Gomez-Fernandez С., Daneshbod Y., Nassiri M., Milikowski C., Alvarez C., Nadji M. Immunohistochemically determined estrogen receptor phenotype remains stable in recurrent and metastatic breast cancer. Am J Clin Pathol. 2008;130(6):879–882. https://doi.org/10.1309/AJCPD1AO3YSYQYNW..
DOI: 10.1309/AJCPD1AO3YSYQYNW
Aurilio G., Disalvatore D., Pruneri G., Bagnardi V., Viale G., Curigliano G. et al. A meta-analysis of oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 discordance between primary breast cancer and metastases. Eur J Cancer. 2014;50(2):277–289. https://doi.org/10.1016/j.ejca.2013.10.004..
DOI: 10.1016/j.ejca.2013.10.004
Schrijver W.A.M.E., Suijkerbuijk K.P.M., van Gils C.H., van der Wall E., Moelans C.B., van Diest P.J. Receptor conversion in distant breast cancer metastases: a systematic review and meta-analysis. J Natl Cancer Inst. 2018;110(6):568–580. https://doi.org/10.1093/jnci/djx273..
DOI: 10.1093/jnci/djx273
Lindström L.S., Karlsson E., Wilking U.M., Johansson U., Hartman J., Lidbrink E.K. et al. Clinically used breast cancer markers such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 are unstable throughout tumor progression. J Clin Oncol. 2012;30(21):2601–2608. https://doi.org/10.1200/JCO.2011.37.2482..
DOI: 10.1200/JCO.2011.37.2482
Gong Y., Han E.Y., Guo M., Pusztai L., Sneige N. Stability of estrogen receptor status in breast carcinoma: a comparison between primary and metastatic tumors with regard to disease course and intervening systemic therapy. Cancer. 2011;117(4):705–713. https://doi.org/10.1002/cncr.25506..
DOI: 10.1002/cncr.25506
Thompson A.M., Jordan L.B., Quinlan P., Anderson E., Skene A., Dewar J.A. et al. Prospective comparison of switches in biomarker status between primary and recurrent breast cancer: the Breast Recurrence In Tissues Study (BRITS). Breast Cancer Res. 2010;12(6):R92. https://doi.org/10.1186/bcr2771..
DOI: 10.1186/bcr2771
Sperduto P.W., Mesko S., Li J., Cagney D., Aizer A., Lin N.U. et al. Estrogen/progesterone receptor and HER2 discordance between primary tumor and brain metastases in breast cancer and its effect on treatment and survival. Neuro Oncol. 2020;22(9):1359–1367. https://doi.org/10.1093/neuonc/noaa025..
DOI: 10.1093/neuonc/noaa025
Cardoso F., Senkus E., Costa A., Papadopoulos E., Aapro M., André F. et al. 4th ESOESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 4)†. Ann Oncol. 2018;29(8):1634–1657. https://doi.org/10.1093/annonc/mdy192..
DOI: 10.1093/annonc/mdy192
Gradishar W.J., Anderson B.O., Balassanian R., Blair S.L., Burstein H.J., Cyr A. et al. Breast Cancer, Version 4.2017, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Cancer Netw. 2018;16(3):310–320. https://doi.org/10.6004/jnccn.2018.0012..
DOI: 10.6004/jnccn.2018.0012
Kao J.-Y., Tsai J.-H.,Wu T.-Y., Wang C.-K., Kuo Y.-L. Receptor discordance and phenotype change in metastatic breast cancer. Asian Journal of Surgery. 2021;44(1):192–198. https://doi.org/10.1016/j.asjsur.2020.05.032..
DOI: 10.1016/j.asjsur.2020.05.032
Deluche E., Antoine A., Bachelot T., Lardy-Cleaud A., Dieras V., Brain E. et al. Contemporary outcomes of metastatic breast cancer among 22,000 women from the multicentre ESME cohort 2008-2016. Eur J Cancer. 2020;129:60–70. https://doi.org/10.1016/j.ejca.2020.01.016..
DOI: 10.1016/j.ejca.2020.01.016
Pérol D., Robain M., Arveux P., Mathoulin-Pélissier S., Chamorey E., Asselain B. et al. The ongoing French metastatic breast cancer (MBC) cohort: the example-based methodology of the Epidemiological Strategy and Medical Economics (ESME). BMJ Open. 2019;9(2):e023568. https://doi.org/10.1136/bmjopen-2018-023568..
DOI: 10.1136/bmjopen-2018-023568
Bertucci F., Ng С.K.Y., Patsouris A., Droin N., Piscuoglio S., Carbuccia N. et al. Genomic characterization of metastatic breast cancers. Nature. 2019;569(7757):560–564. https://doi.org/10.1038/s41586-019-1056-z..
DOI: 10.1038/s41586-019-1056-z
Ao Z., Shah S.H., Machlin L.M., Parajuli R., Miller P.C., Rawal S. et al. Identification of cancer-associated fibroblasts in circulating blood from patients with metastatic breast cancer. Cancer Res. 2015;75(22):4681– 4687. https://doi.org/10.1158/0008-5472.CAN-15-1633..
DOI: 10.1158/0008-5472.CAN-15-1633
Yates L.R, Knappskog S., Wedge D., Farmery J.H.R., Gonzalez S., Martincorena I. et al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell. 2017;32(2):169–184.e7. https://doi.org/10.1016/j.ccell.2017.07.005..
DOI: 10.1016/j.ccell.2017.07.005
Colombo M., Raposo G., Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–289. https://doi.org/10.1146/annurevcellbio-101512-122326..
DOI: 10.1146/annurevcellbio-101512-122326
Hoshino A., Costa-Silva B., Shen T-L., Rodrigues G., Hashimoto A., Mark M.T. et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527(7578):329–335. https://doi.org/10.1038/nature15756..
DOI: 10.1038/nature15756
Fong M.Y., Zhou W., Liu L., Alontaga A.Y., Chandra M., Ashby J. et al. Breast-cancersecreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015;17(2):183–194. https://doi.org/10.1038/ncb3094..
DOI: 10.1038/ncb3094
Ell B., Qiu Q., Wei Y., Mercatali L., Ibrahim T., Amadori D., Kang Y. The microRNA-23b/27b/24 cluster promotes breast cancer lung metastasis by targeting metastasis-suppressive gene prosaposin. J Biol Chem. 2014;289(32):21888–21895. https://doi.org/10.1074/jbc.M114.582866..
DOI: 10.1074/jbc.M114.582866
Zhou W., Fong M.Y., Min Y., Somlo G., Liu L., Palomares M.R. et al. Cancersecreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25(4):501–515. https://doi.org/10.1016/j.ccr.2014.03.007..
DOI: 10.1016/j.ccr.2014.03.007
Bockhorn J., Dalton R., Nwachukwu C., Huang S., Prat A., Yeeet K. et al. MicroRNA30c inhibits human breast tumour chemotherapy resistance by regulating TWF1 and IL-11. Nat Commun. 2013;4:1393. https://doi.org/10.1038/ncomms2393..
DOI: 10.1038/ncomms2393
Okuda H., Xing F., Pandey P.R., Sharma S., Watabe M., Paiet S.K. et al. miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res. 2013;73(4):1434–1444. https://doi.org/10.1158/0008-5472.CAN-12-2037..
DOI: 10.1158/0008-5472.CAN-12-2037
Celia-Terrassa T., Liu D.D., Choudhury A., Hang X.,Wei Y., Jose Zamalloa et al. Normal and cancerous mammary stem cells evade interferon-induced constraint through the miR-199a-LCOR axis. Nat Cell Biol. 2017;19(6):711–723. https://doi.org/10.1038/ncb3533..
DOI: 10.1038/ncb3533
Kwakwa K.A., Sterling J.A. Integrin αvβ3 signaling in tumor-induced bone disease. Cancers (Basel). 2017;9(7):84. https://doi.org/10.3390/cancers9070084..
DOI: 10.3390/cancers9070084
Leblanc R., Lee S.-C., David M., Bordet J.-C., Norman D.D., Patil R. et al. Interaction of platelet-derived autotaxin with tumor integrin αVβ3 controls metastasis of breast cancer cells to bone. Blood. 2014;124(20):3141–3150. https://doi.org/10.1182/blood-2014-04-568683..
DOI: 10.1182/blood-2014-04-568683
Zarrilli G., Businello G., Dieci M.V., Paccagnella S., Carraro V., Cappellesso R. et al. The tumor microenvironment of primitive and metastatic breast cancer: implications for novel therapeutic strategies. Int J Mol Sci. 2020;21(21):8102. https://doi.org/10.3390/ijms21218102..
DOI: 10.3390/ijms21218102
Bidwell B.N., Slaney C.Y., Withana N.P., Forster S., Cao Y., Loi S. et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med. 2012;18(8):1224–1231. https://doi.org/10.1038/nm.2830..
DOI: 10.1038/nm.2830
Tang X., Shi L., Xie N., Liu Z., Qian M., Meng F. et al. SIRT7 antagonizes TGF-beta signaling and inhibits breast cancer metastasis. Nat Commun. 2017;8(1):318. https://doi.org/10.1038/s41467-017-00396-9..
DOI: 10.1038/s41467-017-00396-9
Pascual G., Avgustinova A., Mejetta S., Martín M., Castellanos A., Attolini C.S.O. et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 2017;541(7635):41–45. https://doi.org/10.1038/nature20791..
DOI: 10.1038/nature20791
Gao H., Chakraborty G., Lee-Lim A.P., Mo Q., Decker M., Vonica A. et al. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell. 2012;150(4):764–779. https://doi.org/10.1016/j.cell.2012.06.035..
DOI: 10.1016/j.cell.2012.06.035
Song K.H., Park M.S., Nandu T.S., Gadad S., Kim S.-C., Kim M.Y. GALNT14 promotes lung-specific breast cancer metastasis by modulating self-renewal and interaction with the lung microenvironment. Nat Commun. 2016;7:13796. https://doi.org/10.1038/ncomms13796..
DOI: 10.1038/ncomms13796
Kim M.Y. Role of GALNT14 in lung metastasis of breast cancer. BMB Rep. 2017;50(5):233–234. https://doi.org/10.5483/bmbrep.2017.50.5.055..
DOI: 10.5483/bmbrep.2017.50.5.055
Bleckmann A., Conradi L.-C., Menck K., Schmick N.A., Schubert A., Rietkötter E. et al. beta-catenin-independent WNT signaling and Ki-67 in contrast to the estrogen receptor status are prognostic and associated with poor prognosis in breast cancer liver metastases. Clin Exp Metastasis. 2016;33(4):309–323. https://doi.org/10.1007/s10585-016-9780-3..
DOI: 10.1007/s10585-016-9780-3
Kimbung S., Johansson I., Danielsson A., Veerla S., Brage S.E., Stolt M.F. et al. Transcriptional profiling of breast cancer metastases identifies liver metastasis-selective genes associated with adverse outcome in luminal a primary breast cancer. Clin Cancer Res. 2016;22(1):146–157. https://doi.org/10.1158/1078-0432.ccr-15-0487..
DOI: 10.1158/1078-0432.ccr-15-0487
Yang J., Wu N.-N., Huang D.-J., Luo Y.-C., Huang J.-Z., He H.-Y. et al. PPFIA1 is upregulated in liver metastasis of breast cancer and is a potential poor prognostic indicator of metastatic relapse. Tumour Biol. 2017;39:1010428317713492. https://doi.org/10.1177/1010428317713492..
DOI: 10.1177/1010428317713492
Martin M.D., Kremers G.-J., Short K.W., Rocheleau J.V., Xu L., Piston D.W. et al. Rapid extravasation and establishment of breast cancer micrometastases in the liver microenvironment. Mol Cancer Res. 2010;8(10):1319–1327. https://doi.org/10.1158/1541-7786.MCR-09-0551..
DOI: 10.1158/1541-7786.MCR-09-0551
Slamon D.J., Neven P., Chia S., Fasching P.A., Laurentiis M.D, Imet S.A. et al. Phase III randomized study of ribociclib and fulvestrant in hormone receptorpositive, human epidermal growth factor receptor 2-negative advanced breast cancer: MONALEESA-3. J Clin Oncol. 2018;36(24):2465–2472. https://doi.org/10.1200/JCO.2018.78.9909..
DOI: 10.1200/JCO.2018.78.9909
Sledge G.W.Jr., Toi M., Neven P., Sohn J., Inoue K., Pivotet X. al. The effect of abemaciclib plus fulvestrant on overall survival in hormone receptorpositive, ERBB2-negative breast cancer that progressed on endocrine therapy –MONARCH 2: A Randomized Clinical Trial. JAMA Oncol. 2019;6(1):116–124. https://doi.org/10.1001/jamaoncol.2019.4782..
DOI: 10.1001/jamaoncol.2019.4782
Tripathy D., Im S.A., Colleoni M., Franke F., Bardia A., Harbecket N. et al. Ribociclib plus endocrine therapy for premenopausal women with hormonereceptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. Lancet Oncol. 2018;19(7):904–915. https://doi.org/10.1016/S1470-2045(18)30292-4..
DOI: 10.1016/S1470-2045(18)30292-4
Finn R.S., Martin M., Rugo H.S., Jones S., Im S.A., Gelmon K. et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016;375(20):1925–1936. https://doi.org/10.1056/NEJMoa1607303..
DOI: 10.1056/NEJMoa1607303
Rugo H.S., Finn R.S., Dieras V., Ettl J., Lipatov O., Joy A.A. et al. Palbociclib plus letrozole as first-line therapy in estrogen receptor-positive/ human epidermal growth factor receptor 2-negative advanced breast cancer with extended follow-up. Breast Cancer Res Treat. 2019;174(3):719–729. https://doi.org/10.1007/s10549-018-05125-4..
DOI: 10.1007/s10549-018-05125-4