Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
Главная / Результаты поиска
СтатьяИскать документыПерейти к записи. 2017; № 18: 70–76. DOI:10.21518/2079-701X-2017-18-70-76
СОВРЕМЕННАЯ АНТИБАКТЕРИАЛЬНАЯ ТЕРАПИЯ НОЗОКОМИАЛЬНОЙ ПНЕВМОНИИ
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Аффилированные организации
[1]Искать документыПерейти к записи
Аннотация

Нозокомиальная пневмония терминологически объединяет все виды пневмонии, которые возникают у госпитализированных пациентов: пневмонию у пациентов вне искусственной вентиляции легких (госпитальная пневмония, пневмония, связанная с оказанием медицинской помощи) и нозокомиальную пневмонию, связанную с проведением ИВЛ (НПивл), или вентилятор-ассоциированную пневмонию (ВАП). Существенным отличием нозокомиальной пневмонии от внебольничной является разнообразная этиологическая структура, что существенно усложняет выбор антибактериальных препаратов, на этапе эмпирической терапии возникает необходимость применения антибиотиков, активных в отношении внебольничной и нозокомиальной флоры. Роль карбапенемов, в частности дорипенема, в лечении нозокомиальной пневмонии является ведущей в связи с его высокой активностью в отношении резистентной флоры.

[p/]
Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Рубрики Mesh
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Vincent JL, Rello J, Marshall J et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA, 2009, 2, 302(21): 2323-9.

Kaniga K, Flamm R, Tong SY et al. Worldwide experience with the use of doripenem against extended-spectrum-beta-lactamase-producing and ciprofloxacin-resistant Enterobacteriacea: analysis of six phase 3 clinical studies. Anti-microb Agents Chemother, 2010, 54: 2119–24.

Chao C, Chen C, Huang H et al. Clinical Experience of Patients Receiving Doripenem-Containing Regimens for the Treatment of Healthcare-Associated Infections. PLoS ONE, 2016, 11(12): 1-11.

Qu XY, Hu TT, Zhou W. A meta-analysis of efficacy and safety of doripenem for treating bacterial infections. Braz J Infect Dis, 2015, 19: 156–162.

Walsh F. Doripenem: a new carbapenem antibiotic a review of comparative antimicrobial and bactericidal activities. Ther Clin Risk Manag, 2007, 3: 789–94.

Mendes RE, Rhomberg PR, Bell JM, Turnidge JD, Sader HS. Doripenem activity tested against a global collection of Enterobacteriaceae, including isolates resistant to other extended-spectrum agents. Diagn Microbiol Infect Dis, 2009, 63: 415–25.

Horiuchi M, Kimura M, Tokumura M, Hasebe N, Arai T, Abe K. Absence of convulsive liability of doripenem, a new carbapenem antibiotic, in comparison with beta-lactam antibiotics. Toxicology, 2006, 222: 114–24.

Kollef MH, Chastre J, Clavel M et al. A rand-omized trial of 7- day doripenem versus 10-day imipenem-cilastatin for ventilator-associated pneumonia. Crit Care, 2012, 16: R218.

US Food and Drug Administration. FDA Statement on recently terminated clinical trial with Doribax (doripenem). January 5, 2012. http: //www.fda.gov/ Drugs/DrugSafety/ucm285883.htm.

Chastre J, Wunderink R, Prokocimer P et al. Efficacy and safety of intravenous infusion of doripenem versus imipenem in ventilator-associated pneumonia: a multicenter, randomized study. Crit Care Med, 2008, 36: 1089–1096.

Saito A W A, Nakata K, Nakata K et al. Comparative study of doripenem and meropenem in respiratory infections. Phase III double-blind comparative study. Jpn J Chemother, 2005, 53(Suppl. 1): 185–204.

Rea-Neto A, Niederman M, Lobo SM et al. Efficacy and safety of doripenem versus piper-acillin/tazobactam in nosocomial pneumonia: a randomized, open-label, multicenter study. Curr Med Res Opin, 2008, 24: 2113–2126.

Chastre J, Wolff M, Fagon JY et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a rand-omized trial. JAMA, 2003, 290(19): 2588-98.

Luyt C, Aubry A, Lu Q et al. Imipenem, Meropenem, or Doripenem To Treat Patients with Pseudomonas aeruginosa Ventilator-Associated Pneumonia. Antimicrob Agents Chemother, 2014, 58(3): 1372–1380.

Nordmann P, Picazo JJ, Mutters R et al. Comparative activity of carbapenem testing: the COMPACT study. J. Antimicrob. Chemother., 2011, 66: 1070–1078.

Lautenbach E, Synnestvedt M, Weiner MG et al. Imipenem resistance in Pseudomonas aeruginosa: emergence, epidemiology, and impact on clinical and economic outcomes. Infect. Control Hosp. Epidemiol., 2010, 31: 47–53.

Giantsou E, Manolas K. Superinfections in Pseudo-monas aeruginosa ventilator-associated pneumonia. Minerva Anestesiol, 2011, 77: 964–970.

Francois B, Luyt CE, Dugard A et al. Safety and pharmacokinetics of an anti-PcrV PEGylated monoclonal antibody fragment in mechanically ventilated patients colonized with Pseudomonas aeruginosa: a randomized, double- blind, placebo-controlled trial. Crit. Care Med., 2012, 40: 2320–2326.

Combes A, Figliolini C, Trouillet JL et al. Factors predicting ventilator-associated pneumonia recurrence. Crit. Care Med., 2003, 31: 1102–1107.

Heyland DK, Dodek P, Muscedere J et al. Randomized trial of combination versus mono-therapy for the empiric treatment of suspected ventilator-associated pneumonia. Crit. Care Med., 2008, 36: 737–744.

Brunkhorst FM, Oppert M, Marx G et al. Effect of empirical treatment with moxifloxacin and meropenem vs meropenem on sepsis-related organ dysfunction in patients with severe sepsis: a randomized trial. JAMA, 2012, 307: 2390–2399.

Planquette B, Timsit JF, Misset B et al. Pseudo-monas aeruginosa ventilator-associated pneumonia: predictive factors of treatment failure. Am. J. Respir. Crit. Care Med., 2013, 188: 69–76.

Vossen MG, Wenisch JM, Maier-Salamon A et al. Doripenem Treatment during Continuous Renal Replacement Therapy. Antimicrobial Agents and Chemotherapy, 2016, 60(3): 1687-1694.

Thalhammer F, Schenk P, Burgmann H et al. Single-dose pharmacokinetics of meropenem during continuous venovenous hemofiltration. Antimicrob Agents Chemother, 1998, 42: 2417–2420.

European Committee on Antimicrobial Susceptibility Testing. 2014. Breakpoint tables for interpretation of MICs and zone diameters, version 4.0. http: //www.eucast.org/fileadmin/ src/media/PDFs/EUCAST_files /Breakpoint_ tables/Breakpoint_table_v_4.0.pdf.

Afshartous D, Bauer SR, Connor MJ et al. Pharmacokinetics and pharmacodynamics of imipenem and meropenem in critically ill patients treated with continuous venovenous hemodialy-sis. Am J Kidney Dis, 2014, 63: 170–171.

Taccone FS, Laterre P-F, Dugernier T et al. Insufficient -lactam concentrations in the early phase of severe sepsis and septic shock. Crit Care, 2010, 14: R126.

McKenzie C. Antibiotic dosing in critical illness. J Antimicrob Chemother, 2011, 66(Suppl 2): ii25–ii31.

Pinder M, Bellomo R, Lipman J. Pharmaco logical principles of antibiotic prescription in the critically ill. Anaesth Intensive Care, 2002, 30: 134–144.

Li C, Du X, Kuti JL, Nicolau DP. Clinical pharmacodynamics of meropenem in patients with lower respiratory tract infections. Antimicrob Agents Chemother, 2007, 51: 1725–1730.

Chen M, Nafziger AN, Drusano GL et al. Comparative pharmacokinetics and pharmaco-dynamic target attainment of ertapenem in normal-weight, obese, and extremely obese adults. Antimicrob Agents Chemother, 2006, 50: 1222–1227.

Hanley MJ, Abernethy DR, Greenblatt DJ. Effect of obesity on the pharmacokinetics of drugs in humans. Clin Pharmacokinet, 2010, 49: 71–87.

Higgins PG, Dammhayn C, Hackel M, Seifert H. Global spread of carbapenem-resistant Acinetobacter baumannii. J Antimicrob Chemother, 2010, 65: 233-8.

Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect, 2006, 12: 826-36.

Maragakis LL, Perl TM. Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin Infect Dis, 2008, 46: 1254-63.

Karageorgopoulos DE, Kelesidis T, Kelesidis I, Falagas ME. Tigecycline for the treatment of multidrug-resistant (including carbapenem-resistant) Acinetobacter infections: a review of the scientific evidence. J Antimicrob Chemother, 2008, 62: 45-55.

Gordon NC and Wareham DW. Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and resistance. Int J Antimicrob Agents, 2010, 35: 219-26.

Park YK, Jung SI, Park KH et al. Independent emergence of colistin-resistant Acinetobacter spp. isolates from Korea. Diagn Microbiol Infect Dis, 2009, 64: 43-51.

Cai Y, Chai D, Wang R et al. Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J Antimicrob Chemother, 2012, 67: 1607-15.

Navon-Venezia S, Leavitt A, Carmeli Y. High tigecycline resistance in multidrug-resistant Acinetobacter baumannii. J Antimicrob Chemother, 2007, 59: 772-4.

Pankuch GA, Seifert H, Appelbaum PC. Activity of doripenem with and without levofloxacin, amikacin, and colistin against Pseudomonas aeruginosa and Acinetobacter baumannii. Diagn Microbiol Infect Dis, 2010, 67: 191-7.

Dinc G, Demiraslan H, Elmali F et al. Antimicrobial efficacy of doripenem and its combinations with sulbactam, amikacin, colis-tin, tigecycline in experimental sepsis of car-bapenem-resistant Acinetobacter baumannii. New Microbiol, 2015, 38: 67-73.

Park G, Choi J, Jang S et al. In Vitro Interactions of Antibiotic Combinations of Colistin, Tigecycline, and Doripenem Against Extensively Drug-Resistant and Multidrug-Resistant Acinetobacter baumannii. Ann Lab Med, 2016, 36: 124-130.

Дополнительная информация
Язык текста: Русский
ISSN: 2079-701X
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4e432d4d4544534f5645542d41525449434c452d323031372d302d31382d302d37302d3736/