Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
Главная / Результаты поиска
СтатьяИскать документыПерейти к записи. 2021; № 20: 101–109. DOI:10.21518/2079-701X-2021-20-101-109
Холангиоканцерогенез и таргетная терапия холангиокарциномы
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[2]
Искать документыПерейти к записи[1]
Аффилированные организации
Искать документыПерейти к записи
[1]Искать документыПерейти к записи
[2]Искать документыПерейти к записи
Аннотация
Холангиокарцинома включает высоко гетерогенную группу злокачественных опухолей билиарного тракта, развивающихся из эпителия внутри- и внепеченочных желчных протоков. Заболеваемость холангиокарциномой растет во всем мире, и в настоящее время на долю ее приходится около 15[%] всех первичных опухолевых заболеваний печени и до 3[%] злокачественных новообразований желудочно-кишечного тракта. Бессимптомное, но весьма агрессивное течение этих опухолей в сочетании с низкой чувствительностью к цитотоксической терапии способствует достаточно высокой смертности от этого заболевания, составляющей до 2[%] в структуре онкологической смертности в мире. Высокая гетерогенность холангиокарциномы на геномном, эпигенетическом и молекулярном уровнях значительно снижает эффективность доступных методов лечения. В последние десятилетия разрабатываются новые диагностические инструменты и методы лечения, призванные улучшить результаты лечения больных холангиокарциномой. Распространенность мутаций гена BRAF ассоциирована с возникновением различных опухолей, в том числе холангиокарциномы. В настоящее время зарегистрировано более 30 мутаций в гене BRAF, обладающих онкогенным потенциалом. В  основном затрагивается кодон V600, происходит аминокислотная замена, которая в  конечном итоге приводит к тому, что белок BRAF становится постоянно активным, даже в отсутствие факторов роста. Дабрафениб – ингибитор белка BRAF, который в мутировавших клетках находится в постоянной гиперактивной форме. Применение дабрафениба в качестве монотерапии приводит к развитию резистентности через 6-7 месяцев. Для предотвращения резистентности дабрафениб используется вместе с траметинибом, ингибитором MEK, который также блокирует путь киназы Ras-Raf-MEK-MAPK.
Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Рубрики Mesh
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Бредер В.В., Базин И.С., Косырев В.Ю., Ледин Е.В. Практические рекомендации по лекарственному лечению билиарного рака. Злокачественные опухоли: Практические рекомендации RUSSCO. 2020;10(3s2):475–491. https://doi.org/10.18027/2224-5057-2020-10-3s2-26..
DOI: 10.18027/2224-5057-2020-10-3s2-26

Tariq N.U., McNamara M.G., Valle J.W. Biliary tract cancers: Current knowledge, clinical candidates and future challenges. Cancer Manag Res. 2019;11:2623–2642. https://doi.org/10.2147/CMAR.S157092. 3. Brandi G., Tavolari S. Asbestos and Intrahepatic Cholangiocarcinoma. Cells. 2020;9(2):421. https://doi.org/10.3390/cells9020421..
DOI: 10.3390/cells9020421

Lindnér P., Rizell M., Hafström L. The impact of changed strategies for patients with cholangiocarcinoma in this millenium. HPB Surgery. 2015;2015:736049. https://doi.org/10.1155/2015/736049..
DOI: 10.1155/2015/736049

Kamsa-Ard S., Luvira V., Suwanrungruang K., Kamsa-Ard S., Luvira V., Santong C. et al. Cholangiocarcinoma: Trends, Incidence, and Relative Survival in Khon Kaen, Thailand From 1989 Through 2013: A PopulationBased Cancer Registry Study. J Epidemiol. 2019;29(5):197–204. https://doi.org/10.2188/jea.JE20180007..
DOI: 10.2188/jea.JE20180007

Strijker M., Belkouz A., van der Geest L.G., van Gulik T.M., van Hooft J.E., de Meijer V. et al. Treatment and survival of resected and unresected distal cholangiocarcinoma: a nationwide study. Acta Oncol. 2019;58(7):1048–1055. https://doi.org/10.1080/0284186X.2019.1590634..
DOI: 10.1080/0284186X.2019.1590634

Alabraba E., Joshi H., Bird N., Griffin R., Sturgess R., Stern N. et al. Increased multimodality treatment options has improved survival for Hepatocellular carcinoma but poor survival for biliary tract cancers remains unchanged. Eur J Surg Oncol. 2019;45(9):1660–1667. https://doi.org/10.1016/j.ejso.2019.04.002..
DOI: 10.1016/j.ejso.2019.04.002

Groot Koerkamp B., Wiggers J.K., Allen P.J., Besselink M.G., Blumgart L.H., Busch O.R. et al. Recurrence rate and pattern of perihilar cholangiocarcinoma after curative intent resection J Am Coll Surg. 2015;221(6):1041–1049. https://doi.org/10.1016/j.jamcollsurg.2015.09.005..
DOI: 10.1016/j.jamcollsurg.2015.09.005

Komaya K., Ebata T., Yokoyama Y., Igami T., Sugawara G., Mizuno T. et al. Recurrence after curative-intent resection of perihilar cholangiocarcinoma: analysis of a large cohort with a close postoperative follow-up approach. Surgery. 2018;163(4):732–738. https://doi.org/10.1016/j.surg.2017.08.011..
DOI: 10.1016/j.surg.2017.08.011

Cambridge W.A., Fairfield C., Powell J.J., Harrison E.M., Søreide K., Wigmore S.J., Guest R.V. Meta-analysis and meta-regression of survival after liver transplantation for unresectable perihilar cholangiocarcinoma. Ann Surg. 2021;273(2):240–250. https://doi.org/10.1097/SLA.0000000000003801..
DOI: 10.1097/SLA.0000000000003801

Spolverato G., Kim Y., Alexandrescu S., Marques H.P., Lamelas J., Aldrighetti L. et al. Management and outcomes of patients with recurrent intrahepatic cholangiocarcinoma following previous curative-intent surgical resection. Ann Surg Oncol. 2016;23(1):235–243. https://doi.org/10.1245/s10434-015-4642-9..
DOI: 10.1245/s10434-015-4642-9

Brandi G., Rizzo A., Dall’Olio FG, Felicani C., Ercolani G., Cescon M. et al. Percutaneous radiofrequency ablation in intrahepatic cholangiocarcinoma: A retrospective single-center experience. Int J Hyperthermia. 2020;37(1):479–485. https://doi.org/10.1080/02656736.2020.1763484..
DOI: 10.1080/02656736.2020.1763484

Wang Y., Li J., Xia Y., Gong R., Wang K., Yan Z. et al. Prognostic nomogram for intrahepatic cholangiocarcinoma after partial hepatectomy. J Clin Oncol. 2013;31(9):1188–1195. https://doi.org/10.1200/JCO.2012.41.5984..
DOI: 10.1200/JCO.2012.41.5984

Rizzo A., Ricci A.D., Tober N., Nigro M.C., Mosca M., Palloni A. et al. Second-line Treatment in Advanced Biliary Tract Cancer: Today and Tomorrow. Anticancer Res. 2020;40(6):3013–3030. https://doi.org/10.21873/anticanres.14282..
DOI: 10.21873/anticanres.14282

Valle J., Wasan H., Palmer D.H., Cunningham D., Anthoney A., Maraveyas A. et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362(14):1273–1281. https://doi.org/10.1056/NEJMoa0908721..
DOI: 10.1056/NEJMoa0908721

Okusaka T., Nakachi K., Fukutomi A., Mizuno N., Ohkawa S., Funakoshi A. et al. Gemcitabine alone or in combination with cisplatin in patients with biliary tract cancer: A comparative multicentre study in Japan. Br J Cancer. 2010;103(4):469–474. https://doi.org/10.1038/sj.bjc.6605779..
DOI: 10.1038/sj.bjc.6605779

Valle J.W., Furuse J., Jitlal M., Beare S., Mizuno N., Wasan H. et al. Cisplatin and gemcitabine for advanced biliary tract cancer: A meta-analysis of two randomised trials. Ann Oncol. 2014;25:391–398. https://doi.org/10.1093/annonc/mdt540..
DOI: 10.1093/annonc/mdt540

Labib P.L., Goodchild G., Pereira S.P. Molecular Pathogenesis of Cholangiocarcinoma. BMC Cancer. 2019;19(1):185. https://doi.org/10.1186/s12885-019-5391-0..
DOI: 10.1186/s12885-019-5391-0

Nakamura H., Arai Y., Totoki Y., Shirota T., Elzawahry A., Kato M. et al. Genomic spectra of biliary tract cancer. Nat Genet. 2015;47:1003–1010. https://doi.org/10.1038/ng.3375..
DOI: 10.1038/ng.3375

Borad M.J., Champion M.D., Egan J.B., Liang W.S., Fonseca R., Bryce A.H. et al. Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma. PLoS Genet. 2014;10(2):e1004135. https://doi.org/10.1371/journal.pgen.1004135..
DOI: 10.1371/journal.pgen.1004135

Ross J.S., Wang K., Gay L., Al-Rohil R., Rand J.V., Jones D.M. et al. New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. Oncologist. 2014;19(3):235–242. https://doi.org/10.1634/theoncologist.2013-0352..
DOI: 10.1634/theoncologist.2013-0352

Wu Y.M., Su F., Kalyana-Sundaram S., Khazanov N., Ateeq B., Cao X. et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 2013;3(6):636–647. https://doi.org/10.1158/2159-8290.CD-13-0050..
DOI: 10.1158/2159-8290.CD-13-0050

Sia D., Losic B., Moeini A., Cabellos L., Hao K., Revill K. et al. Massive parallel sequencing uncovers actionable FGFR2–PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma. Nat Commun. 2015;6:6087. https://doi.org/10.1038/ncomms7087..
DOI: 10.1038/ncomms7087

Jusakul A., Cutcutache I., Yong C.H., Lim J.Q., Huang M.N., Padmanabhan N. et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 2017;7(10):1116–1135. https://doi.org/10.1158/2159-8290.CD-17-0368..
DOI: 10.1158/2159-8290.CD-17-0368

Chan-On W., Nairismägi M.L., Ong C.K., Lim W.K., Dima S., Pairojkul C. et al. Exome sequencing identifies distinct mutational patterns in liver flukerelated and non- infection-related bile duct cancers. Nat Genet. 2013;45(12):1474–1478. https://doi.org/10.1038/ng.2806..
DOI: 10.1038/ng.2806

Ong C.K., Subimerb C., Pairojkul C., Wongkham S., Cutcutache I., Yu W. et al. Exome sequencing of liver flukeassociated cholangiocarcinoma. Nat Genet. 2012;44(6):690–693. https://doi.org/10.1038/ng.2273..
DOI: 10.1038/ng.2273

Nepal C., O’Rourke C.J., Oliveira D., Taranta A., Shema S., Gautam P. et al. Genomic perturbations reveal distinct regulatory networks in intrahepatic cholangiocarcinoma. Hepatology. 2018;68(3):949–963. https://doi.org/10.1002/hep.29764..
DOI: 10.1002/hep.29764

Zou S., Li J., Zhou H., Frech C., Jiang X., Chu J. et al. Mutational landscape of intrahepatic cholangiocarcinoma. Nat Commun. 2014;5:5696. https://doi.org/10.1038/ncomms6696..
DOI: 10.1038/ncomms6696

Farshidfar F., Zheng S., Gingras M.-C., Newton Y., Shih J., Robertson A.G. et al. Integrative genomic analysis of cholangiocarcinoma identifies distinct IDH- mutant molecular profiles. Cell Reports. 2017;18(11):2780–2794. https://doi.org/10.1016/j.celrep.2017.02.033..
DOI: 10.1016/j.celrep.2017.02.033

O’Rourke C.J., Munoz-Garrido P., Aguayo E.L., Andersen J.B. Epigenome dysregulation in cholangiocarcinoma. Biochimica et Biophysica Acta – Molecular Basis of Disease. 2018;1864(4 Pt B):1423–1434. https://doi.org/10.1016/j.bbadis.2017.06.014..
DOI: 10.1016/j.bbadis.2017.06.014

Banales J.M., Marin J.J.G., Lamarca A., Rodrigues P.M., Khan S.A., Roberts L.R. et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol. 2020;17(9):557–588. https://doi.org/10.1038/s41575-020-0310-z..
DOI: 10.1038/s41575-020-0310-z

Louis C., Papoutsoglou P., Coulouarn C. Molecular classification of cholangiocarcinoma. Curr Opin Gastroenterol. 2020;36(2):57–62. https://doi.org/10.1097/MOG.0000000000000611..
DOI: 10.1097/MOG.0000000000000611

Valle J.W., Lamarca A., Goyal L., Barriuso J., Zhu, A.X. New Horizons for Precision Medicine in Biliary Tract Cancers. Cancer Discov. 2017;7(9):943–962. https://doi.org/10.1158/2159-8290.CD-17-0245..
DOI: 10.1158/2159-8290.CD-17-0245

Putra J., de Abreu F.B., Peterson J.D., Pipas J.M., Mody K., Amos C.I. et al. Molecular profiling of intrahepatic and extrahepatic cholangiocarcinoma using next generation sequencing. Exp Mol Pathol. 2015;99(2):240–244. https://doi.org/10.1016/j.yexmp.2015.07.005..
DOI: 10.1016/j.yexmp.2015.07.005

Andersen J.B., Spee B., Blechacz B.R., Avital I., Komuta M., Barbour A. et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology. 2012;142(4):1021–1031. https://doi.org/10.1053/j.gastro.2011.12.005..
DOI: 10.1053/j.gastro.2011.12.005

Sia D., Hoshida Y., Villanueva A., Roayaie S., Ferrer J., Tabak B. et al. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. Gastroenterology. 2013;144(4):829–840. https://doi.org/10.1053/j.gastro.2013.01.001..
DOI: 10.1053/j.gastro.2013.01.001

Rizzo A., Federico A.D., Ricci A.D., Frega G., Palloni A., Pagani R. et al. Targeting BRAF-Mutant Biliary Tract Cancer: Recent Advances and Future Challenges. Cancer Control. 2020;27(1): 1073274820983013. https://doi.org/10.1177/1073274820983013..
DOI: 10.1177/1073274820983013

Chakrabarti S., Kamgar M., Mahipal A. Targeted therapies in advanced biliary tract cancer: an evolving paradigm. Cancers (Basel). 2020;12(8):2039. https://doi.org/10.3390/cancers12082039..
DOI: 10.3390/cancers12082039

Li W., Cui Y., Yin F., Peng L., Liu X., Shen Y. et al. BRAF mutation in Chinese biliary tract cancer patients. J Clin Oncol. 2020;38(15 Suppl.):e16678– e16678. https://doi.org/10.1200/JCO.2020.38.15_suppl.e16678..
DOI: 10.1200/JCO.2020.38.15_suppl.e16678

Hyman D.M., Puzanov I., Subbiah V., Faris J.E., Chau I., Blay J.Y. et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med. 2015;373(8):726–736. https://doi.org/10.1056/NEJMoa1502309 ..
DOI: 10.1056/NEJMoa1502309

Kim R.D., McDonough S.L., El-Khoueiry A.B., T.S. Bekaii-Saab, S. Stein, V. Sahai et al. SWOG S1310: randomized phase II trial of single agent MEK inhibitor trametinib vs. 5-fluorouracil or capecitabine in refractory advanced biliary cancer. J Clin Oncol. 2017;35(15):4016–4016. https://doi.org/10.1200/JCO.2017.35.15_suppl.4016..
DOI: 10.1200/JCO.2017.35.15_suppl.4016

Finn R.S., Ahn D.H., Javle M.M., Tan Jr. B.R, Weekes C.D., Bendell J.C. et al. Phase 1b investigation of the MEK inhibitor binimetinib in patients with advanced or metastatic biliary tract cancer. Invest New Drugs. 2018;36(6):1037–1043. https://doi.org/10.1007/s10637-018-0600-2..
DOI: 10.1007/s10637-018-0600-2

Lowery M.A., Bradley M., Chou J.F., Capanu M., Gerst S., Harding J.J. et al. Binimetinib plus gemcitabine and cisplatin phase I/II trial in patients with advanced biliary cancers. Clin Cancer Res. 2019;25(3):937–945. https://doi.org/10.1158/1078-0432.CCR-18-1927..
DOI: 10.1158/1078-0432.CCR-18-1927

Ikeda M., Ioka T., Fukutomi A., Morizane C., Kasuga A., Takahashi H. et al. Efficacy and safety of trametinib in Japanese patients with advanced biliary tract cancers refractory to gemcitabine. Cancer Sci. 2018;109(1):215–224. https://doi.org/10.1111/cas.13438..
DOI: 10.1111/cas.13438

Hall R.D., Kudchadkar R.R. BRAF mutations: signaling, epidemiology, and clinical experience in multiple malignancies. Cancer Control. 2014;21(3):221–230. https://doi.org/10.1177/107327481402100307..
DOI: 10.1177/107327481402100307

Kudchadkar R.R., Gonzalez R., Lewis K. New targeted therapies in melanoma. Cancer Control. 2013;20(4):282–288. https://doi.org/10.1177/107327481302000405..
DOI: 10.1177/107327481302000405

Kocsis J., Árokszállási A., András C., Balogh I., Béres E., Déri J. et al. Combined dabrafenib and trametinib treatment in a case of chemotherapy-refractory extrahepatic BRAF V600E mutant cholangiocarcinoma: dramatic clinical and radiological response with a confusing synchronic new liver lesion. J Gastrointest Oncol. 2017;8(2):E32–E38. https://doi.org/10.21037/jgo.2017.01.06..
DOI: 10.21037/jgo.2017.01.06

Lavingia V., Fakih M. Impressive response to dual BRAF and MEK inhibition in patients with BRAF mutant intrahepatic cholangiocarcinoma-2 case reports and a brief review. J Gastrointest Oncol. 2016;7(6):E98–E102. https://doi.org/10.21037/jgo.2016.09.13..
DOI: 10.21037/jgo.2016.09.13

Subbiah V., Lassen U., Élez E., Italiano A., Curigliano G., Javle M. et al. Dabrafenib plus trametinib in patients with BRAFV600E-mutated biliary tract cancer (ROAR): a phase 2, open-label, single-arm, multicentre basket trial. Lancet Oncol. 2020;21(9):1234–1243. https://doi.org/10.1016/S1470-2045(20)30321-1..
DOI: 10.1016/S1470-2045(20)30321-1

Hong D.S., Morris V.K., El Osta B., Sorokin A.V., Janku F., Fu S. et al. Phase 1B Study of Vemurafenib in Combination with Irinotecan andCetuximabin Patients with Metastatic Colorectal Cancer with BRAF V600E Mutation. Cancer Discov. 2016;6(12):1352–1365. https://doi.org/10.1158/2159-8290. CD-16-0050..
DOI: 10.1158/2159-8290. CD-16-0050

Перегудова М.В., Зарецкий А.Р., Бредер В.В., Романова К.А., Мороз Е.А., Лактионов К.К., Лукьянов С.А. Эффективность таргетной терапии у пациентки с BRAF-позитивной метастатической холангиокарциномой. Экспериментальная и клиническая гастроэнтерология. 2017;(8):87–90. Режим доступа: https://cyberleninka.ru/article/n/effektivnost-targetnoyterapii-u-patsientki-s-braf-pozitivnoy-metastaticheskoy-holangiokartsinomoy.https://cyberleninka.ru/article/n/effektivnost-targetnoyterapii-u-patsientki-s-braf-pozitivnoy-metastaticheskoy-holangiokartsinomoy

Перегудова М.В., Зарецкий А.Р., Бредер В.В., Романова К.А., Мороз Е.А., Лактионов К.К., Лукьянов С.А. Эффективность таргетной терапии у пациентки с BRAF-позитивной метастатической холангиокарциномой. Экспериментальная и клиническая гастроэнтерология. 2017;(8):87–90. Режим доступа: https://cyberleninka.ru/article/n/effektivnost-targetnoyterapii-u-patsientki-s-braf-pozitivnoy-metastaticheskoy-holangiokartsinomoy.https://cyberleninka.ru/article/n/effektivnost-targetnoy-terapii-upatsientki-s-braf-pozitivnoy-metastaticheskoy-holangiokartsinomoy

Gibiino G., Fabbri C., Fagiuoli S., Ianiro G., Fornelli A., Cennamo V. Defining the biology of intrahepatic cholangiocarcinoma: molecular pathways and early detection of precursor lesions. Eur Rev Med Pharmacol Sci. 2017;21(4):730–741. Available at: https://pubmed.ncbi.nlm.nih.gov/28272710/.https://pubmed.ncbi.nlm.nih.gov/28272710/

Gibiino G., Fabbri C., Fagiuoli S., Ianiro G., Fornelli A., Cennamo V. Defining the biology of intrahepatic cholangiocarcinoma: molecular pathways and early detection of precursor lesions. Eur Rev Med Pharmacol Sci. 2017;21(4):730–741. Available at: https://pubmed.ncbi.nlm.nih.gov/28272710/.https://pubmed.ncbi.nlm.nih.gov/28272710/

Bunyatov T., Zhao A., Kovalenko J., Gurmikov B., Vishnevsky V. Personalised approach in combined treatment of cholangiocarcinoma: a case report of healing from cholangiocellular carcinoma at stage IV. J Gastrointest Oncol. 2019;10(4):815–820. https://doi.org/10.21037/jgo.2019.03.05..
DOI: 10.21037/jgo.2019.03.05

Davies H., Bignell G.R., Cox C., Stephens P., Edkins S., Clegg S. et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–954. https://doi.org/10.1038/nature00766..
DOI: 10.1038/nature00766

Flaherty K.T., Infante J.R., Daud A, Gonzalez R., Kefford R.F., Sosman J. et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367(18):1694–1703. https://doi.org/10.1056/NEJMoa1210093..
DOI: 10.1056/NEJMoa1210093

Silkin S., Startsev S., Krasnova M., Raskin G.A., Mitiushkina N.V., Iyevleva A.G. et al. Complete Clinical Response of BRAF-Mutated Cholangiocarcinoma to Vemurafenib, Panitumumab and Irinotecan. J Gastrointest Cancer. 2016;47(4):502–505. https://doi.org/10.1007/s12029-015-9792-2..
DOI: 10.1007/s12029-015-9792-2

Дополнительная информация
Язык текста: Русский
ISSN: 2079-701X
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4e432d4d4544534f5645542d41525449434c452d323032312d302d32302d302d3130312d313039/