Pisanu C. et al. Biomarkers of treatment-resistant schizophrenia: A systematic review//Neuroscience Applied. – 2024. – С. 104059. https://doi.org/10.1016/j.nsa.2024.104059..
DOI: 10.1016/j.nsa.2024.104059
Institute of Health Metrics and Evaluation (IHME). Global Health Data Exchange (GHDx). http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2019permalink/27a7644e8ad28e739382d31e77589dd7 Accessed 25 Sept 2021.http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2019permalink/27a7644e8ad28e739382d31e77589dd7
WHO. Schizophrenia. https://www.who.int/news-room/fact-sheets/detail/schizophrenia Accessed on 10 January 2022.https://www.who.int/news-room/fact-sheets/detail/schizophrenia
Khasanova A.K., Dobrodeeva V.S., Shnayder N.A., Petrova M.M., Pronina E.A., Bochanova E.N., Lareva N.V., Garganeeva N.P., Smirnova D.A., Nasyrova R.F. Blood and urinary biomarkers of antipsychotic-induced metabolic syndrome. Metabolites. 2022;12:726. doi: 10.3390/metabo12080726..
DOI: 10.3390/metabo12080726
Howes O.D., Thase M.E., Pillinger T. Treatment resistance in psychiatry: State of the art and new directions. Mol. Psychiatry. 2022;27:58–72. doi: 10.1038/s41380-021-01200-3..
DOI: 10.1038/s41380-021-01200-3
Dong S. et al. A network meta-analysis of efficacy, acceptability, and tolerability of antipsychotics in treatment-resistant schizophrenia //European Archives of Psychiatry and Clinical Neuroscience. – 2023. – С. 1-12. https://doi.org/10.1007/s00406-023-01654-2.
DOI: 10.1007/s00406-023-01654-2
Correll C. U., Howes O. D. Treatment-resistant schizophrenia: definition, predictors, and therapy options //The Journal of clinical psychiatry. – 2021. – Т. 82. – №. 5. – С. 36608. https://doi.org/10.4088/JCP.MY20096AH1C..
DOI: 10.4088/JCP.MY20096AH1C
Smart S. E. et al. Predictors of treatment resistant schizophrenia: a systematic review of prospective observational studies //Psychological medicine. – 2021. – Т. 51. – №. 1. – С. 44-53. doi:10.1017/S0033291719002083..
DOI: 10.1017/S0033291719002083
Reale M., Costantini E., Greig N. H. Cytokine imbalance in schizophrenia. from research to clinic: potential implications for treatment //Frontiers in psychiatry. – 2021. – Т. 12. – С. 536257. https://doi.org/10.3389/fpsyt.2021.536257..
DOI: 10.3389/fpsyt.2021.536257
Orlovska-Waast S. et al. Cerebrospinal fluid markers of inflammation and infections in schizophrenia and affective disorders: A systematic review and meta-analysis. Mol. Psychiatry. 2019;24:869–887. doi: 10.1038/s41380-018-0220-4..
DOI: 10.1038/s41380-018-0220-4
Wang A.K., Miller B.J. Meta-analysis of Cerebrospinal Fluid Cytokine and Tryptophan Catabolite Alterations in Psychiatric Patients: Comparisons Between Schizophrenia, Bipolar Disorder, and Depression. Schizophr. Bull. 2018;44:75–83. doi: 10.1093/schbul/sbx035..
DOI: 10.1093/schbul/sbx035
Brandon A., Cui X., Luan W., Ali A.A., Pertile R.A.N., Alexander S.A., Eyles D.W. Prenatal hypoxia alters the early ontogeny of dopamine neurons. Transl. Psychiatry. 2022;12:238. doi: 10.1038/s41398-022-02005-w..
DOI: 10.1038/s41398-022-02005-w
Wang M., Ling K.H., Tan J.J., Lu C.B. Development and differentiation of midbrain dopaminergic neuron: From bench to bedside. Cells. 2020;9:1489. doi:10.3390/cells9061489..
DOI: 10.3390/cells9061489
Yuan X. et al. Pro-inflammatory cytokine levels are elevated in female patients with schizophrenia treated with clozapine //Psychopharmacology. – 2022. – Т. 239. – №. 3. – С. 765-771. https://doi.org/10.1007/s00213-022-06067-y.
DOI: 10.1007/s00213-022-06067-y
Romeo B., Brunet-Lecomte M., Martelli C., Benyamina A. Kinetics of cytokine levels during antipsychotic treatment in schizophrenia: A meta-analysis. Int. J. Neuropsychopharmacol. 2018;21:828–836. doi: 10.1093/ijnp/pyy062..
DOI: 10.1093/ijnp/pyy062
Scheiber C., Schulz T., Schneider J.M., Bechter K., Schneider E.M. Old and New Biomarkers for Infection, Inflammation, and Autoimmunity in Treatment-Resistant Affective and Schizophrenic Spectrum Disorders. Pharmaceuticals. 2022;15:299. doi: 10.3390/ph15030299..
DOI: 10.3390/ph15030299
Dziurkowska E., Wesolowski M. Cortisol as a Biomarker of Mental Disorder Severity. J. Clin. Med. 2021;10:5204. doi: 10.3390/jcm10215204..
DOI: 10.3390/jcm10215204
Mondelli V. et al. Cortisol and Inflammatory Biomarkers Predict Poor Treatment Response in First Episode Psychosis, Schizophrenia Bulletin, Volume 41, Issue 5, September 2015, Pages 1162–1170, https://doi.org/10.1093/schbul/sbv028..
DOI: 10.1093/schbul/sbv028
Goldsmith D., Rapaport M., Miller, B. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 21, 1696–1709 (2016). https://doi.org/10.1038/mp.2016.3.
DOI: 10.1038/mp.2016.3
Upthegrove R., Khandaker G. M. Cytokines, oxidative stress and cellular markers of inflammation in schizophrenia // Current Topics in Behavioral Neurosciences, vol 44. Springer, Cham. Neuroinflammation and schizophrenia. – 2020. – С. 49-66. https://doi.org/10.1007/7854_2018_88.
DOI: 10.1007/7854_2018_88
Kany S., Vollrath J.T., Relja B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019;20:6008. doi: 10.3390/ijms20236008..
DOI: 10.3390/ijms20236008
Dawidowski B., Górniak A., Podwalski P., Lebiecka Z., Misiak B., Samochowiec J. The Role of Cytokines in the Pathogenesis of Schizophrenia. J. Clin. Med. 2021;10:3849. doi: 10.3390/jcm10173849..
DOI: 10.3390/jcm10173849
Kravtsov V.V., Shnayder N.A., Neznanov N.G., Krivopalov A.A., Yanov Y.K., Nasyrova R.F., Shamkina P.A., Gavrilyuk O.A. Genetic predictors of cytokine response in ENT-associated encephalitis. Pers. Psychiatry Neurol. 2021;1:18–36. doi: 10.52667/2712-9179-2021-1-1-18-36..
DOI: 10.52667/2712-9179-2021-1-1-18-36
Velazquez-Salinas L., Verdugo-Rodriguez A., Rodriguez L.L., Borca M.V. The role of interleukin 6 during viral infections. Front. Microbiol. 2019;10:1057. doi: 10.3389/fmicb.2019.01057..
DOI: 10.3389/fmicb.2019.01057
Chauhan P., Nair A., Patidar A., Dandapat J., Sarkar A., Saha B. A primer on cytokines. Cytokine. 2021;145:155458. doi: 10.1016/j.cyto.2021.155458..
DOI: 10.1016/j.cyto.2021.155458
Zádor F., Joca S., Nagy-Grócz G., Dvorácskó S., Szűcs E., Tömböly C., Benyhe S., Vécsei L. Pro-Inflammatory Cytokines: Potential Links between the Endocannabinoid System and the Kynurenine Pathway in Depression. Int. J. Mol. Sci. 2021;22:5903. doi: 10.3390/ijms22115903..
DOI: 10.3390/ijms22115903
Vallée A. Neuroinflammation in Schizophrenia: The Key Role of the WNT/β-Catenin Pathway. Int. J. Mol. Sci. 2022;23:2810. doi: 10.3390/ijms23052810..
DOI: 10.3390/ijms23052810
Boiko A.S., Mednova I.A., Kornetova E.G., Gerasimova V.I., Kornetov A.N., Loonen A.J.M., Bokhan N.A., Ivanova S.A. Cytokine level changes in schizophrenia patients with and without metabolic syndrome treated with atypical antipsychotics. Pharmaceuticals. 2021;14:446. doi: 10.3390/ph14050446..
DOI: 10.3390/ph14050446
Mendiola A.S., Cardona A.E. The IL-1β phenomena in neuroinflammatory diseases. J. Neural Transm. 2018;125:781–795. doi: 10.1007/s00702-017-1732-9..
DOI: 10.1007/s00702-017-1732-9
Wooff Y., Man S.M., Aggio-Bruce R., Natoli R., Fernando N. IL-1 family members mediate cell death, inflammation and angiogenesis in retinal degenerative diseases. Front. Immunol. 2019;10:1618. doi: 10.3389/fimmu.2019.01618..
DOI: 10.3389/fimmu.2019.01618
Becher B., Spath S., Goverman J. Cytokine networks in neuroinflammation. Nat. Rev. Immunol. 2017;17:49–59. doi: 10.1038/nri.2016.123..
DOI: 10.1038/nri.2016.123
Enache D., Nikkheslat N., Fathalla D., Morgan B.P., Lewis S., Drake R., Deakin B., Walters J., Lawrie S.M., Egerton A., et al. Peripheral immune markers and antipsychotic non-response in psychosis. Schizophr. Res. 2021;230:1–8. doi: 10.1016/j.schres.2020.12.020..
DOI: 10.1016/j.schres.2020.12.020
Moustafa S.R., Al-Rawi K.F., Stoyanov D., Al-Dujaili A.H., Supasitthumrong T., Al-Hakeim H.K., Maes M. The endogenous opioid system in schizophrenia and treatment resistant schizophrenia: Increased plasma endomorphin 2, and κ and μ opioid receptors are associated with interleukin-6. Diagnostics. 2020;10:633. doi: 10.3390/diagnostics10090633..
DOI: 10.3390/diagnostics10090633
Pehlivan S. et al. Interleukin-1 receptor antagonist (IL-1RA) and interleukin-4 (IL-4) variable number of tandem repeat polymorphisms in schizophrenia and bipolar disorder: an association study in Turkish population //Egyptian Journal of Medical Human Genetics. – 2022. – Т. 23. – №. 1. – С. 127. https://doi.org/10.1186/s43042-022-00341-6.
DOI: 10.1186/s43042-022-00341-6
Bosia M. et al. Cognition in schizophrenia: modeling the interplay between interleukin-1β C-511T polymorphism, metabolic syndrome and sex //Neuropsychobiology. – 2021. – Т. 80. – №. 4. – С. 321-332. https://doi.org/10.1159/000512082..
DOI: 10.1159/000512082
Dai N, Jie H, Duan Y, Xiong P, Xu X, Chen P, et al. Different serum protein factor levels in first-episode drug-naïve patients with schizophrenia characterized by positive and negative symptoms. Psychiatry Clin Neurosci. 2020 Jun. https://doi.org/10.1111/pcn.13078..
DOI: 10.1111/pcn.13078
Goldsmith D. et al. Association of baseline inflammatory markers and the development of negative symptoms in individuals at clinical high risk for psychosis. Brain Behav Immun. 2019 Feb 1, 76:268–74. https://doi.org/10.1016/j.bbi.2018.11.315..
DOI: 10.1016/j.bbi.2018.11.315
Moustafa S. et al. The endogenous opioid system in schizophrenia and treatment resistant schizophrenia: Increased plasma endomorphin 2, and κ and μ opioid receptors are associated with interleukin-6. Diagnostics. 2020;10:633. doi: 10.3390/diagnostics10090633..
DOI: 10.3390/diagnostics10090633
Subedi L. et al. Phytochemicals against TNFα-Mediated Neuroinflammatory Diseases. Int. J. Mol. Sci. 2020;21:764. doi: 10.3390/ijms21030764..
DOI: 10.3390/ijms21030764
Desu H.L., Illiano P., Choi J.S., Ascona M.C., Gao H., Lee J.K., Brambilla R. TNFR2 signaling regulates the immunomodulatory function of oligodendrocyte precursor cells. Cells. 2021;10:1785. doi: 10.3390/cells10071785..
DOI: 10.3390/cells10071785
Inoubli O., Jemli A., Ben Fredj S., Mechri A., Gaha L., Bel Hadj Jrad B. Haplotypes of TNFα/β Genes Associated with Sex-Specific Paranoid Schizophrenic Risk in Tunisian Population. Dis. Markers. 2018;2018:3502564. doi: 10.1155/2018/3502564..
DOI: 10.1155/2018/3502564
Aytac H.M., Ozdilli K., Tuncel F.C., Pehlivan M., Pehlivan S. Tumor Necrosis Factor-alpha (TNF-α) -238 G/A Polymorphism Is Associated with the Treatment Resistance and Attempted Suicide in Schizophrenia. Immunol. Investig. 2022;51:368–380. doi: 10.1080/08820139.2020.1832115..
DOI: 10.1080/08820139.2020.1832115
Noto C., Maes M., Ota V.K., Teixeira A.L., Bressan R.A., Gadelha A., Brietzke E. High predictive value of immune-inflammatory biomarkers for schizophrenia diagnosis and association with treatment resistance. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry. 2015;16:422–429. doi: 10.3109/15622975.2015.1062552..
DOI: 10.3109/15622975.2015.1062552
Kogan, S.; Ospina, L.H.; Kimhy, D. Inflammation in individuals with schizophrenia—Implications for neurocognition and daily function. Brain. Behav. Immun. 2018, 74, 296–299. https://doi.org/10.1016/j.bbi.2018.09.016..
DOI: 10.1016/j.bbi.2018.09.016
Baek, Seon-Hwa, Honey Kim, Ju-Wan Kim, Seunghyong Ryu, Ju-Yeon Lee, Jae-Min Kim, Il-Seon Shin, and Sung-Wan Kim. 2022. "Association between Peripheral Inflammatory Cytokines and Cognitive Function in Patients with First-Episode Schizophrenia" Journal of Personalized Medicine 12, no. 7: 1137. https://doi.org/10.3390/jpm12071137..
DOI: 10.3390/jpm12071137
Kogan, S.et al. The impact of inflammation on neurocognition and risk for psychosis: a critical review. Eur Arch Psychiatry Clin Neurosci 270, 793–802 (2020). https://doi.org/10.1007/s00406-019-01073-2..
DOI: 10.1007/s00406-019-01073-2
Leboyer M., Godin O., Terro E., Boukouaci W., Lu C.L., Andre M., Aouizerate B., Berna F., Barau C., Capdevielle D., et al. Immune signatures of treatment-resistant schizophrenia: A FondaMental Academic Centers of Expertise for Schizophrenia (FACE-SZ) Study. Schizophr. Bull. Open. 2021;2:sgab012. doi: 10.1093/schizbullopen/sgab012..
DOI: 10.1093/schizbullopen/sgab012
Ta T.T., Dikmen H.O., Schilling S., Chausse B., Lewen A., Hollnagel J.O., Kann O. Priming of microglia with IFN-γ slows neuronal gamma oscillations in situ. Proc. Natl. Acad. Sci. USA. 2019;116:4637–4642. doi: 10.1073/pnas.1813562116..
DOI: 10.1073/pnas.1813562116
Pehlivana S. et al. Investigating the eNOS and IFN-γ gene variants susceptible to bipolar disorder or Schizophrenia in a Turkish cohort //Psychiatry And Clinical Psychopharmacology. – 2020. – Т. 30. – С. 354-361. DOI:10.5455/PCP.20200807083153..
DOI: 10.5455/PCP.20200807083153
Nayeri M. et al. Association between IFN-γ +874 T/A (Rs2430561) Polymorphisms and Bipolar 1 Disorder: A Study in an Ethnic Iranian Population. Rep Biochem Mol Biol 2019;8(1):1–8. PMID: 31334280; PMCID: PMC6590944.
Jemli A, Eshili A, Trifa F, Mechri A, Zaafrane F, Gaha L, et al. Association of the IFN-γ (+874A/T) Genetic Polymorphism with Paranoid Schizophrenia in Tunisian Population. Immunol Invest 2017;46(2):159-71. doi: 10.1080/08820.139.2016.1237523..
DOI: 10.1080/08820.139.2016.1237523
Kordi-Tamandani DM, Najafi M, Mojahed A, Shahraki A. Analysis of IFN-γ (+874 A/T) and IL-10 (-1082 G/A) genes polymorphisms with risk of schizophrenia. Journal of Cell and Molecular Research 2014;6 (2):64-8.
Lew L. et al. Probiotic Lactobacillus plantarum P8 alleviated stress and anxiety while enhancing memory and cognition in stressed adults: a randomised, double-blind, placebo-controlled study. Clinical nutrition (Edinburgh, Scotland) 38(5):2053–2064. 2019. https://doi.org/10.1016/j.clnu.2018.09.010..
DOI: 10.1016/j.clnu.2018.09.010
He Z, Yang Y, Xing Z, Zuo Z, Wang R, Gu H, Qi F, Yao Z (2020) Intraperitoneal injection of IFN-γ restores microglial autophagy, promotes amyloid-β clearance and improves cognition in APP/PS1 mice. Cell Death Dis 11(6):440. https://doi.org/10.1038/s41419-020-2644-4.
DOI: 10.1038/s41419-020-2644-4
Eftekharian MM, Omrani MD, Arsang-Jang S, Taheri M, Ghafouri-Fard S (2019) Serum cytokine profile in schizophrenic patients. Hum Antibodies 27(1):23–29. https://doi.org/10.3233/hab-180344..
DOI: 10.3233/hab-180344
Lesh TA, Careaga M, Rose DR, McAllister AK, Van de Water J, Carter CS, Ashwood P (2018) Cytokine alterations in first-episode schizophrenia and bipolar disorder: relationships to brain structure and symptoms. J Neuroinflamm 15(1):165. https://doi.org/10.1186/s12974-018-1197-2..
DOI: 10.1186/s12974-018-1197-2
Halstead S. et al. Alteration patterns of peripheral concentrations of cytokines and associated inflammatory proteins in acute and chronic stages of schizophrenia: a systematic review and network meta-analysis //The Lancet Psychiatry. – 2023. – Т. 10. – №. 4. – С. 260-271. https://doi.org/10.1016/S2215-0366(23)00025-1..
DOI: 10.1016/S2215-0366(23)00025-1
Røge R, Møller BK, Andersen CR, Correll CU, Nielsen J Immunomodulatory effects of clozapine and their clinical implications: what have we learned so far?.Schizophr Res. 2012; 140: 204-213. https://doi.org/10.1016/j.schres.2012.06.020..
DOI: 10.1016/j.schres.2012.06.020
Tourjman, V.; Kouassi, É.; Koué, M.; Rocchetti, M.; Fortin-Fournier, S.; Fusar-Poli, P.; Potvin, S. Antipsychotics’ effects on blood levels of cytokines in schizophrenia: A meta-analysis. Schizophr. Res. 2013, 151, 43–47. https://doi.org/10.1016/j.schres.2013.10.011..
DOI: 10.1016/j.schres.2013.10.011
Kaplanski G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol. Rev. 2018;281:138–153. doi: 10.1111/imr.12616..
DOI: 10.1111/imr.12616
Syed A.A.S., He L., Shi Y., Mahmood S. Elevated levels of IL-18 associated with schizophrenia and first episode psychosis: A systematic review and meta-analysis. Early Interv. Psychiatry. 2021;15:896–905. doi: 10.1111/eip.13031..
DOI: 10.1111/eip.13031
Wu, J. Q., Chen, D. C., Tan, Y. L., Tan, S. P., Xiu, M. H., Wang, Z. R., … Zhang, X. Y. (2016). Altered interleukin-18 levels are associated with cognitive impairment in chronic schizophrenia. Journal of Psychiatric Research, 76, 9–15. https://doi.org/10.1016/j.jpsychires.2016.01.013..
DOI: 10.1016/j.jpsychires.2016.01.013
Orhan, F., Fatouros-Bergman, H., Schwieler, L., Cervenka, S., Flyckt, L., Sellgren, C. M., Erhardt, S. (2018). First-episode psychosis patients display increased plasma IL-18 that correlates with cognitive dysfunction. Schizophrenia Research, 195, 406–408. https://doi.org/10.1016/j.schres.2017.09.016..
DOI: 10.1016/j.schres.2017.09.016
Bossù, P., Piras, F., Palladino, I., Iorio, M., Salani, F., Ciaramella, A., … Spalletta, G. (2015). Hippocampal volume and depressive symptoms are linked to serum IL-18 in schizophrenia. Neurology Neuroimmunology & Neuroinflammation, 2(4), e111. https://doi.org/10.1212/nxi.0000000000000111..
DOI: 10.1212/nxi.0000000000000111
Zhang, X. Y., Tang, W., Xiu, M. H., Chen, D. C., Yang, F. D., Tan, Y. L., … Kosten, T. R. (2013). Interleukin 18 and cognitive impairment in first episode and drug naïve schizophrenia versus healthy controls. Brain, Behavior, and Immunity, 32, 105–111. https://doi.org/10.1016/j.bbi.2013.03.001..
DOI: 10.1016/j.bbi.2013.03.001
Wedervang-Resell K. et al. Increased interleukin 18 activity in adolescents with early-onset psychosis is associated with cortisol and depressive symptoms //Psychoneuroendocrinology. – 2020. – Т. 112. – С. 104513. https://doi.org/10.1016/j.psyneuen.2019.104513..
DOI: 10.1016/j.psyneuen.2019.104513
Mantovani A., Dinarello C.A., Molgora M., Garlanda C. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity. 2019;50:778–795. doi: 10.1016/j.immuni.2019.03.012..
DOI: 10.1016/j.immuni.2019.03.012
Dunleavy C., Elsworthy R.J., Upthegrove R., Wood S.J., Aldred S. Inflammation in first-episode psychosis: The contribution of inflammatory biomarkers to the emergence of negative symptoms, a systematic review and meta-analysis. Acta Psychiatr. Scand. 2022;146:6–20. doi: 10.1111/acps.13416..
DOI: 10.1111/acps.13416
Fang X., Zhang Y., Fan W., Tang W., Zhang C. Interleukin-17 Alteration in First-Episode Psychosis: A Meta-Analysis. Mol. Neuropsychiatry. 2017;3:135–140. doi: 10.1159/000481661..
DOI: 10.1159/000481661
Marcinowicz P., Więdłocha M., Zborowska N., Dębowska W., Podwalski P., Misiak B., Tyburski E., Szulc A. A Meta-Analysis of the Influence of Antipsychotics on Cytokines Levels in First Episode Psychosis. J. Clin. Med. 2021;10:2488. doi: 10.3390/jcm10112488..
DOI: 10.3390/jcm10112488
Liu M., Saredy J., Zhang R., Shao Y., Sun Y., Yang W.Y., Wang J., Liu L., Drummer C., 4th, Johnson C., et al. Approaching Inflammation Paradoxes-Proinflammatory Cytokine Blockages Induce Inflammatory Regulators. Front. Immunol. 2020;11:554301. doi: 10.3389/fimmu.2020.554301..
DOI: 10.3389/fimmu.2020.554301
De Lange K.M., Moutsianas L., Lee J.C., Lamb C.A., Luo Y., Kennedy N.A., Jostins L., Rice D.L., Gutierrez-Achury J., Ji S.G., et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 2017;49:256–261. doi: 10.1038/ng.3760..
DOI: 10.1038/ng.3760
Fuster J.J., Walsh K. Somatic Mutations and Clonal Hematopoiesis: Unexpected Potential New Drivers of Age-Related Cardiovascular Disease. Circ. Res. 2018;122:523–532. doi: 10.1161/CIRCRESAHA.117.312115..
DOI: 10.1161/CIRCRESAHA.117.312115
Ferrucci L., Fabbri E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018;15:505–522. doi: 10.1038/s41569-018-0064-2..
DOI: 10.1038/s41569-018-0064-2
Bennett J.M., Reeves G., Billman G.E., Sturmberg J.P. Inflammation-Nature’s Way to Efficiently Respond to All Types of Challenges: Implications for Understanding and Managing “the Epidemic” of Chronic Diseases. Front. Med. 2018;5:316. doi: 10.3389/fmed.2018.00316..
DOI: 10.3389/fmed.2018.00316
Lennox B.R., Tomei G., Vincent S.A., Yeeles K., Pollard R., Palmer-Cooper E., Jones P., Zandi M.S., Coles A. Study of immunotherapy in antibody positive psychosis: Feasibility and acceptability (SINAPPS1) J. Neurol. Neurosurg. Psychiatry. 2019;90:365–367. doi: 10.1136/jnnp-2018-318124..
DOI: 10.1136/jnnp-2018-318124
Johnson C., Drummer C., 4th, Virtue A., Gao T., Wu S., Hernandez M., Singh L., Wang H., Yang X.F. Increased Expression of Resistin in MicroRNA-155-Deficient White Adipose Tissues May Be a Possible Driver of Metabolically Healthy Obesity Transition to Classical Obesity. Front. Physiol. 2018;9:1297. doi: 10.3389/fphys.2018.01297..
DOI: 10.3389/fphys.2018.01297