Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
Главная / Результаты поиска
СтатьяИскать документыПерейти к записи. 2021; Т. 13, № 4: 64–76. DOI:10.22328/2077-9828-2021-13-4-64-76
Наносистемы для доставки антиретровирусных лекарственных средств: возможности, проблемы и перспективы
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Аффилированные организации
[1]Искать документыПерейти к записи
Аннотация
Ведение пациентов с инфекцией, вызванной вирусом иммунодефицита человека (ВИЧ), сопровождается трудностями ранней диагностики, отсутствием специфической профилактики и дорогостоящим лечением. На данный момент от эпидемии, вызванной ВИЧ, от синдрома приобретенного иммунного дефицита (СПИД), умерло 32,7 млн человек по всему миру. Одним из наиболее важных направлений, позволяющих осуществлять контроль вирусной нагрузки и продлевать продолжительность жизни пациентов с ВИЧ, является наличие достаточного количества вариантов лечения ВИЧинфекции, доступных на  каждой стадии заболевания, что увеличивает эффективность терапии и позволяет избежать и/или минимизировать побочные эффекты лекарств.Целью данной работы является обзор различных направлений в разработке новых лекарственных форм антиретровирусных средств на основе наносистем (НС) как препаратов, обладающих большей эффективностью для профилактики и лечения ВИЧ-инфекции.
Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Рубрики Mesh
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Parker R. The Global HIV/AIDS Pandemic, Structural Inequalities, and the Politics of International Health // American Journal of Public Health. 2002. Vol. 92, No. 3. Р. 343–347. DOI: 10.2105/ajph.92.3.343..
DOI: 10.2105/ajph.92.3.343

Nyamweya S., Hegedus A., Jaye A., Rowland-Jones S., Flanagan K., Macallan D. Comparing HIV-1, and HIV-2 infection: Lessons for viral immunopathogenesis // Reviews in Medical Virology. 2013. Vol. 23, No. 4. Р. 221–240. DOI: 10.1002/rmv.1739..
DOI: 10.1002/rmv.1739

Shaw G., Hunter E. HIV Transmission // Cold Spring Harbor Perspectives in Medicine. 2012. Vol. 2, No. 11. Р. a006965-a006965. DOI: 10.1101/Csh Perspect.a006965..
DOI: 10.1101/Csh Perspect.a006965

Global HIV & AIDS statistics — 2020 fact sheet [Internet]. Unaids.org. 2021 [cited 20 April 2021]. Available from: http://www.unaids.org/en/resources/fact-sheet.http://www.unaids.org/en/resources/fact-sheet

Dragojevic S., Ryu J., Raucher D. Polymer-Based Prodrugs: Improving Tumor Targeting and the Solubility of Small Molecule Drugs in Cancer Therapy // Molecules. 2015. Vol. 20, No. 12. Р. 21750–21769. DOI: 10.3390/molecules201219804..
DOI: 10.3390/molecules201219804

Gilbert P., McKeague I., Eisen G., Mullins C., Guéye-NDiaye A., Mboup S. et al. Comparison of HIV-1 and HIV-2 infectivity from a prospective cohort study in Senegal // Statistics in Medicine. 2003. Vol. 22, No. 4. Р. 573–593. DOI: 10.1002/sim.1342..
DOI: 10.1002/sim.1342

Macheras P. Modeling in biopharmaceutics, pharmacokinetics,s, and pharmacodynamics. [Place of publication not identified]. // SPRINGER. Vol. 2018.

Kim P., Read S. Nanotechnology and HIV: potential applications for treatment and prevention // Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2010. Vol. 2, No. 6. Р. 693–702. DOI: 10.1002/wnan.118..
DOI: 10.1002/wnan.118

Nowacek A., Gendelman H. NanoART, neuroAID, S and CNS drug delivery // Nanomedicine. 2009. Vol. 4, No. 5. Р. 557–574. DOI: 10.2217/nnm.09.38..
DOI: 10.2217/nnm.09.38

Roy U., Rodríguez J., Barber P., das Neves J., Sarmento B., Nair M. The potential of HIV-1 nanotherapeutics: fromin vitrostudies to clinical trials // Nanomedicine. 2015. Vol. 10, No. 24. Р. 3597–3609. doi: 10.2217/nnm.15.160..
DOI: 10.2217/nnm.15.160

Aderibigbe B.A., Mukaya H.E. Nano-and microscale drug delivery systems // Polymer Therapeutics. 2017. Vol. 3. Р. 33–48. DOI: 10.1016/B978-0-323-52727-9.00003-0..
DOI: 10.1016/B978-0-323-52727-9.00003-0

Foster V., Carraher C., Gebelein C. Applied bioactive polymeric materials // Plenum Press. 1989. Р. 103–114. New York. DOI: 10.1007/978- 1-4684-5610-3..
DOI: 10.1007/978- 1-4684-5610-3

Van Damme L., Govinden R., Mirembe F., Guédou F., Solomon S., Becker M et al. Lack of Effectiveness of Cellulose Sulfate Gel for the Prevention of Vaginal HIV Transmission // New England Journal of Medicine. 2008. Vol. 359, No. 5. Р. 463–472. DOI: 10.1056/NEJMoa0707957..
DOI: 10.1056/NEJMoa0707957

Skoler-Karpoff S., Ramjee G., Ahmed K., Altini L., Plagianos M., Friedland B. et al. Efficacy of Carraguard for prevention of HIV infection in women in South Africa: a randomized, double-blind, placebo-controlled trial // The Lancet. 2008. Vol. 372, No. 9654. Р. 1977–1987. DOI: 10.1016/S0140-6736(08)61842-5..
DOI: 10.1016/S0140-6736(08)61842-5

Gunaseelan S., Debrah O., Wan L., Leibowitz M., Rabson A., Stein S. et al. Synthesis of Poly, No. ethylene glycol)-Based Saquinavir Prodrug Conjugates and Assessment of Release and Anti-HIV-1 Bioactivity Using a Novel Protease Inhibition Assay // Bioconjugate Chemistry. 2004. Vol. 15, No. 6. Р. 1322–1333. DOI: 10.1021/bc0498875..
DOI: 10.1021/bc0498875

Chen Y., Hung Y., Liau I., Huang G. Assessment of the In Vivo Toxicity of Gold Nanoparticles // Nanoscale Research Letters. 2009. Vol. 4, No. 8. Р. 858–864. DOI: 10.1007/s11671-009-9334-6..
DOI: 10.1007/s11671-009-9334-6

Zhou Y., Peng Z., Seven E., Leblanc R. Crossing the blood-brain barrier with nanoparticles // Journal of Controlled Release. 2018. Vol. 270. Р. 290–303. DOI: 10.1016/j.jconrel.2017.12.015..
DOI: 10.1016/j.jconrel.2017.12.015

Martins C., Araújo F., Gomes M., Fernandes C., Nunes R., Li W. et al. Using microfluidic platforms to develop CNS-targeted polymeric nanoparticles for HIV therapy // European Journal of Pharmaceutics and Biopharmaceutics. 2019. Vol. 138. Р. 111–124. DOI: 10.1016/j.ejpb.2018.01.014..
DOI: 10.1016/j.ejpb.2018.01.014

Vlieghe P., Clerc T., Pannecouque C., Witvrouw M., De Clercq E., Salles J et al. Synthesis of New Covalently Bound–Carrageenan−ZDV Conjugates with Improved Anti-HIV Activities // Journal of Medicinal Chemistry. 2002. Vol. 45, No. 6. Р. 1275–1283. DOI: 10.1021/jm010969d..
DOI: 10.1021/jm010969d

Surve D., Jindal A. Recent advances in long-acting nanoformulations for delivery of antiretroviral drugs // Journal of Controlled Release. 2020. Vol. 324. Р. 379–404. DOI: 10.1016/j.jconrel.2020.05.022..
DOI: 10.1016/j.jconrel.2020.05.022

Kumar L., Verma S., Prasad D., Bhardwaj A., Vaidya B, Jain A. Nanotechnology: A magic bullet for HIV AIDS treatment // Artificial Cells, Nanomedicine, and Biotechnology. 2014. Vol. 43, No. 2. Р. 71–86. DOI: 10.3109/21691401.2014.883400..
DOI: 10.3109/21691401.2014.883400

Moghimi S., Szebeni J. Stealth liposomes and long-circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties // Progress in Lipid Research. 2003. Vol. 42, No. 6. Р. 463–478. DOI: 10.1016/s0163-7827, No. 03)00033-x..
DOI: 10.1016/s0163-7827, No. 03)00033-x

Geszke-Moritz M., Moritz M. Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies // Materials Science and Engineering. 2016. Vol. 68. Р. 982–994. DOI: 10.1016/j.msec.2016.05.119..
DOI: 10.1016/j.msec.2016.05.119

Garg M., Jain N. Reduced hematopoietic toxicity, enhanced cellular uptake and altered pharmacokinetics of azidothymidine loaded galactosylated liposomes // Journal of Drug Targeting. 2006. Vol. 14, No. 1. Р. 1–11. DOI: 10.1080/10611860500525370..
DOI: 10.1080/10611860500525370

Dubey V., Mishra D., Nahar M., Jain V., Jain N. Enhanced transdermal delivery of an anti-HIV agent via ethanolic liposomes // Nanomedicine: Nanotechnology, Biology, and Medicine. 2010. Vol. 6, No. 4. Р. 590–596. DOI: 10.1016/j.nano.2010.01.002..
DOI: 10.1016/j.nano.2010.01.002

Shao J., Kraft J., Li B., Yu J., Freeling J., Koehn J et al.Nano drug formulations to enhance HIV drug exposure in lymphoid tissues and cells: clinical significance and potential impact on treatment and eradication of HIV/AIDS // Nanomedicine. 2016. Vol. 11, No. 5. Р. 545–564. DOI: 10.2217/nnm.16.1..
DOI: 10.2217/nnm.16.1

Ho R., Yu J., Li B., Kraft J., Freeling J., Koehn J et al. Systems Approach to targeted and long-acting HIV/AIDS therapy // Drug Delivery and Translational Research. 2015. Vol. 5, No. 6. Р. 531–539. DOI: 10.1007/s13346-015-0254-y..
DOI: 10.1007/s13346-015-0254-y

Moyo S., Wilkinson E., Novitsky V., Vandormael A., Gaseitsiwe S., Essex M et al. Identifying Recent HIV Infections: From Serological Assays to Genomics // Viruses. 2015. Vol. 7, No. 10. Р. 5508–5524. DOI: 10.3390/v7102887..
DOI: 10.3390/v7102887

Kuo Y., Su F. Transport of stavudine, delavirdine, and saquinavir across the blood-brain barrier by poly butyl cyanoacrylate, methylmethacrylatesulfopropylmethacrylate, and solid lipid nanoparticles // International Journal of Pharmaceutics. 2007. Vol. 340, No. 1–2. Р. 143–152. DOI: 10.1016/j.ijpharm.2007.03.012..
DOI: 10.1016/j.ijpharm.2007.03.012

Almeida A., Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins // Advanced Drug Delivery Reviews. 2007. Vol. 59, No. 6. Р. 478–490. DOI: 10.1016/j.addr.2007.04.007..
DOI: 10.1016/j.addr.2007.04.007

Kammari R., Das N., Das S. Nanoparticulate Systems for Therapeutic and Diagnostic Applications // Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices. 2017. Vol. 105–144. DOI: 10.1016/B978-0-323-42978-8.00006-1..
DOI: 10.1016/B978-0-323-42978-8.00006-1

Becker Peres L, Becker Peres L, de Araújo P, Sayer C. Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent-free double emulsion technique // Colloids and Surfaces B: Biointerfaces. 2016. Vol. 140. Р. 317–323. DOI: 10.1016/j.colsurfb.2015.12.033..
DOI: 10.1016/j.colsurfb.2015.12.033

Doktorovová S, Santos D, Costa I, Andreani T, Souto E, Silva A. Cationic solid lipid nanoparticles interfere with the activity of antioxidant enzymes in hepatocellular carcinoma cells // International Journal of Pharmaceutics. 2014. Vol. 471, No. 1–2. Р. 18–27. DOI: 10.1016/j.ijpharm.2014.05.011..
DOI: 10.1016/j.ijpharm.2014.05.011

Aji Alex M, Chacko A, Jose S, Souto E. Lopinavir loaded solid lipid nanoparticles, No. SLN) for intestinal lymphatic targeting // European Journal of Pharmaceutical Sciences. 2011. Vol. 42, No. 1–2. Р. 11–18. DOI: 10.1016/j.ejps.2010.10.002..
DOI: 10.1016/j.ejps.2010.10.002

Makwana V., Jain R., Patel K., Nivsarkar M., Joshi A. Solid lipid nanoparticles, No. SLN) of Efavirenz as lymph targeting drug delivery system: Elucidation of the mechanism of uptake using chylomicron flow blocking approach // International Journal of Pharmaceutics. 2015. Vol. 495, No. 1. Р. 439–446. DOI: 10.1016/j.ijpharm.2015.09.014..
DOI: 10.1016/j.ijpharm.2015.09.014

Fahr A., Liu X. Drug delivery strategies for poorly water-soluble drugs // Expert Opinion on Drug Delivery. 2007. Vol. 4. Р. 403–416. DOI: 10.1517/17425247.4.4.403..
DOI: 10.1517/17425247.4.4.403

Gaur P., Mishra S., Bajpai M., Mishra A. Enhanced Oral Bioavailability of Efavirenz by Solid Lipid Nanoparticles: In VitroDrug Release and Pharmacokinetics Studies // BioMed Research International. 2014. Р. 1–9. DOI: 10.1155/2014/363404..
DOI: 10.1155/2014/363404

Chiappetta D., Hocht C., Taira C., Sosnik A. Efavirenz-loaded polymeric micelles for pediatric anti-HIV pharmacotherapy with significantly higher oral bioavailability // Nanomedicine. 2010. Vol. 5, No. 1. Р. 11–23. DOI: 10.2217/nnm.09.90..
DOI: 10.2217/nnm.09.90

Tan C., Wang Y., Fan W. Exploring Polymeric Micelles for Improved Delivery of Anticancer Agents: Recent Developments in Preclinical Studies // Pharmaceutics. 2013. Vol. 5, No. 4. Р. 201–219. DOI: 10.3390/pharmaceutics5010201..
DOI: 10.3390/pharmaceutics5010201

Chiappetta D., Hocht C., Taira C., Sosnik A. Oral pharmacokinetics of the anti-HIV efavirenz encapsulated within polymeric micelles // Biomaterials. 2011. Vol. 32, No. 9. Р. 2379–2387. DOI: 10.1016/j.biomaterials.2010.11.082..
DOI: 10.1016/j.biomaterials.2010.11.082

Chiappetta D., Hocht C., Opezzo J., Sosnik A. Intranasal administration of antiretroviral-loaded micelles for anatomical targeting to the brain in HIV // Nanomedicine. 2013. Vol. 8, No. 2. Р. 223–237. doi: 10.2217/nnm.12.104..
DOI: 10.2217/nnm.12.104

Seremeta K., Chiappetta D., Sosnik A. Poly (e-caprolactone), Eudragit® RS 100 and poly, No. e-caprolactone)/Eudragit® RS 100 blend submicron particles for the sustained release of the antiretroviral efavirenz // Colloids and Surfaces B: Biointerfaces. 2013. Vol. 102. Р. 441–449. DOI: 10.1016/j.colsurfb.2012.06.038..
DOI: 10.1016/j.colsurfb.2012.06.038

Mohideen M., Quijano E., Song E., Deng Y., Panse G., Zhang W. et al. Degradable bioadhesive nanoparticles for prolonged intravaginal delivery and retention of elvitegravir // Biomaterials. 2017. Vol. 144. Р. 144–154. DOI: 10.1016/j.biomaterials.2017.08.029..
DOI: 10.1016/j.biomaterials.2017.08.029

Farias E.D., Bouchet L.M., Brunetti V., Strumia M.C. Dendrimers and dendronized materials as nanocarriers // Grumezescu A., Ficai D., editors. Nanostructures for Novel Therapy: Synthesis, Characterization, and Applications // Elsevier. 2017. Vol. 429–456. DOI: 10.1016/j.arabjc.2012.09.010..
DOI: 10.1016/j.arabjc.2012.09.010

Barrios-Gumiel A., Sepúlveda-Crespo D., Jiménez J., Gómez R., Muñoz-Fernández M., de la Mata F. Dendronized magnetic nanoparticles for HIV-1 capture and rapid diagnostic // Colloids and Surfaces B: Biointerfaces. 2019. Vol. 181. Р. 360–368. doi: 10.1016/j.colsurfb.2019.05.050..
DOI: 10.1016/j.colsurfb.2019.05.050

Dey P, Bergmann T., Cuellar-Camacho J., Ehrmann S., Chowdhury M., Zhang M., Dahmani I., Haag R., Azab W. Multivalent Flexible Nanogels Exhibit Broad-Spectrum Antiviral Activity by Blocking Virus Entry // ACS Nano. 2018. Vol. 12, No. 7. Р. 6429–6442. DOI: 10.1021/acsnano.8b01616..
DOI: 10.1021/acsnano.8b01616

Rupp R., Rosenthal S.L., Stanberry LR. Viva Gel (SPL7013 Gel.) a candidate dendrimer-microbicide for the prevention of HIV and HSV infection // Int J Nanomedicine. 2007. Vol. 2, No. 4. Р. 561–566. DOI: 10.2147/DDDT.S133170..
DOI: 10.2147/DDDT.S133170

Macchione M., Biglione C., Strumia M. Design, Synthesis and Architectures of Hybrid Nanomaterials for Therapy and Diagnosis Applications // Polymers. 2018. Vol. 10, No. 5. Р. 527. DOI: 10.3390/polym10050527..
DOI: 10.3390/polym10050527

McCarthy T., Karellas P., Henderson S., Giannis M., O’Keefe D., Heery G. et al. Dendrimers as Drugs: Discovery and Preclinical and Clinical Development of Dendrimer-Based Microbicides for HIV and STI Prevention // Molecular Pharmaceutics. 2005. Vol. 2, No. 4. Р. 312–318. DOI: 10.1021/mp050023q..
DOI: 10.1021/mp050023q

SPL7013 Gel — Male Tolerance Study — Full-Text View — ClinicalTrials.gov [Internet]. Clinicaltrials.gov. 2021 [cited 20 April 2021]. Available from: https://clinicaltrials.gov/ct2/show/NCT00370357.https://clinicaltrials.gov/ct2/show/NCT00370357

Retention and Duration of Activity of SPL7013 (VivaGel®) After Vaginal Dosing. Full Text View — ClinicalTrials.gov [Internet]. Clinicaltrials.gov. 2021 [cited 20 April 2021]. Available from: https://clinicaltrials.gov/ct2/show/NCT00740584.https://clinicaltrials.gov/ct2/show/NCT00740584

Dutta T., Jain N. Targeting potential and anti-HIV activity of lamivudine loaded mannosylated poly (propylene imine) dendrimer // Biochimica et Biophysica Acta (BBA) — General Subjects. 2007. Vol. 1770, No. 4. Р. 681–686. DOI: 10.1016/j.bbagen.2006.12.007..
DOI: 10.1016/j.bbagen.2006.12.007

Gajbhiye V., Ganesh N., Barve J., Jain N. Synthesis, characterization and targeting potential of zidovudine loaded sialic acid conjugated-mannosylated poly (propylene imine) dendrimers // European Journal of Pharmaceutical Sciences. 2013. Vol. 48, No. 4–5. Р. 668–679. DOI: 10.1016/j.ejps.2012.12.027..
DOI: 10.1016/j.ejps.2012.12.027

Kannan S., Dai H., Navath R., Balakrishnan B., Jyoti A., Janisse J et al. Dendrimer-Based Postnatal Therapy for Neuroinflammation and Cerebral Palsy in a Rabbit Model // Science Translational Medicine. 2012. Vol. 4, No. 130. Р. 130ra46–130ra46. DOI: 10.1126/scitranslmed.3003162..
DOI: 10.1126/scitranslmed.3003162

Nance E., Kambhampati S., Smith E., Zhang Z., Zhang F., Singh S. et al. Dendrimer-mediated delivery of N-acetyl cysteine to microglia in a mouse model of Rett syndrome // Journal of Neuroinflammation. 2017. Vol. 14, No. 1. doi: 10.1186/s12974-017-1004-5..
DOI: 10.1186/s12974-017-1004-5

Hong S., Bielinska A., Mecke A., Keszler B., Beals J., Shi X. et al. Interaction of Poly, No. amidoamine) Dendrimers with Supported Lipid Bilayers and Cells: Hole Formation and the Relation to Transport // Bioconjugate Chemistry. 2004. Vol. 15, No. 4. Р. 774–782. DOI: 10.1021/bc049962b..
DOI: 10.1021/bc049962b

Kukowska-Latallo J., Patri A.K., Chen C., Ge S., Cao Z., Kotlyar A., East A.T., Baker J.R. Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement // International Journal of Nanomedicine. 2008. Vol. 201. DOI: 10.2147/IJN.S2696..
DOI: 10.2147/IJN.S2696

Baert L., van ‘t Klooster G., Dries W., François M., Wouters A., Basstanie E et al. Development of a long-acting injectable formulation with nanoparticles of rilpivirine (TMC278) for HIV treatment // European Journal of Pharmaceutics and Biopharmaceutics. 2009. Vol. 72, No. 3. Р. 502–508. DOI: 10.1016/j.ejpb.2009.03.006..
DOI: 10.1016/j.ejpb.2009.03.006

Macchione M., Sacarelli M., Racca A., Biglione C., Panzetta-Dutari G., Strumia M. Dual-responsive nanogels based on oligo (ethylene glycol) methacrylates and acidic co-monomers // Soft Matter. 2019. Vol. 15, No. 47. Р. 9700–9709. DOI: 10.1039/c9sm01180c..
DOI: 10.1039/c9sm01180c

Das S, Bharadwaj P., Bilal M., Barani M., Rahdar A., Taboada P., Bunga S., Kyzas G. Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis // Polymers. 2020. Vol. 12, No. 6. Р. 1397. DOI: 10.3390/polym12061397..
DOI: 10.3390/polym12061397

Molina M., Asadian-Birjand M., Balach J., Bergueiro J., Miceli E., Calderón M. Stimuli-responsive nanogel composites and their application in nanomedicine // Chemical Society Reviews. 2015. Vol. 44, No. 17. Р. 6161–6186. DOI: 10.1039/c5cs00199d..
DOI: 10.1039/c5cs00199d

Wang H., Chen Q., Zhou S. Carbon-based hybrid nanogels: a synergistic nanoplatforms for combined biosensing, bioimaging, and responsive drug delivery // Chemical Society Reviews. 2018. Vol. 47, No. 11. Р. 4198–4232. DOI: 10.1039/c7cs00399d..
DOI: 10.1039/c7cs00399d

Ho E., Chen., Dash., Sayre C., Davies N., Gu et al. Novel intravaginal nanomedicine for the targeted delivery of saquinavir to CD4+ immune cells // International Journal of Nanomedicine. 2013. Vol. 8. Р. 2847–2853. DOI: 10.2147/IJN.S46958..
DOI: 10.2147/IJN.S46958

Forbes C., Lowry D., Geer L., Veazey R., Shattock R, Klasse P. et al. Non-aqueous silicone elastomer gels as a vaginal microbicide delivery system for the HIV-1 entry inhibitor maraviroc // Journal of Controlled Release. 2011. Vol. 156, No. 2. Р. 161–169. DOI: 10.1016/j.jconrel.2011.08.006..
DOI: 10.1016/j.jconrel.2011.08.006

Jiang Y., Emau P., Cairns J., Flanary L., Morton W., McCarthy T. et al. SPL7013 Gel as a Topical Microbicide for Prevention of Vaginal Transmission of SHIV89.6P in Macaques // AIDS Research and Human Retroviruses. 2005. Vol. 21, No. 3. Р. 207–213. DOI: 10.1089/aid.2005.21.207..
DOI: 10.1089/aid.2005.21.207

Spreen W., Margolis D., Pottage J. Long-acting injectable antiretrovirals for HIV treatment and prevention // Current Opinion in HIV and AIDS. 2013. Vol. 8, No. 6. Р. 565–571. DOI: 10.1097/COH.0000000000000002..
DOI: 10.1097/COH.0000000000000002

Malamatari M., Taylor K., Malamataris S., Douroumis D., Kachrimanis K. Pharmaceutical nanocrystals: production by wet milling and applications // Drug Discovery Today. 2018. Vol. 23, No. 3. Р. 534–547. DOI: 10.1016/j.drudis.2018.01.016..
DOI: 10.1016/j.drudis.2018.01.016

Van ‘t Klooster G., Hoeben E., Borghys H., Looszova A., Bouche M., van Velsen F et al. Pharmacokinetics and Disposition of Rilpivirine (TMC278) Nanosuspension as a Long-Acting Injectable Antiretroviral Formulation // Antimicrobial Agents and Chemotherapy. 2010. Vol. 54, No. 5. Р. 2042–2050. DOI: 10.1128/AAC.01529-09..
DOI: 10.1128/AAC.01529-09

Jackson A., Else L., Mesquita P., Egan D., Back D., Karolia Z., et al. A Compartmental Pharmacokinetic Evaluation of Long-Acting Rilpivirine in HIV-Negative Volunteers for Pre-Exposure Prophylaxis // Clinical Pharmacology & Therapeutics. 2014. Vol. 96, No. 3. Р. 314–323. DOI: 10.1038/clpt.2014.118..
DOI: 10.1038/clpt.2014.118

Efficacy, Safety, and Tolerability Study of Long-acting Cabotegravir Plus Long-acting Rilpivirine (No. CAB LA + RPV LA) in Human-immunodeficiency Virus-1, No. HIV-1. Infected Adults — Full-Text View — ClinicalTrials.gov [Internet]. Clinicaltrials.gov. 2021 [cited 20 April 2021]. Available from: https://clinicaltrials.gov/ct2/show/NCT03299049.https://clinicaltrials.gov/ct2/show/NCT03299049

Monroe M., Flexner C., Cui H. Harnessing nanostructured systems for improved treatment and prevention of HIV disease // Bioengineering & translational medicine. 2021. Vol. 3, No. 2. Р. 102–123. DOI: 10.1002/btm2.10096..
DOI: 10.1002/btm2.10096

Study to Evaluate the Efficacy, Safety, and Tolerability of Long-acting Intramuscular Cabotegravir and Rilpivirine for Maintenance of Virologic Suppression Following Switch From an Integrase Inhibitor in HIV-1 Infected Therapy Naive Participants — Full-Text View — ClinicalTrials.gov [Internet]. Clinicaltrials.gov. 2021 [cited 20 April 2021]. Available from: https://clinicaltrials.gov/ct2/show/NCT02938520.https://clinicaltrials.gov/ct2/show/NCT02938520

Margolis D., Gonzalez-Garcia J., Stellbrink H., Eron J., Yazdanpanah Y., Podzamczer D et al. Long-acting intramuscular cabotegravir and rilpivirine in adults with HIV-1 infection (LATTE-2) 96-week results of a randomized, open-label, phase 2b, non-inferiority trial // The Lancet. 2017. Vol. 390, No. 10101. Р. 1499–1510. DOI: 10.1016/S0140-6736, No. 17)31917-7..
DOI: 10.1016/S0140-6736, No. 17)31917-7

Araínga M., Edagwa B., Mosley R., Poluektova L., Gorantla S., Gendelman H. A mature macrophage is a principal HIV-1 cellular reservoir in humanized mice after treatment with long-acting antiretroviral therapy // Retrovirology. 2017. Vol. 14, No. 1. doi: 10.1186/s12977-017-0344-7..
DOI: 10.1186/s12977-017-0344-7

Zhou T., Su H., Dash P., Lin Z., Dyavar Shetty B., Kocher T. et al. Creation of a nano formulated cabotegravir prodrug with improved antiretroviral profiles // Biomaterials. 2018. Vol. 151. Р. 53–65. DOI: 10.1016/j.biomaterials.2017.10.023..
DOI: 10.1016/j.biomaterials.2017.10.023

Dou H., Destache C., Morehead J., Mosley R., Boska M., Kingsley J. et al. Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery // Blood. 2006. Vol. 108, No. 8. Р. 2827–2835. DOI: 10.1182/blood-2006-03-012534..
DOI: 10.1182/blood-2006-03-012534

Buchanan A., Cunningham C. Advances and Failures in Preventing Perinatal Human Immunodeficiency Virus Infection // Clinical Microbiology Reviews. 2009. Vol. 22, No. 3. Р. 493–507. DOI: 10.1128/CMR.00054-08..
DOI: 10.1128/CMR.00054-08

Дополнительная информация
Язык текста: Русский
ISSN: 2077-9828
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4e432d4849562d41525449434c452d323032312d31332d342d302d36342d3736/