Acute myocardial infarction with ST segment elevation electrocardiograms: Clinical recommendations. Association of Cardiovascular Surgeons of Russia. 2020 https://www.monikiweb.ru/sites/default/files/page_content_files/KP157.pdf. (In Russian) .https://www.monikiweb.ru/sites/default/files/page_content_files/KP157.pdf
World Health Organization. https://www.who.int/ru/news-room/fact-sheets/detail/the-top-10-causes-of-death. 2020.https://www.who.int/ru/news-room/fact-sheets/detail/the-top-10-causes-of-death
Kosolapov, V. P., Yarmonova M. V. The analysis of high cardiovascular morbidity and mortality in the adult population as a medical and social problem and the search for ways to solve it. Ural medical journal. 2021. Vol. 20 (1) 58-64. htpps://doi org/ 10.52420/2071- 5943-2021-20-1-58-64. (In Russian).
DOI: 10.52420/2071- 5943-2021-20-1-58-64. (In Russian)
Federal State Statistics Service. https://rosstat.gov.ru (In Russian)https://rosstat.gov.ru
Ngo Bilong Ekedi Anzh Veronik , Akselrod A.S., Shchekochikhin D.Iu., Tebenkova E.S., Zhelankin A.V., Stonogina D.A., Syrkina E.A., Ternovoy S.K. Contemporary diagnostic algorithm for coronary artery disease: achievements and prospects. Russian Journal of Cardiology and Cardiovascular Surgery. 2019;12(5):418 428. https://doi.org/10.17116/kardio201912051418. (In Russian).
DOI: 10.17116/kardio201912051418. (In Russian)
Zimnitskaya O.V., Petrova M.M., Lareva N.V., Cherniaeva M.S., Al-Zamil M., Ivanova A.E., Shnayder N.A. Leukocyte telo-mere length as a molecular biomarker of coronary heart disease. Genes 2022, 13, 1234. https://doi.org/10.3390/genes13071234.
DOI: 10.3390/genes13071234
Graff-Radford J. Vascular cognitive impairment. Continuum. Minneap Minn. 2019; 25(1): 147-164. https://doi.org/10.1212/CON.0000000000000684..
DOI: 10.1212/CON.0000000000000684
Chaulin A.M., Duplyakov D.V. Biomarkers of acute myocardial infarction: Diagnostic and prognostic value. Part 2 (Liter-ature Review). Journal of Clinical Practice. 2020, 11(4): 70–82. https://doi.org/10.17816/clinpract48893.
DOI: 10.17816/clinpract48893
Chaulin A.M., Abashina O.E., Duplyakov D.V. High-sensitivity cardiac troponins: detection and central analytical charac-teristics. Cardiovascular Therapy and Prevention. 2021; 20(2): 2590. https://doi.org/10.15829/1728-8800-2021-.
DOI: 10.15829/1728-8800-2021-
Jarolim P. High sensitivity cardiac troponin assays in the clinical laboratories. Clinical Chemistry and Laboratory Medicine (CCLM). 2015; 53(5): 635-652. https://doi.org/10.1515/cclm-2014-0565.
DOI: 10.1515/cclm-2014-0565
Singh V., Martinezclark P., Pascual M., Shaw E.S., O'Neill W.W. Cardiac biomarkers - the old and the new: a review. Coro-nary Arteries Dis. 2010, 21(4): 244-256. https://doi.org/10.1097/MCA.0b013e328338cd1f..
DOI: 10.1097/MCA.0b013e328338cd1f
Wang J., Bo H., Meng X., Wu Y., Bao Y., Li Y. A simple and fast experimental model of myocardial infarction in the mouse. Tex Heart Inst J. 2006;33(3):290-293.
Martin T.P., MacDonald E.A., Elbassioni A.A.M., O'Toole D., Zaeri A.A.I., Nicklin S.A., Gray G.A., Loughrey C.M. Preclinical models of myocardial infarction: from mechanism to translation. Br J Pharmacol. 2022; 179(5): 770-791. https://doi.org/10.1111/bph.15595.
DOI: 10.1111/bph.15595
Verdouw P.D., van den Doel M.A., de Zeeuw S.., Duncker DJ. Animal models in the study of myocardial ischaemia and is-chaemic syndromes. Cardiovasc Res. 1998; 39(1): 121-135. https://doi.org/10.1016/s0008-6363(98)00069-8.
DOI: 10.1016/s0008-6363(98)00069-8
Chimenti S., Carlo E., Masson S., Bai A., Latini R. Myocardial infarction: animal models. Methods Mol Med. 2004; 98: 217-226. https://doi.org/10.1385/1-59259-771-8:217.
DOI: 10.1385/1-59259-771-8:217
Voronov D.A., Garilenko A.V., Bochkov N.P. Stimulation of angiogenesis improves the results of surgical treatment of lover limb ischemia: experimental study and clinical effectiveness. Cardiology and cardiovascular surgery. 2009; 2: 3: 45-49. (In Russian)
Petrishchev N. N., Mikhailova I.A. Laser-induced microvascular thrombosis St. Petersburg.: St. Petersburg State Medical University. 2001: 87. (In Russian)
Waterman R.S., Betancourt A.M. Treating chronic pain with mesenchymal stem cells: A therapeutic approach worthy of continued investigation. J Stem Cell Res Ther . 2011; S2:001. https://doi.org:10.4172/2157-7633.S2-001.https://doi.org:10.4172/2157-7633.S2-001
Elmali N, Esenkaya I, Karadağ N, Taş F, Elmali N. Effects of resveratrol on skeletal muscle in ischemia-reperfusion injury. Ulus Travma Acil Cerrahi Derg. 2007;13(4):274-80. PMID: 17978908
Nevzorova V.A., Chertok V.M., Brodskaya T.A., Roshchenko R.V., Plekhova N.G. Experimental modeling of myocardial infarction in old rats. Pacific Medical Journal. 2022;2:72–74. https://doi.org/10.34215/1609-1175-2022-2-72-74. (In Russian).
DOI: 10.34215/1609-1175-2022-2-72-74. (In Russian)
Kogan A.Kh. Simulation of myocardial infarction. – Moscow., 1979. 30. (In Russian)
Selye H., Bajusz E., Grasso S., Mendell P. Simple techniques for the surgical occlusion of coronary vessels in the rat. Angi-ology. 1960;11:398-407. https://doi.org/10.1177/000331976001100505.
DOI: 10.1177/000331976001100505
Nikulina N.A., Dotsenko E.A., Nerovnya A.M., Salivonchik D.P., Platoshkin E.N., Nikolaeva N.V., Tishkov S.P. Experi-mental myocardial infarction in rats: features of modeling and course within the first 48 hours after ligation of the coronary artery. Problems of Health and Ecology. 2020, 64(2): 91-96. (In Russian)
Mohamed S.A., Fares K.M., Hasan-Ali H., Bakry R. The effect of anesthetic technique on cardiac troponin-T and systemic inflammatory response after major abdominal cancer surgery. J Anesthe Clinic Res. 2013; 4: 296. https://doi.org/10.4172/2155-6148.1000296.
DOI: 10.4172/2155-6148.1000296
Ishikawa M., Iwasaki M., Sakamoto A. Ma D. Anesthetics may modulate cancer surgical outcome: a possible role of miRNAs regulation. BMC Anesthesiol. 2021, 21: 71. https://doi.org/10.1186/s12871-021-01294-w.
DOI: 10.1186/s12871-021-01294-w
Marchegiani F., Matacchione G., Ramini D., Marcheselli F., Recchioni R., Casoli T., Mercuri E., Lazzarini M., Giorgetti B., Cameriere V., Paolini S., Paciaroni L., Rossi T., Galeazzi R., Lisa R., Bonfigli A.R., Procopio A.D., De Luca M., Pelliccioni G., Olivieri F. Diagnostic performance of new and classic CSF biomarkers in age-related dementias. Aging (Albany NY). 2019;11(8):2420-2429. https://doi.org/10.18632/aging.101925..
DOI: 10.18632/aging.101925
Tabnak P., Masrouri S., Geraylow K.R., Zarei M., Esmailpoor Z.H. Targeting miRNAs with anesthetics in cancer: Current understanding and future perspectives. Biomed Pharmacother. 2021 Dec;144:112309. doi: https://doi.org/10.1016/j.biopha.2021.112309.
DOI: 10.1016/j.biopha.2021.112309
Shnayder N.A. Postoperative cognitive dysfunction. Neurological Journal. 2005, 10(4): 37-43, (In Russian)
Shnayder N.A., Salmina A.B. Biochemical and molecular mechanisms of pathogenesis of postoperative cognitive dysfunc-tion/ Neurological Journal. 2007, 2: 1-7. (In Russian)
Li G.F., Li Z.B., Zhuang S.J., Li G.C. Inhibition of microRNA-34a protects against propofol anesthesia-induced neurotoxicity and cognitive dysfunction via the MAPK/ERK signaling pathway. Neurosci Lett. 2018; 675: 152-159. https://doi.org/10.1016/j.neulet.2018.03.052.
DOI: 10.1016/j.neulet.2018.03.052
Yu Y., Liu H., Yang D., He F., Yuan Y., Guo J., Hu J., Yu J., Yan X., Wang S., Du Z. Aloe-emodin attenuates myocardial infarc-tion and apoptosis via up-regulating miR-133 expression. Pharmacol Res. 2019;146:104315. https://doi.org/10.1016/j.phrs.2019.104315.
DOI: 10.1016/j.phrs.2019.104315
Singh G.B., Cowan D.B., Wang D.Z. Tiny regulators of massive tissue: microRNAs in skeletal muscle development, myopa-thies, and cancer cachexia. Front Oncol. 2020; 10: 598964. https://doi.org/10.3389/fonc.2020.598964.
DOI: 10.3389/fonc.2020.598964
European convention for the protection of vertebrate animals used for experimental and other scientific purposes (Council of Europe, Strasbourg 18.03.1986), ETS N 123 appendix A. 2010. https://rm.coe.int/168007a67bhttps://rm.coe.int/168007a67b