Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
Главная / Результаты поиска
Статья; ОбзорИскать документыПерейти к записи. 2023; Т. 15, № 1: 23–31. DOI:10.22328/2077-9828-2023-15-1-23-31
Нарушение вагинального микробиома и риск заражения ВИЧ-инфекцией у женщин
Искать документыПерейти к записи[1,2]
Искать документыПерейти к записи[3]
Искать документыПерейти к записи[4]
Аффилированные организации
[1]Искать документыПерейти к записи
[2]Искать документыПерейти к записи
[3]Искать документыПерейти к записи
[4]Искать документыПерейти к записи
Аннотация
Женщины представляют собой основную группу населения, являющуюся причиной новых случаев инфицирования ВИЧ и сохранения пандемии ВИЧ-инфекции. В статье представлен обзор современной литературы о факторах и механизмах, с помощью которых вагинальный микробиом может способствовать заражению ВИЧ-инфекцией. Ключевым фактором, определяющим восприимчивость к ВИЧ-инфекции, является состав вагинального микробиома, который может влиять на местную популяцию иммунных клеток и статус воспаления. Микробный состав с низким разнообразием, в котором преобладают Lactobacillus crispatus, не увеличивает риск заражения ВИЧ, а среда с высоким микробным разнообразием, ассоциированным с бактериальным вагинозом, увеличивает риск заражения ВИЧ. Женский репродуктивный тракт обладает уникальной восприимчивостью к вирусной инфекции, поскольку тканеспецифический иммунитет должен вызывать быстрые антимикробные реакции на патогены, сохраняя при этом толерантность к сперматозоидам. Важно отметить, что риск заражения ВИЧ при половых контактах является многофакторным и определяется не только состоянием микробиоты полового тракта женщины, но и состоянием микробиоты партнера, вирусной нагрузкой ВИЧ в крови полового партнера, наличием/отсутствием антиретровирусной терапии у партнера, гормональным фоном и фазой менструального цикла, которые также влияют на состояние микробиоты.
Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Centers for Disease Control and Prevention. HIV and Women. 2021, https://www.cdc.gov/hiv/pdf/group/gender/women/cdc-hiv-women.pdfhttps://www.cdc.gov/hiv/pdf/group/gender/women/cdc-hiv-women.pdf

Centers for Disease Control and Prevention. HIV and Women. 2021, https://www.cdc.gov/hiv/pdf/group/gender/women/cdc-hiv-women.pdfhttps://www.cdc.gov/hiv/pdf/group/gender/women/cdc-hiv-women.pdf

Ладная Н.Н., Покровский В.В. Материалы VII Санкт-Петербургского форума по ВИЧ-инфекции с международным участием. СПб., 2022.

Хрянин А.А., Решетников О.В. ВИЧ-инфекция в терапевтической практике. М.: ГЭОТАР-Медиа, 2018. 88 с.

Исаков В.А., Кнорринг Г.Ю., Стернин Ю.И. Гончаров С.Б., Мартынова О.В. Иммунопатогенез и терапия простого герпеса: рекомендации для врачей. СПб., 2008. 88 с.

Pathela P., Braunstein S.L., Blank S. HIV incidence among men with and those without sexually transmitted rectal infections: estimates from matching against an HIV case registry // Clin. Infect. Dis. 2013. No. 57. P. 1203–1209.

Peterman T.A., Newman D.R., Maddox L. High risk for HIV following syphilis diagnosis among men in Florida, 2000–2011 // Public Health Rep. 2014. Vol. 129, No 2. P. 164–169.

Pfeiffer E.J., McGregor K.A., Der Pol B.V.D. Willingness to disclose sexually transmitted infection status to sex partners among college-aged men in the United States // Sex. Transm. Dis. 2016. Vol. 43. No 3. Р. 204–206.

Cone R.A. Vaginal microbiota and sexually transmitted infections that may influence transmission of cell-associated HIV // J. Infect. Dis. 2014. Vol. 210 (Suppl. 3). P. S616–621.

Joag V., Obila O., Gajer P., Scott M.C., Dizzell S., Humphrys M., Shahabi K., Huibner S., Shannon B., Tharao W., Mureithi M., Oyugi J., Kimani J., Kaushic Ch., Ravel J., Anzala O., Kaul R. Impact of standard bacterial vaginosis treatment on the genital microbiota, immune milieu, and ex vivo human immunodeficiency virus susceptibility // Clin. Infect. Dis. 2019. Vol. 68, No. 10. P. 1675–1683.

Petrova M.I., v.d. Broek M., Balzarini J., Vanderleyden J., Lebeer S. Vaginal microbiota and its role in HIV transmission and infection // FEMS Microbiol. Rev. 2013. Vol. 37. No. 5. P. 762–792.

Nunn K.L., Wang Y.Y., Harit D., Humphrys M.S., Ma B., Cone R., Lai S.K. Enhanced Trapping of HIV-1 by human cervicovaginal mucus is associated with Lactobacillus crispatus-dominant microbiota // mBio. 2015. Vol. 6, No. 5. P. e01084–15.

Kroon S.J., Ravel J., Huston W.M. Cervicovaginal microbiota, women’s health, and reproductive outcomes // Fertil. Steril. 2018. Vol. 110, No. 3. P. 327–336.

Ma B., Forney L.J., Ravel J. Vaginal microbiome: rethinking health and disease // Ann. Rev. Microbiol. 2012. No. 66. P. 371–389.

Fichorova R.N., Morrison S.C., Chen P.L., Yamamoto H.S., Govender Y., Junaid D. Aberrant cervical innate immunity predicts onset of dysbiosis and sexually transmitted infections in women of reproductive age // PLoS One. 2020. Vol. 15, No. 1. P. e0224359.

Cohen C.R., Jairam R.L., Baeten J.M., Lingappa J.R., Baeten J. M., Ngayo M. O., Spiegel C.A., Hong T., Donnell D., Celum C., Kapiga S., Delany S., Bukusi E.A. Bacterial vaginosis associated with increased risk of female-to-male HIV-1 transmission: a prospective cohort analysis among African couples // PLoS Med. 2012. Vol. 9. No. 6. P. e1001251.

Хрянин А.А., Кнорринг Г.Ю. Бактериальный вагиноз: дискуссионные вопросы // Вестник дерматологии и венерологии. 2022. № 1. С. 13–18.

Хрянин А.А., Кнорринг Г.Ю. Современные представления о бактериальном вагинозе // Гинекология, 2021. № 1. C. 37–42.

McKinnon L.R., Achilles S.L., Bradshaw C.S., Burgener A., Crucitti T., Fredricks D.N., Jaspan H.B., Kaul R., Kaushic Ch., Klatt N., Kwon D.S., Marrazzo J.M., Masson L., McClelland R.S., Ravel J., van de Wijgert J.H.H.M., Vodstrcil L.A., Tachedjian G. The evolving facets of bacterial vaginosis: implications for HIV transmission // AIDS Res. Hum. Retroviruses. 2019. Vol. 35, No. 3. P. 219–228.

Onderdonk A.B., Delaney M.L., Fichorova R.N. The human microbiome during bacterial vaginosis // Clin. Microbiol. Rev. 2016. Vol. 29, No. 2. P. 223–238.

Swidsinski A., Mendling W., Loening-Baucke V., Ladhoff A., Swidsinski S., Hale L.P., Lochs H. Adherent biofilms in bacterial vaginosis // Obstet. Gynecol. 2005. Vol. 106 (5 Pt 1). P. 1013–1023.

Hardy L., Cerca N., Jespers V., Vaneechoutte M., Crucitti T. Bacterial biofilms in the vagina // Res. Microbiol. 2017. Vol. 168, No. 9–10. P. 865–874.

Хрянин А.А., Кнорринг Г.Ю. Современные представления о биопленках микроорганизмов // Фарматека. 2020. No. 6, С. 34–42.

Gustin А., Сromarty R., Shifanella L., Klatt N.R. Microbial mismanagement: how inadequate treatments for vaginal dysbiosis drive the HIV epidemic in women // Seminars in Immunology. 2021. Vol. 51. P. e101482.

Тец Г.В., Артеменко Н.К., Заславская Н.В., Артеменко К.Л., Кнорринг Г.Ю., Тец В.В., Стернин Ю.И. Влияние экзогенных протеолитических ферментов на передачу плазмидных генов в смешанных бактериальных биопленках // Антибиотики и химиотерапия. 2009. Т. 54, No. 9–10. С. 3–5

Thurman A.R., Kimble T., Herold B., Mesquita P.M.M., Fichorova R.N., Dawood H.Y., Fashemi T., Chandra N., Rabe L., Cunningham T.D., Anderson S., Schwartz J., Doncel G. Bacterial vaginosis and subclinical markers of genital tract inflammation and mucosal immunity // AIDS Res. Hum. Retroviruses. 2015. Vol. 31, No. 11. P. 1139–1152.

Borgdorff H., Gautam R., Armstrong S.D., Xia D., Ndayisaba G.F., van Teijlingen N.H., Geijtenbeek T.B.H., Wastling J.M. van de Wijgert J.H.H.M. Cervicovaginal microbiome dysbiosis is associated with proteome changes related to alterations of the cervicovaginal mucosal barrier // Mucosal Immunol. 2016. Vol. 9, No. 3. P. 621–633.

Alcaide M.L., Rodriguez V.J., Brown M.R., Pallikkuth S., Arheart К., Martinez О., Roach М., Fichorova R.N., Jones D.L., Pahwa S., Fischl M.A. High levels of inflammatory cytokines in the reproductive tract of women with BV and engaging in intravaginal douching: a cross-sectional study of participants in the women interagency HIV study // AIDS Res. Hum. Retroviruses. 2017. Vol. 33, No. 4. P. 309–317.

Arnold K.B., Burgener A., Birse K., Romas L., Dunphy L.J., Shahabi K., Abou M., Westmacott G.R., McCorrister S., Kwatampora J., Nyanga B., Kimani J., Masson L., Liebenberg L.J., Karim S.S.A., Passmore J.-A.S., Lauffenburger D.A., Kaul R., McKinnon L.R. Increased levels of inflammatory cytokines in the female reproductive tract are associated with altered expression of proteases, mucosal barrier proteins, and an influx of HIV-susceptible target cells // Mucosal Immunol. 2016. Vol. 9, No. 1. P. 194–205.

Masson L., Passmore J.-A.S, Liebenberg L.J., Werner L., Baxter C., Arnold K.B., Williamson C., Little F., Mansoor L.E., Naranbhai V., Lauffenburger D.A., Ronacher K., Walzl G., Garrett N.J., Williams B.L., Couto-Rodriguez M., Hornig M., Ian Lipkin W., Grobler A., Abdool Karim Q., Abdool Karim S.S. Genital inflammation and the risk of HIV acquisition in women // Clin. Infect. Dis. 2015. Vol. 61, No. 2. P. 260–269.

Macura S.L., Lathrop M.J., Gui J., Doncel G.F., Asin S.N., Rollenhagen C. Blocking CXCL9 Decreases HIV-1 Replication and Enhances the Activity of Prophylactic Antiretrovirals in Human Cervical Tissues // J. Acquir. Immune Defic. Syndr. 2016. Apr. 15. Vol. 717, No. 5. Р. 474–482.

Abt M.C., Osborne L.C., Monticelli L.A., Doering T.A., Alenghat T., Sonnenberg G.F., Paley M.A., Antenus M., Williams K.L., Erikson J. Commensal bacteria calibrate the activation threshold of innate antiviral immunity // Immunity. 2012. Vol. 37, No. 1. P. 158–170.

Kennedy E.A., King K.Y., Baldridge M.T. Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut Bacteria // Front. Physiol. 2018. Vol. 9. P. 1534.

Chow K.T., Gale Jr. M., Loo Y.M. RIG-I and other RNA sensors in antiviral immunity // Annu. Rev. Immunol. 2018. No. 36. P. 667–694.

Green R., Ireton R.C., Gale Jr M. Interferon-stimulated genes: new platforms and computational approaches // Mamm. Genome. 2018. Vol. 29, No. 7–8. P. 593–602.

Browne E.P. The role of toll-like receptors in retroviral infection // Microorganisms. 2020. Vol. 8, No. 11.

Cromarty R., Sigal A., Liebenberg L.J.P., McKinnon L.R., Abdool Karim S.S., Passmore J.S., Archary D. Diminished HIV infection of target CD4+ Тcells in a toll-like receptor 4 stimulated in vitro model // Front. Immunol. 2019. No. 10. P. 1705.

Hofmann H., Vanwalscappel B., Bloch N., Landau N.R. TLR7/8 agonist induces a post-entry SAMHD1-independent block to HIV-1 infection of monocytes // Retrovirology. 2016. Vol. 13, No. 1. P. 83.

Nian H., Geng W.Q., Cui H.L., Bao M.J., Zhang Z.N., Zhang M., Pan Y., Hu Q.H., Shang H. R-848 triggers the expression of TLR7/8 and suppresses HIV replication in monocytes // BMC Infect. Dis. 2012. No. 12. P. 5.

Valore E.V., Wiley D.G., Ganz T. Reversible deficiency of antimicrobial polypeptides in bacterial vaginosis // Infect. Immun. 2006. Vol. 74, No. 10. P. 5693–5702.

St John E., Mares D., Spear G.T. Bacterial vaginosis and host immunity // Curr. HIV/AIDS Rep. 2007. No. 4 (1). P. 22–28.

Beghini J., Giraldo P.C., Riboldi R. Amaral R.L.G., Eleutério J.J., Witkin S.S., Guimarães F. Altered CD16 expression on vaginal neutrophils from women with vaginitis // Eur. J. Obstet. Gynecol. Reprod. Biol. 2013. No. 167 (1). P. 96–99.

Beghini J. Neutrophil gelatinase-associated lipocalin concentration in vaginal fluid: relation to bacterial vaginosis and vulvovaginal candidiasis // Reprod. Sci. 2015. No. 22 (8). P. 964–968.

Hensley-McBain T., Zevin A.S., Manuzak J.A., Wu M.C., Ryan K., Gustin A., Driscoll C.B., Miller Ch.J., Coronado E., Smith E., Chang J., Gale Jr.M., Somsouk M., Burgener A.D., Hunt P.W., Hope T.J., Collier A.C., Klatt N.R. Increased mucosal neutrophil survival is associated with altered microbiota in HIV infection // PLoS Pathog. 2019. No. 15 (4). P. e1007672.

Manuzak J.A., Zevin A.S., Cheu R., Richardson B., Modesitt J., Hensley-McBain T., Miller C., Gustin A.T., Coronado E., Gott T., Fang M., Cartwright M., Wangari S., Agricola B., May D., Smith E., Нampel H.B., Gale M., Cameron C.M., Cameron M.J., Smedley J., Klatt N.R… Antibiotic-induced microbiome perturbations are associated with significant alterations to colonic mucosal immunity in rhesus macaques // Mucosal Immunol. 2020. No. 13 (3). P. 471–480.

Mitchell C. Gottsch M.L., Liu C., Fredricks D.N., Nelson D.B. Associations between vaginal bacteria and levels of vaginal defensins in pregnant women // Am. J. Obstet. Gynecol. 2013. No. 208 (2). P. 132 e1–7.

Borgdorff H., Gautam R., Armstrong S.D., Xia D., Ndayisaba G. F., van Teijlingen N.H., Geijtenbeek T.B.H., Wastling J.M., van de Wijgert J.H.H.M… Cervicovaginal microbiome dysbiosis is associated with proteome changes related to alterations of the cervicovaginal mucosal barrier // Mucosal Immunol. 2016. No. 9 (3). P. 621–633.

Borrow P., Shattock R.J., Vyakarnam A. Innate immunity against HIV: a priority target for HIV prevention research // Retrovirology. 2010. No. 57. P. 84.

Lehrer R.I., Lu W. Alpha-defensins in human innate immunity // Immunol. Rev. 2012. No. 245 (1). P. 84–112

Holly M.K., Diaz K., Smith J.G. Defensins in viral infection and pathogenesis // Ann. Rev. Virol. 2017. No. 4 (1). P. 369–391.

Nakashima H., Yamamoto N., Masuda M., Fujii N. Defensins inhibit HIV replication in vitro // AIDS. 1993. No. 7 (8). P. 1129.

Zhao L., Lu W. Defensins in innate immunity // Opin. Hematol. 2014. No. 21 (1). P. 37–42.

Funderburg N., Lederman M.M., Feng Z., Drage M. G., Jadlowsky J., Harding C. V., Weinberg A., Sieg S. F. Human b-defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2 // Proc. Natl. Acad. Sci. U. S. A. 2007. No. 104 (47). P. 18631–18635.

Klotman M.E., Rapista A., Teleshova N. Micsenyi A., Jarvis G.A., Lu W., Porter E., Chang T.L. Neisseria gonorrhoeae-induced human defensins 5 and 6 increase HIV infectivity: role in enhanced transmission // J. Immunol. 2008. No. 180 (9). P. 6176–6185.

Territo M.C., Ganz T., Selsted M.E., Lehrer R. Monocyte-chemotactic activity of defensins from human neutrophils // J. Clin. Invest. 1989. No. 84 (6). P. 2017–2020.

Yang D., Chen Q., Chertov O. Oppenheim J.J. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells // J. Leukoc. Biol. 2000. No. 68 (1). P. 9–14.

Yang D., Chen Q., Chertov O.D… Bykovskaia S.N., Chen Q., Buffo M.J., Shogan J., Anderson M., Schroder J.M., Wang J.M., Howard O.M.Z., Oppenheim J.J. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6 // Science. 1999. No. 286 (5439). P. 525–528.

Shi J., Aono S., Lu W., Ouellette A.J., Hu X., Ji Y., Wang L., Lenz S., van Ginkel F.W., Liles M., Dykstra C., Morrison E.E., Elson C.O. A novel role for defensins in intestinal homeostasis: regulation of IL-1beta secretion // J. Immunol. 2007. No. 179 (2). P. 1245–1253.

Rio M.L., Rodriguez-Barbosa J.I. CD103- and CD103+ bronchial lymph node dendritic cells are specialized in presenting and cross-presenting innocuous antigen to CD4+ and CD8+ T cells // J. Immunol. 2007. No. 178 (11). P. 6861–6866.

Merad M., Sathe P., Helft J. Miller J., Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting // Ann. Rev. Immunol. 2013. No. 31. P. 563–604.

Horowitz M.C., Friedlaender G.E., Qian H.Y. The immune response: the efferent arm // Clin. Orthop. Relat. Res. 1996. No. 326. P. 25–34.

Ndhlovu Z.M., Kamya P., Mewalal N. Kløverpris H.N., Nkosi T., Pretorius K., Laher F., Ogunshola F., Chopera D., Shekhar K., Ghebremichael M., Ismail N., Moodley A., Malik A., Leslie A., Goulder P.J., Buus S., Chakraborty A., Dong K., Ndung’u T., Walker B.D. Magnitude and kinetics of CD8+ Т-cell activation during hyperacute HIV infection impact viral set point // Immunity. 2015. No. 43 (3). P. 591–604.

Radebe M., Gounder K., Mokgoro M. Ndhlovu Z.M., Mncube Z., Mkhize L., van der Stok M., Jaggernath M., Walker B.D., Ndung’u T. Broad and persistent Gag-specific CD8+ T-cell responses are associated with viral control but rarely drive viral escape during primary HIV-1 infection // AIDS. 2015. Vol. 29, No. 1. P. 23–33.

Cocchi F., DeVico A.L., Garzino-Demo A., Arya S.K., Gallo R.C., Lusso P. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells // Science. 1995. No. 270 (5243). P. 1811–1815.

Thurman A.R., Kimble T., Herold B., Mesquita P.M., Fichorova R.N., Dawood H.Y., Fashemi T., Chandra N., Rabe L., Cunningham T.D., Anderson S., Schwartz J., Doncel G. Bacterial vaginosis and subclinical markers of genital tract inflammation and mucosal immunity // AIDS Res. Hum. Retroviruses. 2015. No. 31 (11). P. 1139–1152.

Anahtar M.N., Byrne E.H., Doherty K.E. Bowman B.A., Yamamoto H.S., Soumillon M., Padavattan N., Ismail N., Moodley A., Sabatini M.E., Ghebremichael M.S., Nusbaum C., Huttenhower C., Virgin H.W., Ndung’u T., Dong K.L., Walker B.D., Fichorova R.N., Kwon D.S. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract // Immunity. 2015. No. 42 (5). P. 965–976.

Дополнительная информация
Язык текста: Русский
ISSN: 2077-9828
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4e432d4849562d41525449434c452d323032332d31352d312d302d32332d3331/