Pilcher C., Ospina-Norvell C., Dasgupta A. The Effect of Same-Day Observed Initiation of Antiretroviral Therapy on HIV Viral Load and Treatment Outcomes in a US Public Health Setting // J. Acquir. Immune Defic. Syndr. 2017. Vol. 74, No. 1. Р. 44–51. doi: https://doi.org/10.1097/QAI.0000000000001134..
DOI: 10.1097/QAI.0000000000001134
Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1 infected adults and adolescents. Washington, DC: Department of Health and Human Services, 2021. https://clinicalinfo.hiv.gov/en/guidelines/hiv-clinical-guidelines-adult-and-adolescent-arv/poor-cd4-cell-recovery-and-persistent?view=full.https://clinicalinfo.hiv.gov/en/guidelines/hiv-clinical-guidelines-adult-and-adolescent-arv/poor-cd4-cell-recovery-and-persistent?view=full
Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1 infected adults and adolescents. Washington, DC: Department of Health and Human Services, 2021. https://clinicalinfo.hiv.gov/en/guidelines/hiv-clinical-guidelines-adult-and-adolescent-arv/poor-cd4-cell-recovery-and-persistent?view=full.https://clinicalinfo.hiv.gov/en/guidelines/hiv-clinical-guidelines-adult-and-adolescent-arv/poor-cd4-cell-recovery-and-persistent?view=full
Rb-Silva R., Goios A., Kelly C. et al. Definition of immunological nonresponse to antiretroviral therapy: a systematic review // JAIDS Journal of Acquired Immune Deficiency Syndromes. 2019. Vol. 82, No. 5. Р. 452–461. doi: https://doi.org/10.1097/QAI.0000000000002157..
DOI: 10.1097/QAI.0000000000002157
Yang X., Su B., Zhang X. et al. Incomplete immune reconstitution in HIV/AIDS patients on antiretroviral therapy: Challenges of immunological non-responders // Journal of leukocyte biology. 2020. Vol. 107, No. 4. Р. 597–612. doi: https://doi.org/10.1002/JLB.4MR1019-189R..
DOI: 10.1002/JLB.4MR1019-189R
Шмагель К.В. Дискордантный ответ CD4+ T-лимфоцитов на антиретровирусную терапию // ВИЧ-инфекция и иммуносупрессии. 2019. Т. 11, № 1. doi: https://doi.org/10.22328/2077-9828-2019-11-1..
DOI: 10.22328/2077-9828-2019-11-1
Kelly C., Gaskell K.M., Richardson M. et al. Discordant immune response with antiretroviral therapy in HIV-1: a systematic review of clinical outcomes // PloS Оne. 2016. Vol. 11, No. 6. Р. e0156099. doi: https://doi.org/10.1371/journal.pone.0156099..
DOI: 10.1371/journal.pone.0156099
Олейник А.Ф., Фазылов В.Х. Причины иммунологической неэффективности антиретровирусной терапии у пациентов с ВИЧ-инфекцией // Казанский медицинский журнал. 2014. Т. 95, № 4.
Tan R., Westfall A.O., Willig J.H. et al. Clinical outcome of HIV-infected antiretroviral-naive patients with discordant immunologic and virologic responses to highly active antiretroviral therapy // JAIDS Journal of Acquired Immune Deficiency Syndromes. 2008. Vol. 47, No. 5. Р. 553–558. doi: https://doi.org/10.1097/qai.0b013e31816856c5..
DOI: 10.1097/qai.0b013e31816856c5
Zoufaly A., Cozzi-Lepri A., Reekie J. et al. Immuno-virological discordance and the risk of non-AIDS and AIDS events in a large observational cohort of HIV-patients in Europe // PloS Оne. 2014. Vol. 9, No. 1. Р. e87160. doi: https://doi.org/10.1371/journal.pone.0087160..
DOI: 10.1371/journal.pone.0087160
Lapadula G., Cozzi-Lepri A., Marchetti G. et al. Risk of clinical progression among patients with immunological nonresponse despite virological suppression after combination antiretroviral treatment // AIDS. 2013. Vol. 27, No. 5. Р. 769–779. doi: https://doi.org/10.1097/QAD.0b013e32835cb747..
DOI: 10.1097/QAD.0b013e32835cb747
Клинические рекомендации Министерства здравоохранения Российской Федерации. ВИЧ-инфекция у взрослых, 2020 год. http://rushiv.ru/klinicheskie-rekomendatsii-vich-infektsiya-u-vzroslyh-2020/http://rushiv.ru/klinicheskie-rekomendatsii-vich-infektsiya-u-vzroslyh-2020/
Клинические рекомендации Министерства здравоохранения Российской Федерации. ВИЧ-инфекция у взрослых, 2020 год. http://rushiv.ru/klinicheskie-rekomendatsii-vich-infektsiya-u-vzroslyh-2020/http://rushiv.ru/klinicheskie-rekomendatsii-vich-infektsiya-u-vzroslyh-2020/
ВИЧ-инфекция и СПИД: национальное руководство / под ред. В.В.Покровского. 2-е изд., перераб. и доп. М.: ГЭОТАР-Медиа, 2020. 696 с.: ил. (Серия «Национальные руководства»). doi: https://doi.org/10.33029/9704-5421-3-2020-VIC-1-696.
DOI: 10.33029/9704-5421-3-2020-VIC-1-696
Lu W., Mehraj V., Vyboh K. et al. CD4: CD8 ratio as a frontier marker for clinical outcome, immune dysfunction and viral reservoir size in virologically suppressed HIV-positive patients // Journal of the International AIDS Society. 2015. Vol. 18, No. 1. Р. 20052. doi: https://doi.org/10.7448/IAS.18.1.20052..
DOI: 10.7448/IAS.18.1.20052
Kaufmann G.R., Furrer H., Ledergerber B. et al. Characteristics, Determinants, and clinical relevance of CD4 T cell recovery to <500 cells/μL in HIV type 1-infected individuals receiving potent antiretroviral therapy // Clinical infectious diseases. 2005. Vol. 41, No. 3. Р. 361–372. doi: https://doi.org/10.1086/431484.
DOI: 10.1086/431484
Jarrin I., Pantazis N., Dalmau J. et al. Does rapid HIV disease progression prior to combination antiretroviral therapy hinder optimal CD4+ T-cell recovery once HIV-1 suppression is achieved? // AIDS (London, England). 2015. Vol. 29, No. 17. Р. 2323. doi: https://doi.org/10.1097/QAD.0000000000000805..
DOI: 10.1097/QAD.0000000000000805
Engsig F.N., Gerstoft J., Kronborg G. et al. Long-term mortality in HIV patients virally suppressed for more than three years with incomplete CD4 recovery: a cohort study // BMC infectious diseases. 2010. Vol. 10, No. 1. Р. 1–9. doi: https://doi.org/10.1186/1471-2334-10-318..
DOI: 10.1186/1471-2334-10-318
Tincati C., Merlini E., Braidotti P. et al. Impaired gut junctional complexes feature late-treated individuals with suboptimal CD4+ T-cell recovery upon virologically suppressive combination antiretroviral therapy // AIDS. 2016. Vol. 30, No. 7. Р. 991–1003. doi: https://doi.org/10.1097/QAD.0000000000001015..
DOI: 10.1097/QAD.0000000000001015
Younes S.A., Talla A., Ribeiro S.P. et al. Cycling CD4+ T cells in HIV-infected immune nonresponders have mitochondrial dysfunction // The Journal of clinical investigation. 2018. Vol. 128, No. 11. Р. 5083–5094. doi: https://doi.org/10.1172/JCI120245..
DOI: 10.1172/JCI120245
Zhang L.X., Song J.W., Zhang C. et al. Dynamics of HIV reservoir decay and naïve CD4 T-cell recovery between immune non-responders and complete responders on long-term antiretroviral treatment // Clinical immunology. 2021. Vol. 229. Р. 108773. doi: https://doi.org/10.1016/j.clim.2021.108773..
DOI: 10.1016/j.clim.2021.108773
Rodríguez-Gallego E., Gómez J., Pacheco Y.M. et al. A baseline metabolomic signature is associated with immunological CD4+ T-cell recovery after 36 months of antiretroviral therapy in HIV-infected patients // AIDS (London, England). 2018. Vol. 32, No. 5. Р. 565. doi: https://doi.org/10.1097/QAD.0000000000001730.
DOI: 10.1097/QAD.0000000000001730
Rosado-Sánchez I., Herrero-Fernández I., Álvarez-Ríos A.I. et al. A lower baseline CD4/CD8 T-cell ratio is independently associated with immunodiscordant response to antiretroviral therapy in HIV-infected subjects // Antimicrobial agents and chemotherapy. 2017. Vol. 61, No. 8. Р. e00605–17. doi: https://doi.org/10.1128/AAC.00605-17..
DOI: 10.1128/AAC.00605-17
Cenderello G., De Maria A. Discordant responses to cART in HIV-1 patients in the era of high potency antiretroviral drugs: clinical evaluation, classification, management prospects // Expert Review of Anti-infective Therapy. 2016. Vol. 14, No. 1. Р. 29–40. doi: https://doi.org/10.1586/14787210.2016.1106937..
DOI: 10.1586/14787210.2016.1106937
Resino S., Navarrete-Muñoz M.A., Blanco J. et al. IL7RA rs6897932 polymorphism is associated with better CD4+ T-cell recovery in HIV infected patients starting combination antiretroviral therapy // Biomolecules. 2019. Vol. 9, No. 6. Р. 233. doi: https://doi.org/10.3390/biom9060233..
DOI: 10.3390/biom9060233
Yong Y.K., Shankar E.M., Westhorpe C.L. et al. Polymorphisms in the CD14 and TLR4 genes independently predict CD4+ T-cell recovery in HIV-infected individuals on antiretroviral therapy // AIDS. 2016. Vol. 30, No. 14. Р. 2159–2168. doi: https://doi.org/10.1097/QAD.0000000000001179..
DOI: 10.1097/QAD.0000000000001179
Rb-Silva R., Nobrega C., Azevedo C. et al. Thymic function as a predictor of immune recovery in chronically HIV-infected patients initiating antiretroviral therapy // Frontiers in immunology. 2019. Vol. 10. Р. 25. doi: https://doi.org/10.3389/fimmu.2019.00025..
DOI: 10.3389/fimmu.2019.00025
Rosado-Sánchez I., Herrero-Fernández I., Genebat M. et al. Thymic function impacts the peripheral CD4/CD8 ratio of HIV-infected subjects // Clinical Infectious Diseases. 2017. Vol. 64, No. 2. Р. 152–158. doi: https://doi.org/10.1093/cid/ciw711..
DOI: 10.1093/cid/ciw711
Estes J.D. Pathobiology of HIV/SIV-associated changes in secondary lymphoid tissues // Immunological reviews. 2013. Vol. 254, No. 1. Р. 65–77. doi: https://doi.org/10.1111/imr.12070..
DOI: 10.1111/imr.12070
Zeng M., Southern P.J., Reilly C.S. Lymphoid tissue damage in HIV-1 infection depletes naive T cells and limits T cell reconstitution after antiretroviral therapy // PLoS Pathog. 2012. Vol. 8, No. 1. e1002437. doi: https://doi.org/10.1371/journal.ppat.1002437..
DOI: 10.1371/journal.ppat.1002437
Diaz A., Alós L., León A. et al. Factors associated with collagen deposition in lymphoid tissue in long-term treated HIV-infected patients // AIDS. 2010. Vol. 24, No. 13. Р. 2029–2039. doi: https://doi.org/10.1097/QAD.0b013e32833c3268..
DOI: 10.1097/QAD.0b013e32833c3268
Шмагель К.В., Шмагель Н.Г., Черешнев В.А. Активация иммунитета при ВИЧ-инфекции // Медицинская иммунология. 2017. Т. 19, № 5. С. 489–504.
Massanella M., Negredo E., Pérez-Álvarez N. et al. CD4 T-cell hyperactivation and susceptibility to cell death determine poor CD4 T-cell recovery during suppressive HAART // AIDS. 2010. Vol. 24, No. 7. Р. 959–968. doi: https://doi.org/10.1097/QAD.0b013e328337b957..
DOI: 10.1097/QAD.0b013e328337b957
Massanella M., Gómez-Mora E., Carrillo J. et al. Increased ex vivo cell death of central memory CD4 T cells in treated HIV infected individuals with unsatisfactory immune recovery // Journal of translational medicine. 2015. Vol. 13, No. 1. Р. 1–11. doi: https://doi.org/10.1186/s12967-015-0601-2..
DOI: 10.1186/s12967-015-0601-2
Бобкова М. Латентность ВИЧ. М.: Человек, 2021. 228 с.: ил.
Xie Y., Sun J., Wei L. et al. Altered gut microbiota correlate with different immune responses to HAART in HIV-infected individuals // BMC microbiology. 2021. Vol. 21, Nо. 1. Р. 1–12. doi: https://doi.org/10.1186/s12866-020-02074-1..
DOI: 10.1186/s12866-020-02074-1
Lu W., Feng Y., Jing F. et al. Association between gut microbiota and CD4 recovery in HIV-1 infected patients // Frontiers in microbiology. 2018. Vol. 9. Р. 1451. doi: https://doi.org/10.3389/fmicb.2018.01451.
DOI: 10.3389/fmicb.2018.01451
Ahn M.Y., Jiamsakul A., Khusuwan S. et al. The influence of age-associated comorbidities on responses to combination antiretroviral therapy in older people living with HIV // Journal of the International AIDS Society. 2019. Vol. 22, No. 2. Р. e25228. doi: https://doi.org/10.1002/jia2.25228..
DOI: 10.1002/jia2.25228
Boatman J.A., Baker J.V., Emery S. et al. Risk factors for low CD4+ count recovery despite viral suppression among participants initiating antiretroviral treatment with CD4+ Counts> 500 cells/mm3: findings from the strategic timing of antiretroviral treatment (START) trial // Journal of acquired immune deficiency syndromes (1999). 2019. Vol. 81, No. 1. Р. 10. doi: https://doi.org/10.1097/QAI.0000000000001967..
DOI: 10.1097/QAI.0000000000001967
Hoffmann C., Rockstroh J.K., HIV 2014/2015. Hamburg: Medizin Focus Verlag, 2015. Р. 906.
Ignacio R.B., Ddungu H., Uldrick T.S. Untangling the Effects of Chemotherapy and HIV on CD4 Counts — Implications for Immunotherapy in HIV and Cancer // JAMA oncology. 2020. Vol. 6, No. 2. Р. 235–236. doi: https://doi.org/10.1001/jamaoncol.2019.4634..
DOI: 10.1001/jamaoncol.2019.4634
Calkins K.L., Chander G., Joshu C.E. et al. Immune status and associated mortality after cancer treatment among individuals with HIV in the antiretroviral therapy era // JAMA oncology. 2020. Vol. 6, No. 2. Р. 227–235. doi: https://doi.org/10.1001/jamaoncol.2019.4648..
DOI: 10.1001/jamaoncol.2019.4648
Attallah M.A., Jara M.D.J., Gautam A.S. et al. A review of the use of biological agents in human immunodeficiency virus positive patients with rheumatological diseases // Cureus. 2020. Vol. 12, No. 10. doi: https://doi.org/10.7759/cureus.10970..
DOI: 10.7759/cureus.10970
Dussauze H., Bourgault I., Doleris L.M. et al. Systemic corticosteroid treatment and risk of infectious diseases // La Revue de Médecine Interne. 2007. Vol. 28, No. 12. Р. 841–851. doi: https://doi.org/10.1016/j.revmed.2007.05.030..
DOI: 10.1016/j.revmed.2007.05.030
So-Armah K., Benjamin L.A., Bloomfield G.S. et al. HIV and cardiovascular disease // The lancet HIV. 2020. Vol. 7, No. 4. Р. e279-e293. doi: https://doi.org/10.1016/S2352-3018(20)30036-9..
DOI: 10.1016/S2352-3018(20)30036-9
Brown T.T., Tassiopoulos K., Bosch R.J. et al. Association between systemic inflammation and incident diabetes in HIV-infected patients after initiation of antiretroviral therapy // Diabetes care. 2010. Vol. 33, No. 10. Р. 2244–2249. doi: https://doi.org/10.2337/dc10-0633..
DOI: 10.2337/dc10-0633
Virot E., Duclos A., Adelaide L. et al. Autoimmune diseases and HIV infection: a cross-sectional study // Medicine. 2017. Vol. 96, No. 4. doi: https://doi.org/10.1097/MD.0000000000005769..
DOI: 10.1097/MD.0000000000005769
Marcus J.L., Leyden W.A., Chao C.R. et al. Differences in response to antiretroviral therapy by sex and hepatitis C infection status // AIDS patient care and STDs. 2015. Vol. 29, No. 7. Р. 370–378. doi: https://doi.org/10.1089/apc.2015.0040..
DOI: 10.1089/apc.2015.0040
Van Griensven J., Phirum L., Choun K. et al. Hepatitis B and C co-infection among HIV-infected adults while on antiretroviral treatment: long-term survival, CD4 cell count recovery and antiretroviral toxicity in Cambodia // PloS Оne. 2014. Vol. 9, No. 2. Р. e88552. doi: https://doi.org/10.1371/journal.pone.0088552..
DOI: 10.1371/journal.pone.0088552
Chen M., Wong W.W., Law M.G. et al. Hepatitis B and C co-infection in HIV patients from the TREAT Asia HIV observational database: analysis of risk factors and survival // PLoS One. 2016. Vol. 11, No. 3. e0150512. doi: https://doi.org/10.1371/journal.pone.0150512..
DOI: 10.1371/journal.pone.0150512
Peters L., Mocroft A., Soriano V. et al. Hepatitis C virus coinfection does not influence the CD4 cell recovery in HIV-1-infected patients with maximum virologic suppression // JAIDS Journal of Acquired Immune Deficiency Syndromes. 2009. Vol. 50, No. 5. Р. 457–463. doi: https://doi.org/10.1097/QAI.0b013e318198a0e1..
DOI: 10.1097/QAI.0b013e318198a0e1
Nuñez J.A.P., Gonzalez-Garcia J., Berenguer J. et al. Impact of co-infection by hepatitis C virus on immunological and virological response to antiretroviral therapy in HIV-positive patients // Medicine. 2018. Vol. 97, No. 38. doi: https://doi.org/10.1097/MD.0000000000012238..
DOI: 10.1097/MD.0000000000012238
Wandeler G., Gsponer T., Bihl F. et al. Hepatitis B virus infection is associated with impaired immunological recovery during antiretroviral therapy in the Swiss HIV cohort study // The Journal of infectious diseases. 2013. Vol. 208, No. 9. Р. 1454–1458. doi: https://doi.org/10.1093/infdis/jit351..
DOI: 10.1093/infdis/jit351
Chun H.M., Mesner O., Thio C. L. et al. HIV outcomes in Hepatitis B virus coinfected individuals on HAART // Journal of acquired immune deficiency syndromes (1999). 2014. Vol. 66, No. 2. Р. 197. doi: https://doi.org/10.1097/QAI.0000000000000142..
DOI: 10.1097/QAI.0000000000000142
Smeaton L., Saulynas M., Hwang H. et al. Characterization of HIV-HBV co-infection in a multi-national HIV-infected cohort // AIDS (London, England). 2013. Vol. 27, No. 2. Р. 191. doi: https://doi.org/10.1097/QAD.0b013e32835a9984..
DOI: 10.1097/QAD.0b013e32835a9984
Wang H., Li Y., Zhang C. et al. Immunological and virological responses to cART in HIV/HBV co-infected patients from a multicenter cohort // AIDS (London, England). 2012. Vol. 26, No. 14. Р. 1755–1763. doi: https://doi.org/10.1097/qad.0b013e328355ced2..
DOI: 10.1097/qad.0b013e328355ced2
Gomez-Mora E., Massanella M., Garcia E. et al. Elevated humoral response to cytomegalovirus in HIV-infected individuals with poor CD4+ T-cell immune recovery // PloS Оne. 2017. Vol. 12, No. 9. Р. e0184433. doi: https://doi.org/10.1371/journal.pone.0184433..
DOI: 10.1371/journal.pone.0184433
Cingolani A., Cozzi Lepri A., Castagna A. et al. Impaired CD4 T-cell count response to combined antiretroviral therapy in antiretroviral-naive HIV-infected patients presenting with tuberculosis as AIDS-defining condition // Clinical infectious diseases. 2012. Vol. 54, No. 6. Р. 853–861. doi: https://doi.org/10.1097/01.aids.0000434936.57880.cd..
DOI: 10.1097/01.aids.0000434936.57880.cd
Skogmar S., Schön T., Balcha T.T. et al. CD4 cell levels during treatment for tuberculosis (TB) in Ethiopian adults and clinical markers associated with CD4 lymphocytopenia // PloS One. 2013. Vol. 8, No. 12. Р. e83270. doi: https://doi.org/10.1371/journal.pone.0083270..
DOI: 10.1371/journal.pone.0083270
Reepalu A., Balcha T.T., Sturegård E. et al. Long-term outcome of antiretroviral treatment in patients with and without concomitant tuberculosis receiving health center–based care — results from a prospective cohort study // Open forum infectious diseases. US: Oxford University Press, 2017. Vol. 4, No. 4. Р. ofx219. doi: https://doi.org/10.1093/ofid/ofx219..
DOI: 10.1093/ofid/ofx219
Gupta R.K., Brown A.E., Zenner D. et al. CD4+ cell count responses to antiretroviral therapy are not impaired in HIV-infected individuals with tuberculosis co-infection // AIDS. 2015. Vol. 29, No. 11. Р. 1363–1368. doi: https://doi.org/10.1097/QAD.0000000000000685..
DOI: 10.1097/QAD.0000000000000685
Jiang W., Luo Z., Martin L. et al. Drug use is associated with anti-CD4 IgG-mediated CD4+ T cell death and poor CD4+ T cell recovery in viral-suppressive HIV-infected individuals under antiretroviral therapy // Current HIV research. 2018. Vol. 16, No. 2. Р. 143–150. doi: https://doi.org/10.2174/1570162X16666180703151208..
DOI: 10.2174/1570162X16666180703151208
Li X., He W., Wen Y. et al. The Impact of Addictive Drugs on HIV Immunopathogenesis // Journal of Drug and Alcohol Research. 2021. Vol. 10, No. 11. Р. 1–8. https://www.ashdin.com/abstract/the-impact-of-addictive-drugs-on-hiv-immunopathogenesis-88397.html.https://www.ashdin.com/abstract/the-impact-of-addictive-drugs-on-hiv-immunopathogenesis-88397.html
Li X., He W., Wen Y. et al. The Impact of Addictive Drugs on HIV Immunopathogenesis // Journal of Drug and Alcohol Research. 2021. Vol. 10, No. 11. Р. 1–8. https://www.ashdin.com/abstract/the-impact-of-addictive-drugs-on-hiv-immunopathogenesis-88397.html.https://www.ashdin.com/abstract/the-impact-of-addictive-drugs-on-hiv-immunopathogenesis-88397.html
Banerjee S., Sindberg G., Wang F. et al. Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation // Mucosal immunology. 2016. Vol. 9, No. 6. Р. 1418–1428. doi: https://doi.org/10.1038/mi.2016.9..
DOI: 10.1038/mi.2016.9
Koethe J.R., Jenkins C.A., Lau B. et al. Higher time-updated body mass index: association with improved CD4+ cell recovery on HIV treatment // Journal of acquired immune deficiency syndromes (1999). 2016. Vol. 73, No. 2. Р. 197. doi: https://doi.org/10.1097/QAI.0000000000001035..
DOI: 10.1097/QAI.0000000000001035
Li X., Ding H., Geng W. et al. Predictive effects of body mass index on immune reconstitution among HIV-infected HAART users in China // BMC infectious diseases. 2019. Vol. 19, No. 1. Р. 1–9. doi: https://doi.org/10.1186/s12879-019-3991-6..
DOI: 10.1186/s12879-019-3991-6
Palmer C.S., Ostrowski M., Gouillou M. et al. Increased glucose metabolic activity is associated with CD4+ T-cell activation and depletion during chronic HIV infection // AIDS (London, England). 2014. Vol. 28, No. 3. Р. 297. doi: https://doi.org/10.1097/QAD.0000000000000128.
DOI: 10.1097/QAD.0000000000000128
Kołodziej J. Effects of stress on HIV infection progression // HIV & AIDS Review. 2016. Vol. 15, No. 1. Р. 13–16. doi: https://doi.org/10.1016/j.hivar.2015.07.003..
DOI: 10.1016/j.hivar.2015.07.003
Zefferino R., Di Gioia S., Conese M. Molecular links between endocrine, nervous and immune system during chronic stress // Вrain and Behavior. 2021. Vol. 11, No. 2. Р. e01960. doi: https://doi.org/10.1002/brb3.1960..
DOI: 10.1002/brb3.1960
Patterson S., Moran P., Epel E. et al. Cortisol patterns are associated with T cell activation in HIV // PloS Оne. 2013. Vol. 8, No. 7. Р. e63429. doi: https://doi.org/10.1371/journal.pone.0063429..
DOI: 10.1371/journal.pone.0063429
Zhang F., Sun M., Sun J. et al. The risk factors for suboptimal CD4 recovery in HIV infected population: an observational and retrospective study in Shanghai, China // Bioscience trends. 2015. Vol. 9, No. 5. Р. 335–341. doi: https://doi.org/10.5582/bst.2015.01107..
DOI: 10.5582/bst.2015.01107
Tanuma J., Matsumoto S., Haneuse S. et al. Long-term viral suppression and immune recovery during first-line antiretroviral therapy: a study of an HIV-infected adult cohort in Hanoi, Vietnam // Journal of the International AIDS Society. 2017. Vol. 20, No. 4. Р. e25030. doi: https://doi.org/10.1002/jia2.25030..
DOI: 10.1002/jia2.25030
Edwards J.K., Hall H.I., Mathews W.C. et al. Virologic suppression and CD4 cell count recovery after initiation of raltegravir-or efavirenz-containing HIV treatment regimens // AIDS (London, England). 2018. Vol. 32, No. 2. Р. 261. doi: https://doi.org/10.1097/QAD.0000000000001668..
DOI: 10.1097/QAD.0000000000001668
Blanco J.R., Alejos B., Moreno S. Impact of dolutegravir and efavirenz on immune recovery markers: results from a randomized clinical trial // Clinical Microbiology and Infection. 2018. Vol. 24, No. 8. Р. 900–907. doi: https://doi.org/10.1016/j.cmi.2017.11.016..
DOI: 10.1016/j.cmi.2017.11.016
Gatell J.M., Assoumou L., Moyle G. et al. Switching from a ritonavir-boosted protease inhibitor to a dolutegravir-based regimen for maintenance of HIV viral suppression in patients with high cardiovascular risk // AIDS (London, England). 2017. Vol. 31, No. 18. Р. 2503. doi: https://doi.org/10.1097/QAD.0000000000001675.
DOI: 10.1097/QAD.0000000000001675
Asundi A., Robles Y., Starr T. et al. Immunological and neurometabolite changes associated with switch from efavirenz to an integrase inhibitor // Journal of acquired immune deficiency syndromes (1999). 2019. Vol. 81, No. 5. doi: https://doi.org/10.1097/QAI.0000000000002079..
DOI: 10.1097/QAI.0000000000002079
Rusconi S., Vitiello P., Adorni F. et al. Maraviroc as intensification strategy in HIV-1 positive patients with deficient immunological response: an Italian randomized clinical trial // PloS Оne. 2013. Vol. 8, No. 11. Р. e80157. doi: https://doi.org/10.1371/journal.pone.0080157..
DOI: 10.1371/journal.pone.0080157
Massanella M., Negredo E., Puig J. et al. Raltegravir intensification shows differing effects on CD8 and CD4 T cells in HIV-infected HAART-suppressed individuals with poor CD4 T-cell recovery // AIDS. 2012. Vol. 26, No. 18. Р. 2285–2293. doi: https://doi.org/10.1097/QAD.0b013e328359f20f..
DOI: 10.1097/QAD.0b013e328359f20f
Lafeuillade A., Assi A., Poggi C. et al. Failure of combined antiretroviral therapy intensification with maraviroc and raltegravir in chronically HIV-1 infected patients to reduce the viral reservoir: the IntensHIV randomized trial // AIDS Research and Therapy. 2014. Vol. 11, No. 1. Р. 1–6. doi: https://doi.org/10.1186/1742-6405-11-33..
DOI: 10.1186/1742-6405-11-33
Joly V., Fagard C., Grondin C. et al. Intensification of antiretroviral therapy through addition of enfuvirtide in naive HIV-1-infected patients with severe immunosuppression does not improve immunological response: results of a randomized multicenter trial (ANRS 130 Apollo) // Antimicrobial agents and chemotherapy. 2013. Vol. 57, No. 2. Р. 758–765. doi: https://doi.org/10.1128/AAC.01662-12..
DOI: 10.1128/AAC.01662-12
Onwumeh J., Okwundu C. I., Kredo T. Interleukin-2 as an adjunct to antiretroviral therapy for HIV-positive adults // Cochrane Database of Systematic Reviews. 2017. No. 5. doi: https://doi.org/10.1002/14651858.CD009818.pub2..
DOI: 10.1002/14651858.CD009818.pub2
Katlama C., Lambert-Niclot S., Assoumou L. et al. Treatment intensification followed by interleukin-7 reactivates HIV without reducing total HIV DNA: a randomized trial // AIDS. 2016. Vol. 30, No. 2. Р. 221–230. doi: https://doi.org/10.1097/QAD.0000000000000894..
DOI: 10.1097/QAD.0000000000000894
Bandera A., Lorenzini P., Taramasso L. et al. The impact of DAA-mediated HCV eradication on CD4+ and CD8+ T lymphocyte trajectories in HIV/HCV coinfected patients: Data from the ICONA Foundation Cohort // Journal of Viral Hepatitis. 2021. Vol. 28, No. 5. Р. 779–786. doi: https://doi.org/10.1111/jvh.13488..
DOI: 10.1111/jvh.13488
Marino A., Zafarana G., Ceccarelli M. et al. Immunological and clinical impact of DAA-Mediated HCV eradication in a cohort of HIV/HCV coinfected patients: Monocentric Italian experience // Diagnostics. 2021. Vol. 11, No. 12. Р. 2336. doi: https://doi.org/10.3390/diagnostics11122336..
DOI: 10.3390/diagnostics11122336
Hunt P.W., Martin J.N., Sinclair E. et al. Valganciclovir reduces T cell activation in HIV-infected individuals with incomplete CD4+ T cell recovery on antiretroviral therapy // Journal of Infectious Diseases. 2011. Vol. 203, No. 10. Р. 1474–1483. doi: https://doi.org/10.1093/infdis/jir060..
DOI: 10.1093/infdis/jir060
Jiménez-Sousa M.Á., Martínez I., Medrano L.M., Fernández-Rodríguez A. Vitamin D in human immunodeficiency virus infection: influence on immunity and disease // Frontiers in immunology. 2018. Vol. 9. Р. 458. doi: https://doi.org/10.3389/fimmu.2018.00458..
DOI: 10.3389/fimmu.2018.00458
Coelho L., Cardoso S.W., Luz P.M. et al. Vitamin D3 supplementation in HIV infection: effectiveness and associations with antiretroviral therapy // Nutrition journal. 2015. Vol. 14, No. 1. Р. 1–9. doi: https://doi.org/10.1186/s12937-015-0072-6..
DOI: 10.1186/s12937-015-0072-6
Abraham A.G., Zhang L., Calkins K. et al. Vitamin D status and immune function reconstitution in HIV-infected men initiating therapy in the Multicenter AIDS Cohort Study // AIDS (London, England). 2018. Vol. 32, No. 8. Р. 1069. doi: https://doi.org/10.1097/QAD.0000000000001782..
DOI: 10.1097/QAD.0000000000001782
Ancona G., Merlini E., Tincati C. et al. Long-term suppressive cART is not sufficient to restore intestinal permeability and gut microbiota compositional changes // Frontiers in immunology. 2021. Vol. 12. Р. 639291. doi: https://doi.org/10.3389/fimmu.2021.639291..
DOI: 10.3389/fimmu.2021.639291
D’Ettorre G., Rossi G., Scagnolari C. et al. Probiotic supplementation promotes a reduction in T-cell activation, an increase in Th17 frequencies, and a recovery of intestinal epithelium integrity and mitochondrial morphology in ART-treated HIV-1-positive patients // Immunity, inflammation and disease. 2017. Vol. 5, No. 3. Р. 244–260. doi: https://doi.org/10.1002/iid3.160..
DOI: 10.1002/iid3.160
Kazemi A., Soltani S., Ghorabi S. et al. Effect of probiotic and synbiotic supplementation on inflammatory markers in health and disease status: A systematic review and meta-analysis of clinical trials // Clinical Nutrition. 2020. Vol. 39, No. 3. Р. 789–819. doi: https://doi.org/10.1016/j.clnu.2019.04.004..
DOI: 10.1016/j.clnu.2019.04.004
Wang J.W., Kuo C.H., Kuo F.C. et al. Fecal microbiota transplantation: Review and update // Journal of the Formosan Medical Association. 2019. Vol. 118. Р. S23-S31. doi: https://doi.org/10.1016/j.jfma.2018.08.011..
DOI: 10.1016/j.jfma.2018.08.011
Vujkovic-Cvijin I., Rutishauser R.L., Pao M. et al. Limited engraftment of donor microbiome via one-time fecal microbial transplantation in treated HIV-infected individuals // Gut microbes. 2017. Vol. 8, No. 5. Р. 440–450. doi: https://doi.org/10.1080/19490976.2017.1334034..
DOI: 10.1080/19490976.2017.1334034
Kang Y., Cai Y. Altered gut microbiota in HIV infection: future perspective of fecal microbiota transplantation therapy // AIDS research and human retroviruses. 2019. Vol. 35, No. 3. Р. 229–235. doi: https://doi.org/10.1089/aid.2017.0268..
DOI: 10.1089/aid.2017.0268
Kasang C., Kalluvya S., Majinge C. et al. Effects of prednisolone on disease progression in antiretroviral-untreated HIV infection: a 2-year randomized, double-blind placebo-controlled clinical trial // PLoS One. 2016. Vol. 11, No. 1. Р. e0146678. doi: https://doi.org/10.1371/journal.pone.0146678..
DOI: 10.1371/journal.pone.0146678
Van Welzen B.J., de Vries T.I., Arends J.E. et al. The use of corticosteroids does not influence CD4+ lymphocyte recovery in HIV-infected patients with advanced immunodeficiency // AIDS care. 2019. doi: 10.1080/09540121.2019.1623376..
DOI: 10.1080/09540121.2019.1623376
Jain M.K., Ridker P.M. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms // Nature reviews Drug discovery. 2005. Vol. 4, No.12. Р. 977–987. doi: https://doi.org/10.1038/nrd1901..
DOI: 10.1038/nrd1901
Funderburg N.T., Jiang Y., Debanne S.M. et al. Rosuvastatin reduces vascular inflammation and T cell and monocyte activation in HIV-infected subjects on antiretroviral therapy // Journal of acquired immune deficiency syndromes. 2015. Vol. 68. No. 4. Р. 396. doi: 10.1097/QAI.000000000000047..
DOI: 10.1097/QAI.000000000000047
Nakanjako D., Ssinabulya I., Nabatanzi R. et al. Atorvastatin reduces T-cell activation and exhaustion among HIV-infected c ART-treated suboptimal immune responders in U ganda: a randomised crossover placebo-controlled trial // Tropical medicine & international health. 2015. Vol. 20, No. 3. Р. 380–390. doi: 10.1111/tmi.12442..
DOI: 10.1111/tmi.12442
Rizzardi G.P., Harari A., Capiluppi B. et al. Treatment of primary HIV-1 infection with cyclosporin A coupled with highly active antiretroviral therapy // The Journal of clinical investigation. 2002. Vol. 109, No. 5. Р. 681–688. doi: https://doi.org/10.1172/JCI14522..
DOI: 10.1172/JCI14522
Lederman M.M., Smeaton L., Smith K.Y. et al. Cyclosporin A provides no sustained immunologic benefit to persons with chronic HIV-1 infection starting suppressive antiretroviral therapy: results of a randomized, controlled trial of the AIDS Clinical Trials Group A5138 // The Journal of infectious diseases. 2006. Vol. 1, No. 12. Р. 1677–1685. doi: https://doi.org/10.1086/509261..
DOI: 10.1086/509261
Markowitz M., Vaida F., Hare В. et al. The virologic and immunologic effects of cyclosporine as an adjunct to antiretroviral therapy in patients treated during acute and early HIV-1 infection // The Journal of infectious diseases. 2010. Vol. 201, No. 9. Р. 1298–1302. doi: https://doi.org/10.1086/651664..
DOI: 10.1086/651664