Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
Главная / Результаты поиска
СтатьяИскать документыПерейти к записи. 2024; Т. 4, № 2: 13–24. DOI:10.52667/2712-9179-2024-4-2-13-24
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Аннотация
Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Pisanu C. et al. Biomarkers of treatment-resistant schizophrenia: A systematic review//Neuroscience Applied. – 2024. – С. 104059. https://doi.org/10.1016/j.nsa.2024.104059..
DOI: 10.1016/j.nsa.2024.104059

Institute of Health Metrics and Evaluation (IHME). Global Health Data Exchange (GHDx). http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2019permalink/27a7644e8ad28e739382d31e77589dd7 Accessed 25 Sept 2021.http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2019permalink/27a7644e8ad28e739382d31e77589dd7

WHO. Schizophrenia. https://www.who.int/news-room/fact-sheets/detail/schizophrenia Accessed on 10 January 2022.https://www.who.int/news-room/fact-sheets/detail/schizophrenia

Khasanova A.K., Dobrodeeva V.S., Shnayder N.A., Petrova M.M., Pronina E.A., Bochanova E.N., Lareva N.V., Garganeeva N.P., Smirnova D.A., Nasyrova R.F. Blood and urinary biomarkers of antipsychotic-induced metabolic syndrome. Metabolites. 2022;12:726. doi: 10.3390/metabo12080726..
DOI: 10.3390/metabo12080726

Howes O.D., Thase M.E., Pillinger T. Treatment resistance in psychiatry: State of the art and new directions. Mol. Psychiatry. 2022;27:58–72. doi: 10.1038/s41380-021-01200-3..
DOI: 10.1038/s41380-021-01200-3

Dong S. et al. A network meta-analysis of efficacy, acceptability, and tolerability of antipsychotics in treatment-resistant schizophrenia //European Archives of Psychiatry and Clinical Neuroscience. – 2023. – С. 1-12. https://doi.org/10.1007/s00406-023-01654-2.
DOI: 10.1007/s00406-023-01654-2

Correll C. U., Howes O. D. Treatment-resistant schizophrenia: definition, predictors, and therapy options //The Journal of clinical psychiatry. – 2021. – Т. 82. – №. 5. – С. 36608. https://doi.org/10.4088/JCP.MY20096AH1C..
DOI: 10.4088/JCP.MY20096AH1C

Smart S. E. et al. Predictors of treatment resistant schizophrenia: a systematic review of prospective observational studies //Psychological medicine. – 2021. – Т. 51. – №. 1. – С. 44-53. doi:10.1017/S0033291719002083..
DOI: 10.1017/S0033291719002083

Reale M., Costantini E., Greig N. H. Cytokine imbalance in schizophrenia. from research to clinic: potential implications for treatment //Frontiers in psychiatry. – 2021. – Т. 12. – С. 536257. https://doi.org/10.3389/fpsyt.2021.536257..
DOI: 10.3389/fpsyt.2021.536257

Orlovska-Waast S. et al. Cerebrospinal fluid markers of inflammation and infections in schizophrenia and affective disorders: A systematic review and meta-analysis. Mol. Psychiatry. 2019;24:869–887. doi: 10.1038/s41380-018-0220-4..
DOI: 10.1038/s41380-018-0220-4

Wang A.K., Miller B.J. Meta-analysis of Cerebrospinal Fluid Cytokine and Tryptophan Catabolite Alterations in Psychiatric Patients: Comparisons Between Schizophrenia, Bipolar Disorder, and Depression. Schizophr. Bull. 2018;44:75–83. doi: 10.1093/schbul/sbx035..
DOI: 10.1093/schbul/sbx035

Brandon A., Cui X., Luan W., Ali A.A., Pertile R.A.N., Alexander S.A., Eyles D.W. Prenatal hypoxia alters the early ontogeny of dopamine neurons. Transl. Psychiatry. 2022;12:238. doi: 10.1038/s41398-022-02005-w..
DOI: 10.1038/s41398-022-02005-w

Wang M., Ling K.H., Tan J.J., Lu C.B. Development and differentiation of midbrain dopaminergic neuron: From bench to bedside. Cells. 2020;9:1489. doi:10.3390/cells9061489..
DOI: 10.3390/cells9061489

Yuan X. et al. Pro-inflammatory cytokine levels are elevated in female patients with schizophrenia treated with clozapine //Psychopharmacology. – 2022. – Т. 239. – №. 3. – С. 765-771. https://doi.org/10.1007/s00213-022-06067-y.
DOI: 10.1007/s00213-022-06067-y

Romeo B., Brunet-Lecomte M., Martelli C., Benyamina A. Kinetics of cytokine levels during antipsychotic treatment in schizophrenia: A meta-analysis. Int. J. Neuropsychopharmacol. 2018;21:828–836. doi: 10.1093/ijnp/pyy062..
DOI: 10.1093/ijnp/pyy062

Scheiber C., Schulz T., Schneider J.M., Bechter K., Schneider E.M. Old and New Biomarkers for Infection, Inflammation, and Autoimmunity in Treatment-Resistant Affective and Schizophrenic Spectrum Disorders. Pharmaceuticals. 2022;15:299. doi: 10.3390/ph15030299..
DOI: 10.3390/ph15030299

Dziurkowska E., Wesolowski M. Cortisol as a Biomarker of Mental Disorder Severity. J. Clin. Med. 2021;10:5204. doi: 10.3390/jcm10215204..
DOI: 10.3390/jcm10215204

Mondelli V. et al. Cortisol and Inflammatory Biomarkers Predict Poor Treatment Response in First Episode Psychosis, Schizophrenia Bulletin, Volume 41, Issue 5, September 2015, Pages 1162–1170, https://doi.org/10.1093/schbul/sbv028..
DOI: 10.1093/schbul/sbv028

Goldsmith D., Rapaport M., Miller, B. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 21, 1696–1709 (2016). https://doi.org/10.1038/mp.2016.3.
DOI: 10.1038/mp.2016.3

Upthegrove R., Khandaker G. M. Cytokines, oxidative stress and cellular markers of inflammation in schizophrenia // Current Topics in Behavioral Neurosciences, vol 44. Springer, Cham. Neuroinflammation and schizophrenia. – 2020. – С. 49-66. https://doi.org/10.1007/7854_2018_88.
DOI: 10.1007/7854_2018_88

Kany S., Vollrath J.T., Relja B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019;20:6008. doi: 10.3390/ijms20236008..
DOI: 10.3390/ijms20236008

Dawidowski B., Górniak A., Podwalski P., Lebiecka Z., Misiak B., Samochowiec J. The Role of Cytokines in the Pathogenesis of Schizophrenia. J. Clin. Med. 2021;10:3849. doi: 10.3390/jcm10173849..
DOI: 10.3390/jcm10173849

Kravtsov V.V., Shnayder N.A., Neznanov N.G., Krivopalov A.A., Yanov Y.K., Nasyrova R.F., Shamkina P.A., Gavrilyuk O.A. Genetic predictors of cytokine response in ENT-associated encephalitis. Pers. Psychiatry Neurol. 2021;1:18–36. doi: 10.52667/2712-9179-2021-1-1-18-36..
DOI: 10.52667/2712-9179-2021-1-1-18-36

Velazquez-Salinas L., Verdugo-Rodriguez A., Rodriguez L.L., Borca M.V. The role of interleukin 6 during viral infections. Front. Microbiol. 2019;10:1057. doi: 10.3389/fmicb.2019.01057..
DOI: 10.3389/fmicb.2019.01057

Chauhan P., Nair A., Patidar A., Dandapat J., Sarkar A., Saha B. A primer on cytokines. Cytokine. 2021;145:155458. doi: 10.1016/j.cyto.2021.155458..
DOI: 10.1016/j.cyto.2021.155458

Zádor F., Joca S., Nagy-Grócz G., Dvorácskó S., Szűcs E., Tömböly C., Benyhe S., Vécsei L. Pro-Inflammatory Cytokines: Potential Links between the Endocannabinoid System and the Kynurenine Pathway in Depression. Int. J. Mol. Sci. 2021;22:5903. doi: 10.3390/ijms22115903..
DOI: 10.3390/ijms22115903

Vallée A. Neuroinflammation in Schizophrenia: The Key Role of the WNT/β-Catenin Pathway. Int. J. Mol. Sci. 2022;23:2810. doi: 10.3390/ijms23052810..
DOI: 10.3390/ijms23052810

Boiko A.S., Mednova I.A., Kornetova E.G., Gerasimova V.I., Kornetov A.N., Loonen A.J.M., Bokhan N.A., Ivanova S.A. Cytokine level changes in schizophrenia patients with and without metabolic syndrome treated with atypical antipsychotics. Pharmaceuticals. 2021;14:446. doi: 10.3390/ph14050446..
DOI: 10.3390/ph14050446

Mendiola A.S., Cardona A.E. The IL-1β phenomena in neuroinflammatory diseases. J. Neural Transm. 2018;125:781–795. doi: 10.1007/s00702-017-1732-9..
DOI: 10.1007/s00702-017-1732-9

Wooff Y., Man S.M., Aggio-Bruce R., Natoli R., Fernando N. IL-1 family members mediate cell death, inflammation and angiogenesis in retinal degenerative diseases. Front. Immunol. 2019;10:1618. doi: 10.3389/fimmu.2019.01618..
DOI: 10.3389/fimmu.2019.01618

Becher B., Spath S., Goverman J. Cytokine networks in neuroinflammation. Nat. Rev. Immunol. 2017;17:49–59. doi: 10.1038/nri.2016.123..
DOI: 10.1038/nri.2016.123

Enache D., Nikkheslat N., Fathalla D., Morgan B.P., Lewis S., Drake R., Deakin B., Walters J., Lawrie S.M., Egerton A., et al. Peripheral immune markers and antipsychotic non-response in psychosis. Schizophr. Res. 2021;230:1–8. doi: 10.1016/j.schres.2020.12.020..
DOI: 10.1016/j.schres.2020.12.020

Moustafa S.R., Al-Rawi K.F., Stoyanov D., Al-Dujaili A.H., Supasitthumrong T., Al-Hakeim H.K., Maes M. The endogenous opioid system in schizophrenia and treatment resistant schizophrenia: Increased plasma endomorphin 2, and κ and μ opioid receptors are associated with interleukin-6. Diagnostics. 2020;10:633. doi: 10.3390/diagnostics10090633..
DOI: 10.3390/diagnostics10090633

Pehlivan S. et al. Interleukin-1 receptor antagonist (IL-1RA) and interleukin-4 (IL-4) variable number of tandem repeat polymorphisms in schizophrenia and bipolar disorder: an association study in Turkish population //Egyptian Journal of Medical Human Genetics. – 2022. – Т. 23. – №. 1. – С. 127. https://doi.org/10.1186/s43042-022-00341-6.
DOI: 10.1186/s43042-022-00341-6

Bosia M. et al. Cognition in schizophrenia: modeling the interplay between interleukin-1β C-511T polymorphism, metabolic syndrome and sex //Neuropsychobiology. – 2021. – Т. 80. – №. 4. – С. 321-332. https://doi.org/10.1159/000512082..
DOI: 10.1159/000512082

Dai N, Jie H, Duan Y, Xiong P, Xu X, Chen P, et al. Different serum protein factor levels in first-episode drug-naïve patients with schizophrenia characterized by positive and negative symptoms. Psychiatry Clin Neurosci. 2020 Jun. https://doi.org/10.1111/pcn.13078..
DOI: 10.1111/pcn.13078

Goldsmith D. et al. Association of baseline inflammatory markers and the development of negative symptoms in individuals at clinical high risk for psychosis. Brain Behav Immun. 2019 Feb 1, 76:268–74. https://doi.org/10.1016/j.bbi.2018.11.315..
DOI: 10.1016/j.bbi.2018.11.315

Moustafa S. et al. The endogenous opioid system in schizophrenia and treatment resistant schizophrenia: Increased plasma endomorphin 2, and κ and μ opioid receptors are associated with interleukin-6. Diagnostics. 2020;10:633. doi: 10.3390/diagnostics10090633..
DOI: 10.3390/diagnostics10090633

Subedi L. et al. Phytochemicals against TNFα-Mediated Neuroinflammatory Diseases. Int. J. Mol. Sci. 2020;21:764. doi: 10.3390/ijms21030764..
DOI: 10.3390/ijms21030764

Desu H.L., Illiano P., Choi J.S., Ascona M.C., Gao H., Lee J.K., Brambilla R. TNFR2 signaling regulates the immunomodulatory function of oligodendrocyte precursor cells. Cells. 2021;10:1785. doi: 10.3390/cells10071785..
DOI: 10.3390/cells10071785

Inoubli O., Jemli A., Ben Fredj S., Mechri A., Gaha L., Bel Hadj Jrad B. Haplotypes of TNFα/β Genes Associated with Sex-Specific Paranoid Schizophrenic Risk in Tunisian Population. Dis. Markers. 2018;2018:3502564. doi: 10.1155/2018/3502564..
DOI: 10.1155/2018/3502564

Aytac H.M., Ozdilli K., Tuncel F.C., Pehlivan M., Pehlivan S. Tumor Necrosis Factor-alpha (TNF-α) -238 G/A Polymorphism Is Associated with the Treatment Resistance and Attempted Suicide in Schizophrenia. Immunol. Investig. 2022;51:368–380. doi: 10.1080/08820139.2020.1832115..
DOI: 10.1080/08820139.2020.1832115

Noto C., Maes M., Ota V.K., Teixeira A.L., Bressan R.A., Gadelha A., Brietzke E. High predictive value of immune-inflammatory biomarkers for schizophrenia diagnosis and association with treatment resistance. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry. 2015;16:422–429. doi: 10.3109/15622975.2015.1062552..
DOI: 10.3109/15622975.2015.1062552

Kogan, S.; Ospina, L.H.; Kimhy, D. Inflammation in individuals with schizophrenia—Implications for neurocognition and daily function. Brain. Behav. Immun. 2018, 74, 296–299. https://doi.org/10.1016/j.bbi.2018.09.016..
DOI: 10.1016/j.bbi.2018.09.016

Baek, Seon-Hwa, Honey Kim, Ju-Wan Kim, Seunghyong Ryu, Ju-Yeon Lee, Jae-Min Kim, Il-Seon Shin, and Sung-Wan Kim. 2022. "Association between Peripheral Inflammatory Cytokines and Cognitive Function in Patients with First-Episode Schizophrenia" Journal of Personalized Medicine 12, no. 7: 1137. https://doi.org/10.3390/jpm12071137..
DOI: 10.3390/jpm12071137

Kogan, S.et al. The impact of inflammation on neurocognition and risk for psychosis: a critical review. Eur Arch Psychiatry Clin Neurosci 270, 793–802 (2020). https://doi.org/10.1007/s00406-019-01073-2..
DOI: 10.1007/s00406-019-01073-2

Leboyer M., Godin O., Terro E., Boukouaci W., Lu C.L., Andre M., Aouizerate B., Berna F., Barau C., Capdevielle D., et al. Immune signatures of treatment-resistant schizophrenia: A FondaMental Academic Centers of Expertise for Schizophrenia (FACE-SZ) Study. Schizophr. Bull. Open. 2021;2:sgab012. doi: 10.1093/schizbullopen/sgab012..
DOI: 10.1093/schizbullopen/sgab012

Ta T.T., Dikmen H.O., Schilling S., Chausse B., Lewen A., Hollnagel J.O., Kann O. Priming of microglia with IFN-γ slows neuronal gamma oscillations in situ. Proc. Natl. Acad. Sci. USA. 2019;116:4637–4642. doi: 10.1073/pnas.1813562116..
DOI: 10.1073/pnas.1813562116

Pehlivana S. et al. Investigating the eNOS and IFN-γ gene variants susceptible to bipolar disorder or Schizophrenia in a Turkish cohort //Psychiatry And Clinical Psychopharmacology. – 2020. – Т. 30. – С. 354-361. DOI:10.5455/PCP.20200807083153..
DOI: 10.5455/PCP.20200807083153

Nayeri M. et al. Association between IFN-γ +874 T/A (Rs2430561) Polymorphisms and Bipolar 1 Disorder: A Study in an Ethnic Iranian Population. Rep Biochem Mol Biol 2019;8(1):1–8. PMID: 31334280; PMCID: PMC6590944.

Jemli A, Eshili A, Trifa F, Mechri A, Zaafrane F, Gaha L, et al. Association of the IFN-γ (+874A/T) Genetic Polymorphism with Paranoid Schizophrenia in Tunisian Population. Immunol Invest 2017;46(2):159-71. doi: 10.1080/08820.139.2016.1237523..
DOI: 10.1080/08820.139.2016.1237523

Kordi-Tamandani DM, Najafi M, Mojahed A, Shahraki A. Analysis of IFN-γ (+874 A/T) and IL-10 (-1082 G/A) genes polymorphisms with risk of schizophrenia. Journal of Cell and Molecular Research 2014;6 (2):64-8.

Lew L. et al. Probiotic Lactobacillus plantarum P8 alleviated stress and anxiety while enhancing memory and cognition in stressed adults: a randomised, double-blind, placebo-controlled study. Clinical nutrition (Edinburgh, Scotland) 38(5):2053–2064. 2019. https://doi.org/10.1016/j.clnu.2018.09.010..
DOI: 10.1016/j.clnu.2018.09.010

He Z, Yang Y, Xing Z, Zuo Z, Wang R, Gu H, Qi F, Yao Z (2020) Intraperitoneal injection of IFN-γ restores microglial autophagy, promotes amyloid-β clearance and improves cognition in APP/PS1 mice. Cell Death Dis 11(6):440. https://doi.org/10.1038/s41419-020-2644-4.
DOI: 10.1038/s41419-020-2644-4

Eftekharian MM, Omrani MD, Arsang-Jang S, Taheri M, Ghafouri-Fard S (2019) Serum cytokine profile in schizophrenic patients. Hum Antibodies 27(1):23–29. https://doi.org/10.3233/hab-180344..
DOI: 10.3233/hab-180344

Lesh TA, Careaga M, Rose DR, McAllister AK, Van de Water J, Carter CS, Ashwood P (2018) Cytokine alterations in first-episode schizophrenia and bipolar disorder: relationships to brain structure and symptoms. J Neuroinflamm 15(1):165. https://doi.org/10.1186/s12974-018-1197-2..
DOI: 10.1186/s12974-018-1197-2

Halstead S. et al. Alteration patterns of peripheral concentrations of cytokines and associated inflammatory proteins in acute and chronic stages of schizophrenia: a systematic review and network meta-analysis //The Lancet Psychiatry. – 2023. – Т. 10. – №. 4. – С. 260-271. https://doi.org/10.1016/S2215-0366(23)00025-1..
DOI: 10.1016/S2215-0366(23)00025-1

Røge R, Møller BK, Andersen CR, Correll CU, Nielsen J Immunomodulatory effects of clozapine and their clinical implications: what have we learned so far?.Schizophr Res. 2012; 140: 204-213. https://doi.org/10.1016/j.schres.2012.06.020..
DOI: 10.1016/j.schres.2012.06.020

Tourjman, V.; Kouassi, É.; Koué, M.; Rocchetti, M.; Fortin-Fournier, S.; Fusar-Poli, P.; Potvin, S. Antipsychotics’ effects on blood levels of cytokines in schizophrenia: A meta-analysis. Schizophr. Res. 2013, 151, 43–47. https://doi.org/10.1016/j.schres.2013.10.011..
DOI: 10.1016/j.schres.2013.10.011

Kaplanski G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol. Rev. 2018;281:138–153. doi: 10.1111/imr.12616..
DOI: 10.1111/imr.12616

Syed A.A.S., He L., Shi Y., Mahmood S. Elevated levels of IL-18 associated with schizophrenia and first episode psychosis: A systematic review and meta-analysis. Early Interv. Psychiatry. 2021;15:896–905. doi: 10.1111/eip.13031..
DOI: 10.1111/eip.13031

Wu, J. Q., Chen, D. C., Tan, Y. L., Tan, S. P., Xiu, M. H., Wang, Z. R., … Zhang, X. Y. (2016). Altered interleukin-18 levels are associated with cognitive impairment in chronic schizophrenia. Journal of Psychiatric Research, 76, 9–15. https://doi.org/10.1016/j.jpsychires.2016.01.013..
DOI: 10.1016/j.jpsychires.2016.01.013

Orhan, F., Fatouros-Bergman, H., Schwieler, L., Cervenka, S., Flyckt, L., Sellgren, C. M., Erhardt, S. (2018). First-episode psychosis patients display increased plasma IL-18 that correlates with cognitive dysfunction. Schizophrenia Research, 195, 406–408. https://doi.org/10.1016/j.schres.2017.09.016..
DOI: 10.1016/j.schres.2017.09.016

Bossù, P., Piras, F., Palladino, I., Iorio, M., Salani, F., Ciaramella, A., … Spalletta, G. (2015). Hippocampal volume and depressive symptoms are linked to serum IL-18 in schizophrenia. Neurology Neuroimmunology & Neuroinflammation, 2(4), e111. https://doi.org/10.1212/nxi.0000000000000111..
DOI: 10.1212/nxi.0000000000000111

Zhang, X. Y., Tang, W., Xiu, M. H., Chen, D. C., Yang, F. D., Tan, Y. L., … Kosten, T. R. (2013). Interleukin 18 and cognitive impairment in first episode and drug naïve schizophrenia versus healthy controls. Brain, Behavior, and Immunity, 32, 105–111. https://doi.org/10.1016/j.bbi.2013.03.001..
DOI: 10.1016/j.bbi.2013.03.001

Wedervang-Resell K. et al. Increased interleukin 18 activity in adolescents with early-onset psychosis is associated with cortisol and depressive symptoms //Psychoneuroendocrinology. – 2020. – Т. 112. – С. 104513. https://doi.org/10.1016/j.psyneuen.2019.104513..
DOI: 10.1016/j.psyneuen.2019.104513

Mantovani A., Dinarello C.A., Molgora M., Garlanda C. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity. 2019;50:778–795. doi: 10.1016/j.immuni.2019.03.012..
DOI: 10.1016/j.immuni.2019.03.012

Dunleavy C., Elsworthy R.J., Upthegrove R., Wood S.J., Aldred S. Inflammation in first-episode psychosis: The contribution of inflammatory biomarkers to the emergence of negative symptoms, a systematic review and meta-analysis. Acta Psychiatr. Scand. 2022;146:6–20. doi: 10.1111/acps.13416..
DOI: 10.1111/acps.13416

Fang X., Zhang Y., Fan W., Tang W., Zhang C. Interleukin-17 Alteration in First-Episode Psychosis: A Meta-Analysis. Mol. Neuropsychiatry. 2017;3:135–140. doi: 10.1159/000481661..
DOI: 10.1159/000481661

Marcinowicz P., Więdłocha M., Zborowska N., Dębowska W., Podwalski P., Misiak B., Tyburski E., Szulc A. A Meta-Analysis of the Influence of Antipsychotics on Cytokines Levels in First Episode Psychosis. J. Clin. Med. 2021;10:2488. doi: 10.3390/jcm10112488..
DOI: 10.3390/jcm10112488

Liu M., Saredy J., Zhang R., Shao Y., Sun Y., Yang W.Y., Wang J., Liu L., Drummer C., 4th, Johnson C., et al. Approaching Inflammation Paradoxes-Proinflammatory Cytokine Blockages Induce Inflammatory Regulators. Front. Immunol. 2020;11:554301. doi: 10.3389/fimmu.2020.554301..
DOI: 10.3389/fimmu.2020.554301

De Lange K.M., Moutsianas L., Lee J.C., Lamb C.A., Luo Y., Kennedy N.A., Jostins L., Rice D.L., Gutierrez-Achury J., Ji S.G., et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 2017;49:256–261. doi: 10.1038/ng.3760..
DOI: 10.1038/ng.3760

Fuster J.J., Walsh K. Somatic Mutations and Clonal Hematopoiesis: Unexpected Potential New Drivers of Age-Related Cardiovascular Disease. Circ. Res. 2018;122:523–532. doi: 10.1161/CIRCRESAHA.117.312115..
DOI: 10.1161/CIRCRESAHA.117.312115

Ferrucci L., Fabbri E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018;15:505–522. doi: 10.1038/s41569-018-0064-2..
DOI: 10.1038/s41569-018-0064-2

Bennett J.M., Reeves G., Billman G.E., Sturmberg J.P. Inflammation-Nature’s Way to Efficiently Respond to All Types of Challenges: Implications for Understanding and Managing “the Epidemic” of Chronic Diseases. Front. Med. 2018;5:316. doi: 10.3389/fmed.2018.00316..
DOI: 10.3389/fmed.2018.00316

Lennox B.R., Tomei G., Vincent S.A., Yeeles K., Pollard R., Palmer-Cooper E., Jones P., Zandi M.S., Coles A. Study of immunotherapy in antibody positive psychosis: Feasibility and acceptability (SINAPPS1) J. Neurol. Neurosurg. Psychiatry. 2019;90:365–367. doi: 10.1136/jnnp-2018-318124..
DOI: 10.1136/jnnp-2018-318124

Johnson C., Drummer C., 4th, Virtue A., Gao T., Wu S., Hernandez M., Singh L., Wang H., Yang X.F. Increased Expression of Resistin in MicroRNA-155-Deficient White Adipose Tissues May Be a Possible Driver of Metabolically Healthy Obesity Transition to Classical Obesity. Front. Physiol. 2018;9:1297. doi: 10.3389/fphys.2018.01297..
DOI: 10.3389/fphys.2018.01297

Дополнительная информация
Язык текста: Русский
ISSN: 2712-9179
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4e432d4a50504e2d41525449434c452d323032342d342d322d302d31332d3234/