platforms to develop CNS-targeted polymeric nanoparticles for HIV therapy // European Journal of Pharmaceutics and Biopharmaceutics. 2019. Vol. 138. Р. 111–124. DOI: 10.1016/j.ejpb.2018.01.014..
DOI: 10.1016/j.ejpb.2018.01.014
Vlieghe P., Clerc T., Pannecouque C., Witvrouw M., De Clercq E., Salles J et al. Synthesis of New Covalently Bound–Carrageenan−ZDV Conjugates with Improved Anti-HIV Activities // Journal of Medicinal Chemistry. 2002. Vol. 45, No. 6. Р. 1275–1283. DOI: 10.1021/jm010969d..
DOI: 10.1021/jm010969d
Surve D., Jindal A. Recent advances in long-acting nanoformulations for delivery of antiretroviral drugs // Journal of Controlled Release. 2020. Vol. 324. Р. 379–404. DOI: 10.1016/j.jconrel.2020.05.022..
DOI: 10.1016/j.jconrel.2020.05.022
Kumar L., Verma S., Prasad D., Bhardwaj A., Vaidya B, Jain A. Nanotechnology: A magic bullet for HIV AIDS treatment // Artificial Cells, Nanomedicine, and Biotechnology. 2014. Vol. 43, No. 2. Р. 71–86. DOI: 10.3109/21691401.2014.883400..
DOI: 10.3109/21691401.2014.883400
Moghimi S., Szebeni J. Stealth liposomes and long-circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties // Progress in Lipid Research. 2003. Vol. 42, No. 6. Р. 463–478. DOI: 10.1016/s0163-7827, No. 03)00033-x..
DOI: 10.1016/s0163-7827, No. 03)00033-x
Geszke-Moritz M., Moritz M. Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies // Materials Science and Engineering. 2016. Vol. 68. Р. 982–994. DOI: 10.1016/j.msec.2016.05.119..
DOI: 10.1016/j.msec.2016.05.119
Garg M., Jain N. Reduced hematopoietic toxicity, enhanced cellular uptake and altered pharmacokinetics of azidothymidine loaded galactosylated liposomes // Journal of Drug Targeting. 2006. Vol. 14, No. 1. Р. 1–11. DOI: 10.1080/10611860500525370..
DOI: 10.1080/10611860500525370
Dubey V., Mishra D., Nahar M., Jain V., Jain N. Enhanced transdermal delivery of an anti-HIV agent via ethanolic liposomes // Nanomedicine: Nanotechnology, Biology, and Medicine. 2010. Vol. 6, No. 4. Р. 590–596. DOI: 10.1016/j.nano.2010.01.002..
DOI: 10.1016/j.nano.2010.01.002
Shao J., Kraft J., Li B., Yu J., Freeling J., Koehn J et al.Nano drug formulations to enhance HIV drug exposure in lymphoid tissues and cells: clinical significance and potential impact on treatment and eradication of HIV/AIDS // Nanomedicine. 2016. Vol. 11, No. 5. Р. 545–564. DOI: 10.2217/nnm.16.1..
DOI: 10.2217/nnm.16.1
Ho R., Yu J., Li B., Kraft J., Freeling J., Koehn J et al. Systems Approach to targeted and long-acting HIV/AIDS therapy // Drug Delivery and Translational Research. 2015. Vol. 5, No. 6. Р. 531–539. DOI: 10.1007/s13346-015-0254-y..
DOI: 10.1007/s13346-015-0254-y
Moyo S., Wilkinson E., Novitsky V., Vandormael A., Gaseitsiwe S., Essex M et al. Identifying Recent HIV Infections: From Serological Assays to Genomics // Viruses. 2015. Vol. 7, No. 10. Р. 5508–5524. DOI: 10.3390/v7102887..
DOI: 10.3390/v7102887
Kuo Y., Su F. Transport of stavudine, delavirdine, and saquinavir across the blood-brain barrier by poly butyl cyanoacrylate, methylmethacrylatesulfopropylmethacrylate, and solid lipid nanoparticles // International Journal of Pharmaceutics. 2007. Vol. 340, No. 1–2. Р. 143–152. DOI: 10.1016/j.ijpharm.2007.03.012..
DOI: 10.1016/j.ijpharm.2007.03.012
Almeida A., Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins // Advanced Drug Delivery Reviews. 2007. Vol. 59, No. 6. Р. 478–490. DOI: 10.1016/j.addr.2007.04.007..
DOI: 10.1016/j.addr.2007.04.007
Kammari R., Das N., Das S. Nanoparticulate Systems for Therapeutic and Diagnostic Applications // Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices. 2017. Vol. 105–144. DOI: 10.1016/B978-0-323-42978-8.00006-1..
DOI: 10.1016/B978-0-323-42978-8.00006-1
Becker Peres L, Becker Peres L, de Araújo P, Sayer C. Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent-free double emulsion technique // Colloids and Surfaces B: Biointerfaces. 2016. Vol. 140. Р. 317–323. DOI: 10.1016/j.colsurfb.2015.12.033..
DOI: 10.1016/j.colsurfb.2015.12.033
Doktorovová S, Santos D, Costa I, Andreani T, Souto E, Silva A. Cationic solid lipid nanoparticles interfere with the activity of antioxidant enzymes in hepatocellular carcinoma cells // International Journal of Pharmaceutics. 2014. Vol. 471, No. 1–2. Р. 18–27. DOI: 10.1016/j.ijpharm.2014.05.011..
DOI: 10.1016/j.ijpharm.2014.05.011
Aji Alex M, Chacko A, Jose S, Souto E. Lopinavir loaded solid lipid nanoparticles, No. SLN) for intestinal lymphatic targeting // European Journal of Pharmaceutical Sciences. 2011. Vol. 42, No. 1–2. Р. 11–18. DOI: 10.1016/j.ejps.2010.10.002..
DOI: 10.1016/j.ejps.2010.10.002
Makwana V., Jain R., Patel K., Nivsarkar M., Joshi A. Solid lipid nanoparticles, No. SLN) of Efavirenz as lymph targeting drug delivery system: Elucidation of the mechanism of uptake using chylomicron flow blocking approach // International Journal of Pharmaceutics. 2015. Vol. 495, No. 1. Р. 439–446. DOI: 10.1016/j.ijpharm.2015.09.014..
DOI: 10.1016/j.ijpharm.2015.09.014
Fahr A., Liu X. Drug delivery strategies for poorly water-soluble drugs // Expert Opinion on Drug Delivery. 2007. Vol. 4. Р. 403–416. DOI: 10.1517/17425247.4.4.403..
DOI: 10.1517/17425247.4.4.403
Gaur P., Mishra S., Bajpai M., Mishra A. Enhanced Oral Bioavailability of Efavirenz by Solid Lipid Nanoparticles: In VitroDrug Release and Pharmacokinetics Studies // BioMed Research International. 2014. Р. 1–9. DOI: 10.1155/2014/363404..
DOI: 10.1155/2014/363404
Chiappetta D., Hocht C., Taira C., Sosnik A. Efavirenz-loaded polymeric micelles for pediatric anti-HIV pharmacotherapy with significantly higher oral bioavailability // Nanomedicine. 2010. Vol. 5, No. 1. Р. 11–23. DOI: 10.2217/nnm.09.90..
DOI: 10.2217/nnm.09.90
Tan C., Wang Y., Fan W. Exploring Polymeric Micelles for Improved Delivery of Anticancer Agents: Recent Developments in Preclinical Studies // Pharmaceutics. 2013. Vol. 5, No. 4. Р. 201–219. DOI: 10.3390/pharmaceutics5010201..
DOI: 10.3390/pharmaceutics5010201
Chiappetta D., Hocht C., Taira C., Sosnik A. Oral pharmacokinetics of the anti-HIV efavirenz encapsulated within polymeric micelles // Biomaterials. 2011. Vol. 32, No. 9. Р. 2379–2387. DOI: 10.1016/j.biomaterials.2010.11.082..
DOI: 10.1016/j.biomaterials.2010.11.082
Chiappetta D., Hocht C., Opezzo J., Sosnik A. Intranasal administration of antiretroviral-loaded micelles for anatomical targeting to the brain in HIV // Nanomedicine. 2013. Vol. 8, No. 2. Р. 223–237. doi: 10.2217/nnm.12.104..
DOI: 10.2217/nnm.12.104
Seremeta K., Chiappetta D., Sosnik A. Poly (e-caprolactone), Eudragit® RS 100 and poly, No. e-caprolactone)/Eudragit® RS 100 blend submicron particles for the sustained release of the antiretroviral efavirenz // Colloids and Surfaces B: Biointerfaces. 2013. Vol. 102. Р. 441–449. DOI: 10.1016/j.colsurfb.2012.06.038..
DOI: 10.1016/j.colsurfb.2012.06.038
Mohideen M., Quijano E., Song E., Deng Y., Panse G., Zhang W. et al. Degradable bioadhesive nanoparticles for prolonged intravaginal delivery and retention of elvitegravir // Biomaterials. 2017. Vol. 144. Р. 144–154. DOI: 10.1016/j.biomaterials.2017.08.029..
DOI: 10.1016/j.biomaterials.2017.08.029
Farias E.D., Bouchet L.M., Brunetti V., Strumia M.C. Dendrimers and dendronized materials as nanocarriers // Grumezescu A., Ficai D., editors. Nanostructures for Novel Therapy: Synthesis, Characterization, and Applications // Elsevier. 2017. Vol. 429–456. DOI: 10.1016/j.arabjc.2012.09.010..
DOI: 10.1016/j.arabjc.2012.09.010
Barrios-Gumiel A., Sepúlveda-Crespo D., Jiménez J., Gómez R., Muñoz-Fernández M., de la Mata F. Dendronized magnetic nanoparticles for HIV-1 capture and rapid diagnostic // Colloids and Surfaces B: Biointerfaces. 2019. Vol. 181. Р. 360–368. doi: 10.1016/j.colsurfb.2019.05.050..
DOI: 10.1016/j.colsurfb.2019.05.050
Dey P, Bergmann T., Cuellar-Camacho J., Ehrmann S., Chowdhury M., Zhang M., Dahmani I., Haag R., Azab W. Multivalent Flexible Nanogels Exhibit Broad-Spectrum Antiviral Activity by Blocking Virus Entry // ACS Nano. 2018. Vol. 12, No. 7. Р. 6429–6442. DOI: 10.1021/acsnano.8b01616..
DOI: 10.1021/acsnano.8b01616
Rupp R., Rosenthal S.L., Stanberry LR. Viva Gel (SPL7013 Gel.) a candidate dendrimer-microbicide for the prevention of HIV and HSV infection // Int J Nanomedicine. 2007. Vol. 2, No. 4. Р. 561–566. DOI: 10.2147/DDDT.S133170..
DOI: 10.2147/DDDT.S133170
Macchione M., Biglione C., Strumia M. Design, Synthesis and Architectures of Hybrid Nanomaterials for Therapy and Diagnosis Applications // Polymers. 2018. Vol. 10, No. 5. Р. 527. DOI: 10.3390/polym10050527..
DOI: 10.3390/polym10050527
McCarthy T., Karellas P., Henderson S., Giannis M., O’Keefe D., Heery G. et al. Dendrimers as Drugs: Discovery and Preclinical and Clinical Development of Dendrimer-Based Microbicides for HIV and STI Prevention // Molecular Pharmaceutics. 2005. Vol. 2, No. 4. Р. 312–318. DOI: 10.1021/mp050023q..
DOI: 10.1021/mp050023q
SPL7013 Gel — Male Tolerance Study — Full-Text View — ClinicalTrials.gov [Internet]. Clinicaltrials.gov. 2021 [cited 20 April 2021]. Available from: https://clinicaltrials.gov/ct2/show/NCT00370357.https://clinicaltrials.gov/ct2/show/NCT00370357
Retention and Duration of Activity of SPL7013 (VivaGel®) After Vaginal Dosing. Full Text View — ClinicalTrials.gov [Internet]. Clinicaltrials.gov. 2021 [cited 20 April 2021]. Available from: https://clinicaltrials.gov/ct2/show/NCT00740584.https://clinicaltrials.gov/ct2/show/NCT00740584
Dutta T., Jain N. Targeting potential and anti-HIV activity of lamivudine loaded mannosylated poly (propylene imine) dendrimer // Biochimica et Biophysica Acta (BBA) — General Subjects. 2007. Vol. 1770, No. 4. Р. 681–686. DOI: 10.1016/j.bbagen.2006.12.007..
DOI: 10.1016/j.bbagen.2006.12.007
Gajbhiye V., Ganesh N., Barve J., Jain N. Synthesis, characterization and targeting potential of zidovudine loaded sialic acid conjugated-mannosylated poly (propylene imine) dendrimers // European Journal of Pharmaceutical Sciences. 2013. Vol. 48, No. 4–5. Р. 668–679. DOI: 10.1016/j.ejps.2012.12.027..
DOI: 10.1016/j.ejps.2012.12.027
Kannan S., Dai H., Navath R., Balakrishnan B., Jyoti A., Janisse J et al. Dendrimer-Based Postnatal Therapy for Neuroinflammation and Cerebral Palsy in a Rabbit Model // Science Translational Medicine. 2012. Vol. 4, No. 130. Р. 130ra46–130ra46. DOI: 10.1126/scitranslmed.3003162..
DOI: 10.1126/scitranslmed.3003162
Nance E., Kambhampati S., Smith E., Zhang Z., Zhang F., Singh S. et al. Dendrimer-mediated delivery of N-acetyl cysteine to microglia in a mouse model of Rett syndrome // Journal of Neuroinflammation. 2017. Vol. 14, No. 1. doi: 10.1186/s12974-017-1004-5..
DOI: 10.1186/s12974-017-1004-5
Hong S., Bielinska A., Mecke A., Keszler B., Beals J., Shi X. et al. Interaction of Poly, No. amidoamine) Dendrimers with Supported Lipid Bilayers and Cells: Hole Formation and the Relation to Transport // Bioconjugate Chemistry. 2004. Vol. 15, No. 4. Р. 774–782. DOI: 10.1021/bc049962b..
DOI: 10.1021/bc049962b
Kukowska-Latallo J., Patri A.K., Chen C., Ge S., Cao Z., Kotlyar A., East A.T., Baker J.R. Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement // International Journal of Nanomedicine. 2008. Vol. 201. DOI: 10.2147/IJN.S2696..
DOI: 10.2147/IJN.S2696
Baert L., van ‘t Klooster G., Dries W., François M., Wouters A., Basstanie E et al. Development of a long-acting injectable formulation with nanoparticles of rilpivirine (TMC278) for HIV treatment // European Journal of Pharmaceutics and Biopharmaceutics. 2009. Vol. 72, No. 3. Р. 502–508. DOI: 10.1016/j.ejpb.2009.03.006..
DOI: 10.1016/j.ejpb.2009.03.006
Macchione M., Sacarelli M., Racca A., Biglione C., Panzetta-Dutari G., Strumia M. Dual-responsive nanogels based on oligo (ethylene glycol) methacrylates and acidic co-monomers // Soft Matter. 2019. Vol. 15, No. 47. Р. 9700–9709. DOI: 10.1039/c9sm01180c..
DOI: 10.1039/c9sm01180c
Das S, Bharadwaj P., Bilal M., Barani M., Rahdar A., Taboada P., Bunga S., Kyzas G. Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis // Polymers. 2020. Vol. 12, No. 6. Р. 1397. DOI: 10.3390/polym12061397..
DOI: 10.3390/polym12061397
Molina M., Asadian-Birjand M., Balach J., Bergueiro J., Miceli E., Calderón M. Stimuli-responsive nanogel composites and their application in nanomedicine // Chemical Society Reviews. 2015. Vol. 44, No. 17. Р. 6161–6186. DOI: 10.1039/c5cs00199d..
DOI: 10.1039/c5cs00199d
Wang H., Chen Q., Zhou S. Carbon-based hybrid nanogels: a synergistic nanoplatforms for combined biosensing, bioimaging, and responsive drug delivery // Chemical Society Reviews. 2018. Vol. 47, No. 11. Р. 4198–4232. DOI: 10.1039/c7cs00399d..
DOI: 10.1039/c7cs00399d
Ho E., Chen., Dash., Sayre C., Davies N., Gu et al. Novel intravaginal nanomedicine for the targeted delivery of saquinavir to CD4+ immune cells // International Journal of Nanomedicine. 2013. Vol. 8. Р. 2847–2853. DOI: 10.2147/IJN.S46958..
DOI: 10.2147/IJN.S46958
Forbes C., Lowry D., Geer L., Veazey R., Shattock R, Klasse P. et al. Non-aqueous silicone elastomer gels as a vaginal microbicide delivery system for the HIV-1 entry inhibitor maraviroc // Journal of Controlled Release. 2011. Vol. 156, No. 2. Р. 161–169. DOI: 10.1016/j.jconrel.2011.08.006..
DOI: 10.1016/j.jconrel.2011.08.006
Jiang Y., Emau P., Cairns J., Flanary L., Morton W., McCarthy T. et al. SPL7013 Gel as a Topical Microbicide for Prevention of Vaginal Transmission of SHIV89.6P in Macaques // AIDS Research and Human Retroviruses. 2005. Vol. 21, No. 3. Р. 207–213. DOI: 10.1089/aid.2005.21.207..
DOI: 10.1089/aid.2005.21.207
Spreen W., Margolis D., Pottage J. Long-acting injectable antiretrovirals for HIV treatment and prevention // Current Opinion in HIV and AIDS. 2013. Vol. 8, No. 6. Р. 565–571. DOI: 10.1097/COH.0000000000000002..
DOI: 10.1097/COH.0000000000000002
Malamatari M., Taylor K., Malamataris S., Douroumis D., Kachrimanis K. Pharmaceutical nanocrystals: production by wet milling and applications // Drug Discovery Today. 2018. Vol. 23, No. 3. Р. 534–547. DOI: 10.1016/j.drudis.2018.01.016..
DOI: 10.1016/j.drudis.2018.01.016
Van ‘t Klooster G., Hoeben E., Borghys H., Looszova A., Bouche M., van Velsen F et al. Pharmacokinetics and Disposition of Rilpivirine (TMC278) Nanosuspension as a Long-Acting Injectable Antiretroviral Formulation // Antimicrobial Agents and Chemotherapy. 2010. Vol. 54, No. 5. Р. 2042–2050. DOI: 10.1128/AAC.01529-09..
DOI: 10.1128/AAC.01529-09
Jackson A., Else L., Mesquita P., Egan D., Back D., Karolia Z., et al. A Compartmental Pharmacokinetic Evaluation of Long-Acting Rilpivirine in HIV-Negative Volunteers for Pre-Exposure Prophylaxis // Clinical Pharmacology & Therapeutics. 2014. Vol. 96, No. 3. Р. 314–323. DOI: 10.1038/clpt.2014.118..
DOI: 10.1038/clpt.2014.118
Efficacy, Safety, and Tolerability Study of Long-acting Cabotegravir Plus Long-acting Rilpivirine (No. CAB LA + RPV LA) in Human-immunodeficiency Virus-1, No. HIV-1. Infected Adults — Full-Text View — ClinicalTrials.gov [Internet]. Clinicaltrials.gov. 2021 [cited 20 April 2021]. Available from: https://clinicaltrials.gov/ct2/show/NCT03299049.https://clinicaltrials.gov/ct2/show/NCT03299049
Monroe M., Flexner C., Cui H. Harnessing nanostructured systems for improved treatment and prevention of HIV disease // Bioengineering & translational medicine. 2021. Vol. 3, No. 2. Р. 102–123. DOI: 10.1002/btm2.10096..
DOI: 10.1002/btm2.10096
Study to Evaluate the Efficacy, Safety, and Tolerability of Long-acting Intramuscular Cabotegravir and Rilpivirine for Maintenance of Virologic Suppression Following Switch From an Integrase Inhibitor in HIV-1 Infected Therapy Naive Participants — Full-Text View — ClinicalTrials.gov [Internet]. Clinicaltrials.gov. 2021 [cited 20 April 2021]. Available from: https://clinicaltrials.gov/ct2/show/NCT02938520.https://clinicaltrials.gov/ct2/show/NCT02938520
Margolis D., Gonzalez-Garcia J., Stellbrink H., Eron J., Yazdanpanah Y., Podzamczer D et al. Long-acting intramuscular cabotegravir and rilpivirine in adults with HIV-1 infection (LATTE-2) 96-week results of a randomized, open-label, phase 2b, non-inferiority trial // The Lancet. 2017. Vol. 390, No. 10101. Р. 1499–1510. DOI: 10.1016/S0140-6736, No. 17)31917-7..
DOI: 10.1016/S0140-6736, No. 17)31917-7
Araínga M., Edagwa B., Mosley R., Poluektova L., Gorantla S., Gendelman H. A mature macrophage is a principal HIV-1 cellular reservoir in humanized mice after treatment with long-acting antiretroviral therapy // Retrovirology. 2017. Vol. 14, No. 1. doi: 10.1186/s12977-017-0344-7..
DOI: 10.1186/s12977-017-0344-7
Zhou T., Su H., Dash P., Lin Z., Dyavar Shetty B., Kocher T. et al. Creation of a nano formulated cabotegravir prodrug with improved antiretroviral profiles // Biomaterials. 2018. Vol. 151. Р. 53–65. DOI: 10.1016/j.biomaterials.2017.10.023..
DOI: 10.1016/j.biomaterials.2017.10.023
Dou H., Destache C., Morehead J., Mosley R., Boska M., Kingsley J. et al. Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery // Blood. 2006. Vol. 108, No. 8. Р. 2827–2835. DOI: 10.1182/blood-2006-03-012534..
DOI: 10.1182/blood-2006-03-012534
Buchanan A., Cunningham C. Advances and Failures in Preventing Perinatal Human Immunodeficiency Virus Infection // Clinical Microbiology Reviews. 2009. Vol. 22, No. 3. Р. 493–507. DOI: 10.1128/CMR.00054-08..
DOI: 10.1128/CMR.00054-08