Sorboni, G.S.; Moghaddam, H.S.; Jafarzadeh-Esfehani, R.; Soleimanpour, S. Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clinical Microbiology Reviews 2022, 35(1):e0033820. doi: 10.1128/CMR.00338-20..
DOI: 10.1128/CMR.00338-20
Doroszkiewicz, J.; Groblevska, M.; Mroczko, B. The role of gut microbiota and gut-brain interplay in selected diseases of the central nervous system. International Journal of Molecular Sciences 2021, 22(18):10028. doi: 10.3390/ijms221810028..
DOI: 10.3390/ijms221810028
Ahmed, H.; Leyrolle, Q.; Koistinen, V. et al. Microbiota-derived metabolites as drivers of gut–brain communication. Gut microbes 2022, 1 4(1):2102878. doi: 10.1080/19490976.2022.2102878..
DOI: 10.1080/19490976.2022.2102878
Dinan, T.G.; Cryan, J.F. The Microbiome-Gut-Brain Axis in Health and Disease. Gastroenterology Clinics of North America 2017, 46(1):77-89. doi: 10.1016/j.gtc.2016.09.007..
DOI: 10.1016/j.gtc.2016.09.007
Liu, P.; Peng, G.; Zhang, N. et al. Crosstalk between the gut microbiota and the brain: an update on neuroimaging findings. Front. Neurol. 2019, 10:883. doi: 10.3389/fneur.2019.00883..
DOI: 10.3389/fneur.2019.00883
Wang, B.; Yao, M.; Lv, L. et al. The human microbiota in health and disease. Engineering 2017, 3(10):71-82. DOI:10.1016/J.ENG.2017.01.008.
DOI: 10.1016/J.ENG.2017.01.008
Priori, D.; Colombo, M.; Clavenzani, P. et al. The Olfactory Receptor OR51E1 Is Present along the Gastrointestinal Tract of Pigs, Co-Localizes with Enteroendocrine Cells and Is Modulated by Intestinal Microbiota. PLoS ONE 2015, 10(6):e0129501. doi: 10.1371/journal.pone.0129501..
DOI: 10.1371/journal.pone.0129501
Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018, 1693, 128-133. doi: 10.1016/j.brainres.2018.03.015..
DOI: 10.1016/j.brainres.2018.03.015
Caspani, G.; Swann, J. Small talk: Microbial metabolites involved in the signaling from microbiota to brain. Curr. Opin. Pharmacol. 2019; 48, 99-106. doi: 10.1016/j.coph.2019.08.001..
DOI: 10.1016/j.coph.2019.08.001
Tolhurst, G.; Heffron, H.; Lam, Y.S. et al. Short-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein–Coupled Receptor FFAR2. Diabetes 2012, 61, 364–371. doi: 10.2337/db11-1019..
DOI: 10.2337/db11-1019
Generoso, J.S.; Giridharan, V.V.; Lee, J. et al. The role of the microbiota-gut-brain axis in neuropsychiatric disorders. Braz J Psychiatry 2021, 43, 293-305. doi: 10.1590/1516-4446-2020-0987..
DOI: 10.1590/1516-4446-2020-0987
den Besten, G.; van Eunen, K.; Groen, A.K. et al. The role of short-chain fatty acids in the interplay between diet, gut micro-biota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325-2340. doi: 10.1194/jlr.R036012..
DOI: 10.1194/jlr.R036012
Plöger, S.; Stumpff, F.; Penner, G.B. et al. Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann. N. Y. Acad. Sci. 2012, 1258, 52–59. doi: 10.1111/j.1749-6632.2012.06553.x..
DOI: 10.1111/j.1749-6632.2012.06553.x
Stilling, R.M.; van de Wouw, M.; Clarke, G. et al. The neuropharmacology of butyrate: the bread and butter of the microbi-ota-gut-brain axis? Neurochem Int. 2016, 99, 110-132. doi: 10.1016/j.neuint.2016.06.011..
DOI: 10.1016/j.neuint.2016.06.011
Funato, H.; Oda, S.; Yokofujita, J. et al. Fasting and High-Fat Diet Alter Histone Deacetylase Expression in the Medial Hy-pothalamus. PLoS ONE 2011, 6(4):e18950. doi: 10.1371/journal.pone.0018950..
DOI: 10.1371/journal.pone.0018950
Kim, H.J.; Leeds, P.; Chuang, D.M. The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. J Neurochem. 2009, 110(4):1226-40. doi: 10.1111/j.1471-4159.2009.06212.x..
DOI: 10.1111/j.1471-4159.2009.06212.x
Hahnen, E.; Hauke, J.; Tränkle, C. et al. Histone deacetylase inhibitors: possible implications for neurodegenerative disor-ders. Expert Opinion on Investigational Drugs 2008, 17, 169–184. doi: 10.1517/13543784.17.2.169..
DOI: 10.1517/13543784.17.2.169
Xu, K.; Dai, X.L.; Huang, H.C. et al. Targeting HDACs: a promising therapy for Alzheimer's disease. Oxid Med Cell Longev. 2011, 2011:143269. doi: 10.1155/2011/143269..
DOI: 10.1155/2011/143269
Donohoe, D.R.; Garge, N.; Zhang, X. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011, 13, 517–526. doi: 10.1016/j.cmet.2011.02.018..
DOI: 10.1016/j.cmet.2011.02.018
Brahe, L.K.; Astrup, A.; Larsen, L.H. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes Rev. 2013, 14, 950–959. doi: 10.1111/obr.12068..
DOI: 10.1111/obr.12068
Li, L.; Ma, L.; Fu, P. Gut microbiota-derived short-chain fatty acids and kidney diseases. Drug Des Devel Ther. 2017, 11, 3531–3542. doi: 10.2147/DDDT.S150825..
DOI: 10.2147/DDDT.S150825
Unger, M.M.; Spiegel, J.; Dillmann, K. et al. Short chain fatty acids and gut microbiota differ between patients with Parkin-son's disease and age-matched controls. Parkinsonism and Related Disorders. 2016, 32, 66-72. doi: 10.1016/j.parkreldis.2016.08.019..
DOI: 10.1016/j.parkreldis.2016.08.019
Tan, A.H. et al. Gut Microbial Ecosystem in Parkinson Disease: New Clinicobiological Insights from Multi‐Omics. Annals of Neurology 2021, 89, 546–559. doi: 10.1002/ana.25982..
DOI: 10.1002/ana.25982
Shin, С.; Lim, Y.; Lim, H.; Ahn, T.B. Plasma Short-Chain Fatty Acids in Patients With Parkinson’s Disease. Movement Disor-ders 2020, 35, 1021-1027. doi: 10.1002/mds.28016..
DOI: 10.1002/mds.28016
Yang, X.; Ai, P.; He, X.; Mo, C.; Zhang, Y.; Xu, S.; Lai, Y.; Qian, Y.; Xiao, Q. Parkinson's Disease Is Associated with Impaired Gut-Blood Barrier for Short-Chain Fatty Acids. Movement Disorders 2022, 37, 1634-1643. doi: 10.1002/mds.29063..
DOI: 10.1002/mds.29063
He, X.; Qian, Y.; Xu, S.; Zhang, Y.; Mo, C.; Guo, W.; Yang, X.; Xiao, Q. Plasma Short-Chain Fatty Acids Differences in Multi-ple System Atrophy from Parkinson’s Disease. Journal of Parkinson’s Disease 2021, 11, 1167–1176. doi: 10.3233/JPD-212604..
DOI: 10.3233/JPD-212604
Ho, L.; Ono, K.; Tsuji, M. et al. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s dis-ease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother 2018, 18, 83-90. doi: 10.1080/14737175.2018.1400909..
DOI: 10.1080/14737175.2018.1400909
Nicholson, J.K.; Holmes, E.; Kinross, J. et al. Host-gut microbiota metabolic interactions. Science 2012, Volume 336, p. 1262-1267. doi: 10.1126/science.1223813..
DOI: 10.1126/science.1223813
Zilberter, Y.; Zilberter, M. The vicious circle of hypometabolism in neurodegenerative diseases: Ways and mechanisms of metabolic correction. J Neurosci Res. 2017, 95, 2217-2235. doi: 10.1002/jnr.24064..
DOI: 10.1002/jnr.24064
Marizzoni. M.; Cattaneo, A.; Mirabelli, P. et al. Short-Chain Fatty Acids and Lipopolysaccharide as Mediators Between Gut Dysbiosis and Amyloid Pathology in Alzheimer’s Disease. Journal of Alzheimer’s Disease 2020, 78, 683-697. doi: 10.3233/JAD-200306..
DOI: 10.3233/JAD-200306
Ubeda, C.; Vázquez-Carretero, M.D.; Luque-Tirado, A.; Ríos-Reina, R.; Rubio-Sánchez, R.; Franco-Macías, E.; Gar-cía-Miranda, P.; Calonge, M.L.; Peral, M.J. Fecal Volatile Organic Compounds and Microbiota Associated with the Progres-sion of Cognitive Impairment in Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24(1):707. doi: 10.3390/ijms24010707..
DOI: 10.3390/ijms24010707
Wu, L.; Han, Y.; Zheng, Z.; Peng, G.; Liu, P.; Yue, S.; Zhu, S.; Chen, J.; Lv, H.; Shao, L.; Sheng, Y.; Wang, Y.; Li, L.; Li, L.; Wang, B. Altered Gut Microbial Metabolites in Amnestic Mild Cognitive Impairment and Alzheimer’s Disease: Signals in Host–Microbe Interplay. Nutrients 2021, 13(1):228. doi: 10.3390/nu13010228..
DOI: 10.3390/nu13010228
Liu, S.; Li, E.; Sun, Zh.; Fu, D.; Duan, G.; Jiang, M.; Yu, Y.; Mei, L.; Yang, P.; Tang, Y.; Zheng, P. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Scientific Reports 2019, 9. doi:10.1038/s41598-018-36430-z..
DOI: 10.1038/s41598-018-36430-z
Calliope, H.; Carol, N.; Lee, Li.C. et al. Gastrointestinal symptoms in autism spectrum disorder: A review of the literature on ascertainment and prevalence. Autism Res. 2017, Volume 11, p. 4-36. doi: 10.1002/aur.1854..
DOI: 10.1002/aur.1854
Adams, J.B.; Johansen, L.J.; Powell, L.D. et al. Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterology 2011, 11:22. doi: 10.1186/1471-230X-11-22..
DOI: 10.1186/1471-230X-11-22
Wang, L.; Christophersen, C.T.; Sorich, M.J. et al. Elevated Fecal Short Chain Fatty Acid and Ammonia Concentrations in Children with Autism Spectrum Disorder. Digestive Diseases and Sciences 2012, 57(8):2096-2102. doi: 10.1007/s10620-012-2167-7..
DOI: 10.1007/s10620-012-2167-7
Al-Lahham, S.H.; Peppelenbosch, M.P.; Roelofsen, H. et al. Biological effects of propionic acid in humans; metabolism, po-tential applications and underlying mechanisms. Biochim. Biophys. Acta. 2010, 1801, 1175–1183. doi: 10.1016/j.bbalip.2010.07.007..
DOI: 10.1016/j.bbalip.2010.07.007
Kratsman, N.; Getselter, D.; Elliott, E. Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model. Neuropharmacology 2016, 102, 136–145. doi: 10.1016/j.neuropharm.2015.11.003..
DOI: 10.1016/j.neuropharm.2015.11.003
Ristori, M.V.; Quagliariello, A.; Reddel, S. Autism, Gastrointestinal Symptoms and Modulation of Gut Microbiota by Nutri-tional Interventions. Nutrients 2019, 11(11):2812. doi: 10.3390/nu11112812..
DOI: 10.3390/nu11112812
Taniya, M.A.; Chung, H.J.; Mamun, A.Al. et al. Role of Gut Microbiome in Autism Spectrum Disorder and Its Therapeutic Regulation. Frontiers in Cellular and Infection Microbiology 2022, 12:915701. doi: 10.3389/fcimb.2022.915701..
DOI: 10.3389/fcimb.2022.915701
Zhao, G.; Liu, J.F.; Nyman, M.; Jonsson, J.A. Determination of short-chain fatty acids in serum by hollow fiber supported liquid membrane extraction coupled with gas chromatography. J Chromatogr B 2007, 846(1-2):202-208. doi: 10.1016/j.jchromb.2006.09.027..
DOI: 10.1016/j.jchromb.2006.09.027
Kim, S.W.; Hooker, J.M.; Otto, N. et al. Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET. Nucl Med Biol. 2013, 40(7):912-8. doi: 10.1016/j.nucmedbio.2013.06.007..
DOI: 10.1016/j.nucmedbio.2013.06.007
Li, X.; Fan, X.; Yuan, X. et al. The Role of Butyric Acid in Treatment Response in Drug-Naive First Episode Schizophrenia. Front. Psychiatry 2021, 12:724664. doi: 10.3389/fpsyt.2021.724664..
DOI: 10.3389/fpsyt.2021.724664
Li, X., Yuan, X.; Pang, L. et al. The effect of serum lipids and short-chain fatty acids on cognitive functioning in drug-naïve, first episode schizophrenia patients. Psychiatry Res. 2022, 313:114582. doi: 10.1016/j.psychres.2022.114582..
DOI: 10.1016/j.psychres.2022.114582
Perry, T.L.; Hansen, S.; Diamond, S. et al. Acetic and benzoic acids in the urine of patients with chronic schizophrenia. Clin. Chim. Acta. 1971, 31(1):181-6. doi: 10.1016/0009-8981(71)90376-7..
DOI: 10.1016/0009-8981(71)90376-7
Konanov, D.N.; Zakharzhevskaya, N.B.; Kardonsky, D.A. et al. UniqPy: A tool for estimation of short-chain fatty acids composition by gas-chromatography/mass-spectrometry with headspace extraction. Journal of Pharmaceutical and Biomedical Analysis 2022, 212:114681. doi: 10.1016/j.jpba.2022.114681..
DOI: 10.1016/j.jpba.2022.114681
Yao, L.; Davidson, E.A.; Shaikh, M.W. et al. Quantitative analysis of short chain fatty acids in human plasma and serum by GC–MS. Analytical and Bioanalytical Chemistry 2022, 414, 4391–4399. doi: 10.1007/s00216-021-03785-8..
DOI: 10.1007/s00216-021-03785-8
Rahman, M.N.; Diantini, A.; Fattah, M. et al. A highly sensitive, simple, and fast gas chromatography–mass spectrometry method for the quantification of serum short-chain fatty acids and their potential features in central obesity. Analytical and Bioanalytical Chemistry 2021, 413, 6837–6844. doi: 10.1007/s00216-021-03639-3..
DOI: 10.1007/s00216-021-03639-3
Skonieczna-Żydecka, K.; Grochans, E.; Maciejewska, D. et al. Faecal Short Chain Fatty Acids Profile is Changed in Polish Depressive Women. Nutrients 2018, 10(12):1939. doi: 10.3390/nu10121939..
DOI: 10.3390/nu10121939
Borgo, F.; Riva, A.; Benetti, A. et al. Microbiota in anorexia nervosa: The triangle between bacterial species, metabolites and psychological tests. PLOS ONE 2017, 12(6):e0179739. doi: 10.1371/journal.pone.0179739..
DOI: 10.1371/journal.pone.0179739
Zhang, S.; Wang, H.; Zhu, M.J. A sensitive GC/MS detection method for analyzing microbial metabolites short chain fatty acids in fecal and serum samples. Talanta 2019, 196:249-254. doi: 10.1016/j.talanta.2018.12.049..
DOI: 10.1016/j.talanta.2018.12.049