Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
Главная / Результаты поиска
СтатьяИскать документыПерейти к записи. 2022; № 14: 185–192. DOI:10.21518/2079-701X-2022-16-14-185-192
Место вирома в репродуктивном здоровье женщин
Искать документыПерейти к записи[1,2]
Искать документыПерейти к записи[2]
Искать документыПерейти к записи[1,2]
Аффилированные организации
[1]Искать документыПерейти к записи
[2]Искать документыПерейти к записи
Аннотация
Введение.Введение. Экосистема влагалища богата бактериями, грибами, простейшими, а также вирусами, которые сегодня объединены понятием «виром». Отсутствие достаточных знаний о роли вирома, особенно его влиянии на репродуктивное и сексуальное здоровье, ставит задачу, направленную на изучение научной литературы, посвященной этому вопросу.Цель  – представить современные данные о  влагалищном вироме, его взаимоотношении с  влагалищной микробиотой и связи с неблагоприятными исходами беременности, а также воздействии его на сексуальное и репродуктивное здоровье.Материалы и методы.Материалы и методы. Нами был проведен анализ литературных данных, посвященных вирому влагалища, опубликованных за последние годы. Были использованы следующие источники: PubMed, E-library, Scopus.Результаты.Результаты. Анализ научной литературы продемонстрировал важность изучения вирома влагалища, его роль в  развитии гинекологической и акушерской патологии, взаимосвязь влагалищных вирусов с микробиотой влагалища и иммунной системой организма хозяина. Любой дисбаланс этого взаимоотношения может способствовать неблагоприятным репродуктивным исходам, включая бесплодие.Заключение.Заключение. Растущий интерес к изучению влагалищного вирома требует стандартизации лабораторных протоколов и технологий, включая идентификацию РНК-вирусов. Однако имеются ограничения в изучении влагалищного вирома в методологическом и аналитическом плане. Имеется предположение, что влагалищный виром представляет собой недостающую связь между бактериями женского урогенитального тракта, защитными свойствами слизистой и неблагоприятными исходами репродуктивной системы. В связи с этим весьма перспективными являются будущие исследования, дающие оценку влагалищного вирома в балансе между здоровьем и болезнью.
Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Рубрики Mesh
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Madere F.S., Monaco C.L. The female reproductive tract virome: understanding the dynamic role of viruses in gynecological health and disease. Curr Opin Virol. 2021;52:15–23. https://doi.org/10.1016/j.coviro.2021.10.010..
DOI: 10.1016/j.coviro.2021.10.010

Ceccarani C., Foschi C., Parolin C., D’Antuono A., Gaspari V., Consolandi C. et al. Diversity of vaginal microbiome and metabolome during genital infections. Sci Rep. 2019;9(1):14095. https://doi.org/10.1038/s41598-019-50410-x..
DOI: 10.1038/s41598-019-50410-x

Greenbaum S., Greenbaum G., Moran-Gilad J., Weinfraub A.Y. Ecological dynamics of the vaginal microbiome in relation to health and disease. Am J Obstet Gynecol. 2019;220(4):324–335. https://doi.org/10.1016/j.ajog.2018.11.1089..
DOI: 10.1016/j.ajog.2018.11.1089

Punzón-Jiménez P., Labarta E. The impact of the female genital tract microbiome in women health and reproduction: a review. J Assist Reprod Genet. 2021;38:2519–2541. https://doi.org/10.1007/s10815-021-02247-5..
DOI: 10.1007/s10815-021-02247-5

Brooks J.P., Buck G.A., Chen G., Diao L., Edwards D.J., Fettweis J.M. et al. Changes in vaginal community state types reflect major shifts in the microbiome. Microb Ecol Health Dis. 2017;28(1):1303265. https://doi.org/10.1080/16512235.2017.1303265..
DOI: 10.1080/16512235.2017.1303265

Smith S.B., Ravel J. The vaginal microbiota, host defense and reproductive physiology. J Physiol. 2017;595(2):451-463. https://doi.org/10.1113/JP271694..
DOI: 10.1113/JP271694

Янковский Д.С., Дымент Г.С., Бережной В.В., Китам В.О., Химич Н.В. Виром человека. Современная педиатрия. 2019;1(97):49–74. https://doi.org/10.15574/SP.2019.97.49..
DOI: 10.15574/SP.2019.97.49

Norman J.M., Handley S.A., Baldridge M.T., Droit L., Liu C.Y., Keller B.C. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell. 2015;160(3):447–460. https://doi.org/10.1016/j.cell.2015.01.002..
DOI: 10.1016/j.cell.2015.01.002

Monaco C.L., Gootenberg D.B., Zhao G., Handley S.A., Ghebremichael M.S., Lim E.S. et al. Altered virome and bacterial microbiome in human immunodeficiency virus-associated acquired immunodeficiency syndrome. Cell Host Microbe. 2016;19(3):311–322. https://doi.org/10.1016/j.chom.2016.02.011..
DOI: 10.1016/j.chom.2016.02.011

Gogokhia L., Buhrke K., Bell R., Hoffman B., Brown D.G., Hanke-Gogokhia C. et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe. 2019;25(2):285–299.e8. https://doi.org/10.1016/j.chom.2019.01.008..
DOI: 10.1016/j.chom.2019.01.008

Mushegian A.R. Are there 1031 virus particles on Earth, or more, or fewer? J Bacteriol. 2020;202(9):e00052–20. https://doi.org/10.1128/JB.00052-20..
DOI: 10.1128/JB.00052-20

Siegel R.D. Classification of human viruses. Principles and Practice of Pediatric. Infectious Disease. 2018;2018:1044–1048.e1. https://doi.org/10.1016/B978-0-323-40181-4.00201-2..
DOI: 10.1016/B978-0-323-40181-4.00201-2

Fluckiger A., Daillère R., Sassi M., Sixt B.S., Liu P., Loos F. et al. Crossreactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science. 2020;369(6506):936–942. https://doi.org/10.1126/science.aax0701..
DOI: 10.1126/science.aax0701

Madere F.S., Sohn M., Winbush A.K., Barr B., Grier A., Palumbo C. et al. Transkingdom analysis of the female reproductive tract reveals bacteriophages from communities. Viruses. 2022;14(2):430. https://doi.org/10.3390/v14020430..
DOI: 10.3390/v14020430

Ma B., France M.T., Crabtree J., Crabtree J., Holm J.B., Humphrys M.S. et al. A comprehensive non-redundant gene catalog reveals extensive withincommunity intraspecies diversity in the human vagina. Nat Commun. 2020;11(1):940. https://doi.org/10.1038/s41467-020-14677-3..
DOI: 10.1038/s41467-020-14677-3

Dridi B., Raoult D., Drancourt M. Archaea as emerging organisms in complex human microbiomes. Anaerobe. 2011;17(2):56–63. https://doi.org/10.1016/j.anaerobe.2011.03.001..
DOI: 10.1016/j.anaerobe.2011.03.001

Koonin E.V., Dolja V.V., Krupovic M. The healthy human virome: from virushost symbiosis to disease. Curr Opin Virol. 2021;47:86–94. https://doi.org/10.1016/j.coviro.2021.02.002..
DOI: 10.1016/j.coviro.2021.02.002

Zárate S., Taboada B., Yocupicio-Monroy M., Arias C.F. Human virome. Arch Med Res. 2017;48(8):701–716. https://doi.org/10.1016/j.archmed.2018.01.005..
DOI: 10.1016/j.archmed.2018.01.005

Wylie K.M., Mihindukulasuriya K.A., Zhou Y., Sodergren E., Storch G.A., Weinstock G.M. Metagenomic analysis of double-stranded DNA viruses in healthy adults. BMC Biol. 2014;12:71. https://doi.org/10.1186/s12915-014-0071-7..
DOI: 10.1186/s12915-014-0071-7

Schmitt M., Depuydt C., Benoy I., Bogers J., Antoine J., Arbyn M. et al. Prevalence and viral load of 51 genital human papillomavirus types and three subtypes. Int J Cancer. 2013;132(10):2395–2403. https://doi.org/10.1002/ijc.27891..
DOI: 10.1002/ijc.27891

Wylie K.M., Wylie T.N., Cahill A.G., Macones G.A., Tuuli M.G., Stout M.J. The vaginal eukaryotic DNA virome and preterm birth. Am J Obstet Gynecol. 2018;219(2):189.e1–189.e12. https://doi.org/10.1016/j.ajog.2018.04.048..
DOI: 10.1016/j.ajog.2018.04.048

Joseph T.A., Pe’er I. An introduction to whole-metagenome shortgun sequencing studies. Methods Mol Biol. 2021;2243:107–122. https://doi.org/10.1007/978-1-0716-1103-6_6..
DOI: 10.1007/978-1-0716-1103-6_6

Liang G., Bushman F.D. The human virome: assembly, composition and host interactions. Nat Rev Microbiol. 2021;19(8):514–527. https://doi.org/10.1038/s41579-021-00536-5..
DOI: 10.1038/s41579-021-00536-5

Eskew A.M., Stout M.J., Bedrick B.S., Riley J.K., Omurtag K.R., Jimenez P.T. et al. Association of the eukaryotic vaginal virome with prophylactic antibiotic exposure and reproductive outcomes in a subfertile population undergoing in vitro fertilization: a prospective exploratory study. BJOG. 2020;127(2):208–216. https://doi.org/10.1111/1471-0528.15951..
DOI: 10.1111/1471-0528.15951

Siqueira J.D., Curty G., Xutao D., Hofer C.B., Machado E.S., Seuánez H.N. et al. Composite analysis of the virome and bacteriome of HIV/HPV co-infected women reveals proxies for immunodeficiency. Viruses. 2019;11(5):422. https://doi.org/10.3390/v11050422..
DOI: 10.3390/v11050422

Łaniewski P., Cui H., Roe D.J., Barnes D., Goulder A., Monk B.J. et al. Features of the cervicovaginal microenvironment drive cancer biomarker signatures in patients across cervical cancirogenesis. Sci Rep. 2019;9(1):7333. https://doi.org/10.1038/s41598-019-43849-5..
DOI: 10.1038/s41598-019-43849-5

Kaelin E.A., Skidmore P.T., Łaniewski P., Holland L.A., Chase D.M., HerbstKralovetz M.M. et al. Cervicovaginal DNA Virome alterations are associated with genital inflammation and microbiota composition. mSystems. 2022;7(2):e0006422. https://doi.org/10.1128/msysytems.00064-22..
DOI: 10.1128/msysytems.00064-22

Ameur A., Meiring T.L., Bunikis I., Häggqvist S., Lindau C., Lindberg J.H. et al. Comprehensive profiling of the vaginal microbiome in HIV positive women using massive parallel semiconductor sequencing. Sci Rep. 2014;4:4398. https://doi.org/10.1038/srep04398..
DOI: 10.1038/srep04398

France M., Alizadeh M., Brown S., Ma B., Ravel J. Towards a deeper understanding of the vaginal microbiota. Nat Microbiol. 2022;7(3):367–378. https://doi.org/10.1038/s41564-022-01083-2..
DOI: 10.1038/s41564-022-01083-2

Jakobsen R.R., Haar T., Humaidan P., Jensen J.S., Kot W.P., Castro-Mejia J.L. et al. Characterization of vaginal DNA virome in health and dysbiosis. Viruses. 2020;12(10):1143. https://doi.org/10.3390/v12101143..
DOI: 10.3390/v12101143

Shannon B., Gajer P., Yi T.J., Ma B., Humphrys M.S., Thomas-Pavanel J. et al. Distinct effects of the cervicovaginal microbiota and herpes simplex type 2 infection on female genital tract immunology. J Infect Dis. 2017;215(9):1366–1375. https://doi.org/10.1093/infdis/jix088..
DOI: 10.1093/infdis/jix088

Labrie S.J., Samsone J.E., Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8(5):317–327. https://doi.org/10.1038/nrmicro2315..
DOI: 10.1038/nrmicro2315

Parmar K.M., Gaikwad S.L., Dhakephalkar P.K., Kothari R., Singh R.P. Intriguing interaction of bacteriophage-host association: an understanding in the era of omics. Front Microbiol. 2017;8:559. https://doi.org/10.3389/fmcb.2017.00559..
DOI: 10.3389/fmcb.2017.00559

Manrique P., Bolduc B., Walk S.T., van der Oost J., de Vos W.M., Young M.J. Healthy human gut phageome. Proc Natl Acad Sci USA. 2016;113(37):10400–10405. https://doi.org/10.1073/pnas.1601060113..
DOI: 10.1073/pnas.1601060113

Pride D.T., Salzman J., Haynes M., Rohwer F., Davis-Long C., White R.A. 3rd. et al. Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. ISME J. 2012;6(5):915–926. https://doi.org/10.1038/ismej.2011.169..
DOI: 10.1038/ismej.2011.169

Карахалис Л.Ю., Иванцив Н.С., Ли Н.В. Болезни периодонта в патогенезе неблагоприятных исходов беременности. Доктор.Ру. 2021;20(1):21–25. https://doi.org/10.31550/1727-2378-2021-20-1-21-25..
DOI: 10.31550/1727-2378-2021-20-1-21-25

Liu J., Yan R., Zhong Q., Ngo S., Bangayan N.J., Nguyen L. et al. The diversity and host interactions of Propionibacterium acnes bacteriophages on human skin. ISME J. 2015;9(9):2078–2093. https://doi.org/10.1038/ismej.2015.47..
DOI: 10.1038/ismej.2015.47

Segura-Wang M., Gorzer I., Jaksch P., Puchhammer-Stöckl E. Temporal dynamics of the lung and plasma viromes in lung transplant recipients. PLoS ONE. 2018;13(7):e0200428. https://doi.org/10.1371/journal.Pone.0200428..
DOI: 10.1371/journal.Pone.0200428

Hobbs Z., Abedon S.T. Diversity of phage infection types and associated terminology: the problem with “Lytic or lysogenic”. FEMS Microbiol Lett. 2016;363(7):fnw047. https://doi.org/10.1093/femsle/fnw047..
DOI: 10.1093/femsle/fnw047

Damelin L.H., Paximadis M., Mavri-Damelin D., Birkhead M., Lewis D.A., Tiemessen C.T. Identification of predominant culturable vaginal Lactobacillus species and associated bacteriophages from women with and without vaginal discharge syndrome in South Africa. J Med Microbiol. 2011;60(Pt. 2):180–183. https://doi.org/10.1099/jmm.0.024463-0..
DOI: 10.1099/jmm.0.024463-0

Malki K., Shapiro J.W., Price T.K., Hilt E.E., Thomas-White K., Sircar T. et al. Genomes of Gardnerella strains reveal an abundance of prophages within the bladder microbiome. PLoS ONE. 2016;11:e0166757. https://doi.org/10.1371/journal.pone.0166757..
DOI: 10.1371/journal.pone.0166757

Kilic A.O., Pavlova S.I., Aplay S., Kiliç S.S., Tao L. Comparative study of vaginal Lactobacillus phages isolated from women in the United State and Turkey: prevalence, morphology, host range, and DNA homology. Clin Diagn Lab Immunol. 2001;8(1):31–39. https://doi.org/10.1128/CDLI.8.1.31-39.2001..
DOI: 10.1128/CDLI.8.1.31-39.2001

Martín R., Soberón N., Escobedo S., Suárez J.E. Bacteriophage induction versus vaginal homeostasis: Role of H2 O2 in the selection of Lactobacillus defective prophages. Int Microbiol. 2009;12(2):131–136. Available at: https://pubmed.ncbi.nlm.nih.gov/19784933.https://pubmed.ncbi.nlm.nih.gov/19784933

Martín R., Soberón N., Escobedo S., Suárez J.E. Bacteriophage induction versus vaginal homeostasis: Role of H2 O2 in the selection of Lactobacillus defective prophages. Int Microbiol. 2009;12(2):131–136. Available at: https://pubmed.ncbi.nlm.nih.gov/19784933.https://pubmed.ncbi.nlm.nih.gov/19784933

van der Mee-Marquet N., Diene S.M., Barbera L., Courtier-Martinez L., Lafont L., Ouachée A. et al. Analysis of prophages carried by human infecting isolates provides new insight into the evolution of Group B Streptococcus species. Clin Microbiol Infect. 2018;24:514–521. https://doi.org/10.1016/j.cmi.2017.08.024..
DOI: 10.1016/j.cmi.2017.08.024

Miller-Ensminger T., Garretto A., Brenner J., Thomas-White K., Zambom A., Wolfe A.J. et al. Bacteriophages of the Urinary microbiome. J Bacteriol. 2018;200(7):e00738–17. https://doi.org/10.1128/JB.00738-17..
DOI: 10.1128/JB.00738-17

Torcia M.G. Interplay among vaginal microbiome, immune response and sexually transmitted viral infections. Int J Mol Sci. 2019;20(2):266. https://doi.org/10.3390/ijms20020266..
DOI: 10.3390/ijms20020266

Gosmann C., Anahtar M.N., Handley S.A., Farcasanu M., Abu-Ali G., Bowman B.A. et al. Lactobacillus-deficient cervicovaginal bacterial communities are associated with increased HIV acquisition in young South African women. Immunity. 2017;46(1):29–37. https://doi.org/10.1016/j.immuni.2016.12.013..
DOI: 10.1016/j.immuni.2016.12.013

Brotman R. The vaginal microenvironment prior to incident STI. Sex Transm Infect. 2019;95:A19. https://doi.org/10.1136/sextrans-2019-sti.55..
DOI: 10.1136/sextrans-2019-sti.55

Карахалис Л.Ю., Пономарева Ю.С., Петренко В.С., Петренко С.И., Багдасарян Л.Ю. Коррекция микробиоты влагалища при сочетанной патологии. Акушерство и гинекология. 2020;(12):177–186. https://doi.org/10.18565/aig.2020.12.177-184..
DOI: 10.18565/aig.2020.12.177-184

Jang S.J., Lee K., Kwon B., You H.J., Ko G. Vaginal lactobacilli inhibit growth and hyphae formation of Candida albicans. Sci Rep. 2019;9(1):8121. https://doi.org/10.1038/s41598-019-44579-4..
DOI: 10.1038/s41598-019-44579-4

Tortelli B.A., Lewis W.G., Allsworth J.E., Member-Meneh N., Foster L.R., Reno H.E. et al. Associations between the vaginal microbiome and Candida colonization in women of reproductive age. Am J Obstet Gynecol. 2020;(2225):471.e1–471.e9. https://doi.org/10.1016/j.ajog.2019.10.008..
DOI: 10.1016/j.ajog.2019.10.008

Hester R.A., Kennedy S.B. Candida infection as a risk factor for HIV transmission. J Women Health (Larchmt). 2003;12:487–494. https://doi.org/10.1089/154099903766651612..
DOI: 10.1089/154099903766651612

van de Wijgert J.H.H.M., Morrison C.S., Cornelisse P.G.A., Munjoma M., Moncada J., Awlo P. et al. Bacterial vaginosis and vaginal yeast, but not vaginal cleansing, increase HIV-1 acquisition in African women. J Acquir Immune Defic Syndr. 2008;48(2):203–210. https://doi.org/10.1097/QAI.0b013e3181743936..
DOI: 10.1097/QAI.0b013e3181743936

Apalata T., Carr W.H., Sturm W.A., Longo-Mbenza B., Moodley P. Determinants of symptomatic vulvovaginal candidiasis among human immunodeficiency virus type 1 infected women in rural KwaZulu-Natal, South Africa. Infect Dis Obstet Gynecol. 2014;2014:387070. https://doi.org/10.1155/2014/387070..
DOI: 10.1155/2014/387070

Plotkin B.J., Sigar I.M., Tiwari V., Halkyard S. Herpes simplex virus (HSV) modulation of Staphylococcus aureus and Candida albicans initiation of HeLa299 cell-associated biofilm. Curr Microbiol. 2016;72(5):529–537. https://doi.org/10.1007/s00284-015-0975-7..
DOI: 10.1007/s00284-015-0975-7

Mazaheritehrani E., Sala A., Orsi C.F., Neglia R.G., Morace G., Blasi E. et al. Human pathogenic virus are retained in and released by Candida albicans biofilm in vitro. Virus Res. 2014;179:153–160. https://doi.org/10.1016/j.virusres.2013.10.018..
DOI: 10.1016/j.virusres.2013.10.018

Nazik H., Joubert L.-M., Secor P.R., Sweere J.M., Bollyky P.L., Sass G. et al. Pseudomonas phage inhibition of Candida albicans. Microbiology (Reading). 2017;163(11):1568–1577. https://doi.org/10.1099/mic.0.000539..
DOI: 10.1099/mic.0.000539

Li F., Chen C., Wei W., Wang Z., Dai J., Hao L. et al. The metagenome of the female upper reproductive tract. Gigascience. 2018;7(10):giy107. https://doi.org/10.1093/gigascience/giy107..
DOI: 10.1093/gigascience/giy107

Cermelli C., Orsi C.F., Ardizzoni A., Lugli E., Cenacchi V., Cossarizza A. et al. Herpes simplex virus type 1 dysregulates anti-fungal defenses preventing monocyte activation and downregulating toll-like receptor-2. Microbiol Immunol. 2008;52(12):575–584. https://doi.org/10.1111/j.1348-0421.2008.00074.x..
DOI: 10.1111/j.1348-0421.2008.00074.x

Murphy K., Mitchell C.M. The interplay of host immunity and environment on risk of bacterial vaginosis and associated reproductive health outcomes. J Infect Dis. 2016;214(Suppl. 1):29–35. https://doi.org/10.1093/infdis/jiw140..
DOI: 10.1093/infdis/jiw140

Muzny C.A., Laniewski P., Schwebke J.R., Herbst-Kralovetz M.M. Hostvaginal microbiota interactions in the pathogenesis of bacterial vaginosis. Curr Opin Infect. 2020;33(1):59–65. https://doi.org/10.1097/QCO.0000000000000620..
DOI: 10.1097/QCO.0000000000000620

Amjadi F., Salehi E., Mehdizadeh M., Aflatoonian R. Role of the innate immunity in female reproductive tract. Adv Biomed Res. 2014;3:1. https://doi.org/10.4103/2277-9175.124626..
DOI: 10.4103/2277-9175.124626

Rodriguez-Garcia M., Patel M.V., Shen Z., Wira C.R. The impact of aging on innate and adaptive immunity in the human female genital tract. Aging Cell. 2021;20(5):e13361. https://doi.org/10.1111/acel.13361..
DOI: 10.1111/acel.13361

Nguyen P.V., Kafka J.K., Ferreira V.H., Roth K., Kaushic C. Innate and adaptive immune responses in male and female reproductive tracts in homeostasis and following HIV infection. Cell Mol Immunol. 2014;11(5):410–427. https://doi.org/10.1038/cmi.2014.41..
DOI: 10.1038/cmi.2014.41

Mtshali A., San J.E., Osman F., Garrett N., Balle C., Giandhari J. Temporal Changes in vaginal microbiota and genital tract cytokines among South African women treated for bacterial vaginosis. Front Immunol. 2021;12:730986. https://doi.org/10.3389/fimmu.2021.730986..
DOI: 10.3389/fimmu.2021.730986

Campos A.C.C., Murta E.F.C., Michelin M.A., Reis C. Evaluation of cytokines in endocervical secretion and vaginal pH from women with bacterial vaginosis or human papillomavirus. ISRN Obst Gynecol. 2012;2012:3420745. https://doi.org/10.5402/2012/342075..
DOI: 10.5402/2012/342075

Liebenberg L.J.P., McKinnon L.R., Yende-Zuma N., Garrett N., Baxter C., Kharsany A.B.M. et al. HPV infection and the genital cytokine milieu in women at high risk of HIV acquisition. Nat Commun. 2019;10(1):5227. https://doi.org/10.1038/s41467-019-13089-2..
DOI: 10.1038/s41467-019-13089-2

Lee L.-Y., Garland S.M. Human papillomavirus vaccination: The population impact. F1000Research. 2017;6:866. https://doi.org/10.12688/f1000research.10691.1..
DOI: 10.12688/f1000research.10691.1

Spicknall I.H., Looker K.J., Gottlieb S.L., Chesson H.W., Schiffer J.T., Elmes J. et al. Review of mathematical models of HSV-2 vaccination: implications for vaccine development. Vaccine. 2019;37(50):7396–7407. https://doi.org/10.1016/j.vaccine.2018.02.067..
DOI: 10.1016/j.vaccine.2018.02.067

Looker K.J., Elmes J.A.R., Gottlieb S.L., Schiffer J.T., Vickerman, Turner K.M.E. et al. Effect of HSV-2 infection on subsequent HIV acquisition: an updated systematic review and meta-analysis. Lancet Infect Dis. 2017;17(2):1303–1316. https://doi.org/10.1016/S1473-3099(17)30405-X..
DOI: 10.1016/S1473-3099(17)30405-X

Si J., Yu C., Guo Y., Bian Z., Meng R., Yang L. et al. Chronic hepatitis B virus infection and total and cause-specific mortality: a prospective cohort study of 0.5 million people. BMJ Open. 2019;9(4):e027696. https://doi.org/10.1136/bmjopen-2018-027696..
DOI: 10.1136/bmjopen-2018-027696

Lanzieri T.M., Dollard S.C., Bialek S.R. Systematic review of the birth prevalence of congenital cytomegalovirus infection in developing countries. Int J Infect Dis. 2014;22:44–48. https://doi.org/10.1016/j.ijid.2013.12.010..
DOI: 10.1016/j.ijid.2013.12.010

Nelson D.B., Hanlon A., Nachamkin I., Haggerty C., Mastrogiannis D.S., Liu C. et al. Early pregnancy changes in bacterial vaginosis-associated bacteria and preterm delivery. Paediatr Perinat Epidemiol. 2014;28(2):88–96. https://doi.org/10.1111/ppe.12106..
DOI: 10.1111/ppe.12106

Anahtar M.N., Byrne E.H., Doherty K.E., Bowman B.A., Yamamoto H., Soumillon M. et al. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity. 2015;42(5):965–976. https://doi.org/10.1016/j.immuni.2015.04.019..
DOI: 10.1016/j.immuni.2015.04.019

Pavlova S.I., Tao L. Induction of vaginal Lactobacillus phages by the cigarette smoke chemical benzo[a]pyrenediol epoxide. Mutat Res. 2000;466(1):57–62. https://doi.org/10.1016/s1383-5718(00)00003-6..
DOI: 10.1016/s1383-5718(00)00003-6

Vander Borght M., Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem. 2018;62:2–10. https://doi.org/10.1016/j.clinbiochem.2018.03.012..
DOI: 10.1016/j.clinbiochem.2018.03.012

van Oostrum N., De Sutter P., Meys J., Verstraelen H. Risks associated with bacterial vaginosis in infertility patients: a systematic review and meta-analysis. Hum Reprod. 2013;28(7):1809–1815. https://doi.org/10.1093/humrep/det096..
DOI: 10.1093/humrep/det096

Salah R.M., Allam A.M., Magdy A.M., Mohamed A.S. Bacterial vaginosis and infertility: cause or association? Eur J Obstet Gynecol Reprod Biol. 2013;167(1):59–63. https://doi.org/10.1016/j.ejogrb.2012.10.031..
DOI: 10.1016/j.ejogrb.2012.10.031

Ruggeri M., Cannas S., Cubeddu M., Molicotti P., Piras G.L., Dessole S. et al. Bacterial agents as a cause of infertility in humans. New Microbiol. 2016;39(3):206–209. Available at: https://pubmed.ncbi.nlm.nih.gov/27704144.https://pubmed.ncbi.nlm.nih.gov/27704144

Ruggeri M., Cannas S., Cubeddu M., Molicotti P., Piras G.L., Dessole S. et al. Bacterial agents as a cause of infertility in humans. New Microbiol. 2016;39(3):206–209. Available at: https://pubmed.ncbi.nlm.nih.gov/27704144.https://pubmed.ncbi.nlm.nih.gov/27704144

Cattani P., Cerimele F., Porta D., Graffeo R., Ranno S., Marchetti S. et al. Age-specific seroprevalence of human herpesvirus 8 in Mediterranean regions. Clin Microbiol Infect. 2003;9(4):274–279. https://doi.org/10.1046/j.1469-0691.2003.00490.x..
DOI: 10.1046/j.1469-0691.2003.00490.x

Marci R., Gentili V., Bortolotti D., Monte G.L., Caselli E., Bolzani S. et al. Presence of HHV-6A in endometrial epithelial cells from women with primary unexplained infertility. PLoS ONE. 2016;11(7):e0158304. https://doi.org/10.1371/journal.pone.0158304..
DOI: 10.1371/journal.pone.0158304

Caselli E., Bortolotti D., Marci R., Rotola A., Gentilli V., Soffritti I. et al. HHV-6A infection of endometrial epithelial cells induces increased endometrial NK cell-mediated cytotoxity. Front Microbiol. 2017;8:2525. https://doi.org/10.3389/fmicb.2017.02525..
DOI: 10.3389/fmicb.2017.02525

Komaroff A.L., Rizzo R., Ecker J.L. Human Herpesvruses 6A and 6B in Reproductive Diseases. Front. Immunol. 2021;12:648945. https://doi.org/10.3389/fimmu.2021.648945..
DOI: 10.3389/fimmu.2021.648945

Teixeira F.M.E., Pietrobon A.J., de Oliveira L.M., da Silva Oliveira L.M., Sato M.N. Maternal-fetal interplay in Zika virus infection and adverse perinatal outcomes. Front Immunol. 2020;11:175. https://doi.org/10.3389/fimmu.2020.00175..
DOI: 10.3389/fimmu.2020.00175

Dagnew M., Belachew A., Tiruneh M., Moges F. Hepatitis E virus infection among pregnant women in Africa: systematic review and meta-analysis. BMC Infect Dis. 2019;19(1):519. https://doi.org/10.1186/s12879-019-4125-x..
DOI: 10.1186/s12879-019-4125-x

Endalamaw A., Demsie A., Eshetie S., Habtewold T.D. A systematic review and meta-analysis of vertical transmission route of HIV in Ethiopia. BMC Infect Dis. 2018;18(1):283. https://doi.org/10.1186/s12879-018-3189-3..
DOI: 10.1186/s12879-018-3189-3

Bhatta A.K., Keyal U., Liu Y., Gellen E. Vertical transmission of herpes simplex virus: an update. J Dtsch Dermatol Ges. 2018;16(6):685–692. https://doi.org/10.1111/ddg.13529..
DOI: 10.1111/ddg.13529

Kagan K.O., Hamprecht K. Cytomegalovirus infection in pregnancy. Arch Gynecol Obstet. 2017;296:15–26. https://doi.org/10.1007/s00404-017-4380-2..
DOI: 10.1007/s00404-017-4380-2

Bascietto F., Liberati M., Murgano D., Buca D., Iacovelli A., Flacco M.E. et al. Outcome of fetuses with congenital parvovirus B19 infection: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018;52(5):569–576. https://doi.org/10.1002/uog.19092..
DOI: 10.1002/uog.19092

Fettweis J.M., Serrano M.G., Brooks J.P., Edwards D.J., Girerd P.H., Parikh H.I. et al. The vaginal microbiome and preterm birth. Nat Med. 2019;25(6):1012–1021. https://doi.org/10.1038/s41591-019-0450-2..
DOI: 10.1038/s41591-019-0450-2

Hočevar K., Maver A., Vidmar Šimic M., Hodžić A., Haslberger A., Seršen T.P. et al. Vaginal microbiome signature is associated with spontaneous preterm delivery. Front Med. 2019;6:201. https://doi.org/10.3389/fmed.2019.00201..
DOI: 10.3389/fmed.2019.00201

Brown R.G., Al-Memar M., Marchesi J.R., Lee Y.S., Smith A., Chan D. et al. Establishment of vaginal microbiota composition in early pregnancy and its association with subsequent preterm prelabor rupture of the fetal membranes. Transl Res. 2019;207:30–43. https://doi.org/10.1016/j.trsl.2018.12.005..
DOI: 10.1016/j.trsl.2018.12.005

Amabebe E., Chapman D.R., Stern V.L., Stafford G., Anumba D.O.C. Midgestational changes in cervicovaginal fluid cytokine levels in asymptomatic pregnant women are predictive markers of inflammation-associated spontaneous preterm birth. J Reprod Immunol. 2018;126:1–10. https://doi.org/10.1016/j.jri.2018.01.001..
DOI: 10.1016/j.jri.2018.01.001

Ford J.H., Li M., Scheil W., Roder D. Human papillomavirus infection and intrauterine growth restriction: a data-linkage study. J Matern Neonatal Med. 2019;32(2):279–285. https://doi.org/10.1080/14767058.2017.1378330..
DOI: 10.1080/14767058.2017.1378330

van den Veyver I.B., Ni J., Bowles N., Carpenter R.J.Jr., Weiner C.P., Yankowitz J. et al. Detection of intrauterine viral infection using the polymerase chain reaction. Mol Genet Metab. 1998;63(2):85–95. https://doi.org/10.1006/mgme.1997.2651..
DOI: 10.1006/mgme.1997.2651

DiGiulio D.B., Romero R., Kusanovic J.P., Gómez R., Kim C.J., Seok K.S. et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am J Reprod Immunol. 2010;64(1):38–57. https://doi.org/10.1111/j.1600-0897.2010.00830.x..
DOI: 10.1111/j.1600-0897.2010.00830.x

DiGiulio D.B., Gervasi M.T., Romero R., Vaisbuch E., Mazaki-Tovi S., Kusanovic J.P. et al. Microbial invasion of the amniotic cavity in pregnancies with small-for-gestational-age-fetuses. J Perinat Med. 2010;38(5):495–502. https://doi.org/10.1515/jpm.2010.076..
DOI: 10.1515/jpm.2010.076

Collado M.C., Rautava S., Aakko J., Isolauri E., Salminen S. Human gut colonization may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6:23129. https://doi.org/10.1038/srep23129..
DOI: 10.1038/srep23129

Lim E.S., Rodrigues C., Holtz L.R. Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community. Microbiome. 2018;6(1):87. https://doi.org/10.1186/s40168-018-0475-7..
DOI: 10.1186/s40168-018-0475-7

Payne M.S., Keelan J.A., Stinson L.F. Re: “Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community”. Microbiome. 2019;7(1):20. https://doi.org/10.1186/s40168-019-0642-5..
DOI: 10.1186/s40168-019-0642-5

Lim E.S., Rodriguez C., Holtz L.R. Reply Re: “Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community”. Microbiome. 2019;7(1):21. https://doi.org/10.1186/s40168-019-0640-7..
DOI: 10.1186/s40168-019-0640-7

Baghbani T., Nikzad H., Azadbakht J., Izadpanah F., Kashani H.H. Dual and mutual interaction between microbiota and viral infections: a possible treat for COVID-19. Microb Cell Fact. 2020;19(1):217. https://doi.org/10.1186/s12934-020-01483-1..
DOI: 10.1186/s12934-020-01483-1

Di Mascio D., Khalil A., Saccone G., Rizzo G., Buca D., Liberati M. et al. Outcome of coronavirus spectrum infections (SARS, MERS, COVID 1-19) during pregnancy: a systematic review and meta-analysis. Am J Obstet Gynecol MFM. 2020;2(2):100107. https://doi.org/10.1016/j.ajogmf.2020.100107..
DOI: 10.1016/j.ajogmf.2020.100107

Qiu L., Liu X., Xiao M., Xie J., Cao W., Liu Z. et al. SARS-CoV-2 is not detectable in the vaginal fluid of women with severe COVID-19 infection. Clin Infect Dis. 2020;71(15):813–817. https://doi.org/10.1093/cid/ciaa375..
DOI: 10.1093/cid/ciaa375

Chen H., Guo J., Wang C., Luo F., Yu X., Zhang W. et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020;395:809–815. https://doi.org/10.1016/S0140-6736(20)30360-3..
DOI: 10.1016/S0140-6736(20)30360-3

Vivanti A.J., Vauloup-Fellous C., Prevot S., Zupan V., Suffee C., Cao J.D. et al. Transplacental transmission of SARS-CoV-2 infection. Nat Commun. 2020;11(1):3572. https://doi.org/10.1038/s41467-020-17436-6..
DOI: 10.1038/s41467-020-17436-6

Groß R., Conzelmann C., Müller J.A., Stenger S., Steinhart K., Kirchhoff F. et al. Detection of SARS-CoV-2 in human breastmilk. Lancet. 2020;395:1757–1758. https://doi.org/10.1016/S0140-6736(20)31181-8..
DOI: 10.1016/S0140-6736(20)31181-8

Дополнительная информация
Язык текста: Русский
ISSN: 2079-701X
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4e432d4d4544534f5645542d41525449434c452d323032322d302d31342d302d3138352d313932/