Safiri S., Kolahi A.A., Hoy D., Buchbinder R., Mansournia M.A., Bettampadi D. et al. Global, regional, and national burden of neck pain in the general population, 1990–2017: systematic analysis of the Global Burden of Disease Study 2017. BMJ. 2020;368:m791. https://doi.org/10.1136/bmj.m791..
DOI: 10.1136/bmj.m791
Sun M.S., Cai X.Y., Liu Q., Du C.F., Mo Z.J. Application of Simulation Methods in Cervical Spine Dynamics. J Healthc Eng. 2020:7289648. https://doi.org/10.1155/2020/7289648..
DOI: 10.1155/2020/7289648
Guo R., Zhou C., Wang C., Tsai T.Y., Yu Y., Wang W. et al. In vivo primary and coupled segmental motions of the healthy female head-neck complex during dynamic head axial rotation. J Biomech. 2021;123:110513. https://doi.org/10.1016/j.jbiomech.2021.110513..
DOI: 10.1016/j.jbiomech.2021.110513
Whyte T., Melnyk A.D., Van Toen C., Yamamoto S., Street J., Oxland T.R., Cripton P.A. A neck compression injury criterion incorporating lateral eccentricity. Sci Rep. 2020;10(1):7114. https://doi.org/10.1038/s41598-020-63974-w..
DOI: 10.1038/s41598-020-63974-w
Ivancic P.C. Facet joint and disc kinematics during simulated rear crashes with active injury prevention systems. Spine (Phila Pa 1976). 2011;36(18):E1215–1224. https://doi.org/10.1097/BRS.0b013e31820545b1..
DOI: 10.1097/BRS.0b013e31820545b1
Ghaderi F., Javanshir K., Jafarabadi M.A., Moghadam A.N., Arab A.M. Chronic neck pain and muscle activation characteristics of the shoulder complex. J Bodyw Mov Ther. 2019;23(4):913–917. https://doi.org/10.1016/j.jbmt.2019.02.019..
DOI: 10.1016/j.jbmt.2019.02.019
Fice J.B., Siegmund G.P., Blouin J.S. Neck muscle biomechanics and neural control. J Neurophysiol. 2018;120(1):361–371. https://doi.org/10.1152/jn.00512.2017..
DOI: 10.1152/jn.00512.2017
Corrales M.A., Cronin D.S. Importance of the cervical capsular joint cartilage geometry on head and facet joint kinematics assessed in a Finite element neck model. J Biomech. 2021;123:110528. https://doi.org/10.1016/j.jbiomech.2021.110528..
DOI: 10.1016/j.jbiomech.2021.110528
Corrales M.A., Cronin D.S. Sex, Age and Stature Affects Neck Biomechanical Responses in Frontal and Rear Impacts Assessed Using Finite Element Head and Neck Models. Front Bioeng Biotechnol. 2021;9:681134. https://doi.org/10.3389/fbioe.2021.681134..
DOI: 10.3389/fbioe.2021.681134
Ke W., Chen C., Wang B., Hua W., Lu S., Song Y. et al. Biomechanical Evaluation of Different Surgical Approaches for the Treatment of Adjacent Segment Diseases After Primary Anterior Cervical Discectomy and Fusion: A Finite Element Analysis. Front Bioeng Biotechnol. 2021;9:718996. https://doi.org/10.3389/fbioe.2021.718996..
DOI: 10.3389/fbioe.2021.718996
Nishida N., Kanchiku T., Kato Y., Imajo Y., Yoshida Y., Kawano S., Taguchi T. Biomechanical analysis of cervical myelopathy due to ossification of the posterior longitudinal ligament: Effects of posterior decompression and kyphosis following decompression. Exp Ther Med. 2014;7(5):1095–1099. https://doi.org/10.3892/etm.2014.1557..
DOI: 10.3892/etm.2014.1557
Okazaki T., Kanchiku T., Nishida N., Ichihara K., Sakuramoto I., Ohgi J. et al. Age-related changes of the spinal cord: A biomechanical study. Exp Ther Med. 2018;15(3):2824–2829. https://doi.org/10.3892/etm.2018.5796..
DOI: 10.3892/etm.2018.5796
Fradet L., Wang X., Lenke L.G., Aubin C.E. Biomechanical analysis of proximal junctional failure following adult spinal instrumentation using a comprehensive hybrid modeling approach. Clin Biomech (Bristol, Avon). 2016;39:122–128. https://doi.org/10.1016/j.clinbiomech.2016.10.008..
DOI: 10.1016/j.clinbiomech.2016.10.008
Rong X., Wang B., Ding C., Deng Y., Chen H., Meng Y. et al. The biomechanical impact of facet tropism on the intervertebral disc and facet joints in the cervical spine. Spine J. 2017;17(12):1926–1931. https://doi.org/10.1016/j.spinee.2017.07.009..
DOI: 10.1016/j.spinee.2017.07.009
Fakhoury J., Dowling T.J. Cervical Degenerative Disc Disease. Treasure Island (FL): StatPearls Publishing; 2022. Available at: https://www.ncbi.nlm.nih.gov/books/NBK560772/.https://www.ncbi.nlm.nih.gov/books/NBK560772/
Fakhoury J., Dowling T.J. Cervical Degenerative Disc Disease. Treasure Island (FL): StatPearls Publishing; 2022. Available at: https://www.ncbi.nlm.nih.gov/books/NBK560772/.https://www.ncbi.nlm.nih.gov/books/NBK560772/
Jaumard N.V., Welch W.C., Winkelstein B.A. Spinal facet joint biomechanics and mechanotransduction in normal, injury and degenerative conditions. J Biomech Eng. 2011;133(7):071010. https://doi.org/10.1115/1.4004493..
DOI: 10.1115/1.4004493
Naoum S., Vasiliadis A.V., Koutserimpas C., Mylonakis N., Kotsapas M., Katakalos K. Finite Element Method for the Evaluation of the Human Spine: A Literature Overview. J Funct Biomater. 2021;12(3):43. https://doi.org/10.3390/jfb12030043..
DOI: 10.3390/jfb12030043
Ovsepyan A.L., Smirnov A.A., Pustozerov E.A., Mokhov D.E., Mokhova E.S., Trunin E.M. et al. Biomechanical analysis of the cervical spine segment as a method for studying the functional and dynamic anatomy of the human neck. Ann Anat. 2022;240:151856. https://doi.org/10.1016/j.aanat.2021.151856..
DOI: 10.1016/j.aanat.2021.151856
Доль А.В., Доль Е.С., Иванов Д.В. Биомеханическое моделирование вариантов хирургического реконструктивного лечения спондилолистеза позвоночника на уровне L4–L5. Российский журнал биомеханики. 2018;22(1):31–44. Режим доступа: https://www.elibrary.ru/item.asp?id=36335567.https://www.elibrary.ru/item.asp?id=36335567
Доль А.В., Доль Е.С., Иванов Д.В. Биомеханическое моделирование вариантов хирургического реконструктивного лечения спондилолистеза позвоночника на уровне L4–L5. Российский журнал биомеханики. 2018;22(1):31–44. Режим доступа: https://www.elibrary.ru/item.asp?id=36335567.https://www.elibrary.ru/item.asp?id=36335567
Agarwal A., Agarwal A., Goel V. The endplate morphology changes with change in biomechanical environment following discectomy. Int J Clin Exp Med. 2013;4(7A):8–17. https://doi.org/10.4236/ijcm.2013.47A1002..
DOI: 10.4236/ijcm.2013.47A1002
Mengoni M. Biomechanical modelling of the facet joints: a review of methods and validation processes in finite element analysis. Biomech Model Mechanobiol. 2021;20(2):389–401. https://doi.org/10.1007/s10237-020-01403-7..
DOI: 10.1007/s10237-020-01403-7
Mengoni M. Biomechanical modelling of the facet joints: a review of methods and validation processes in finite element analysis. Biomech Model Mechanobiol. 2021;20(2):389–401. https://doi.org/10.1007/s10237-020-01403-7..
DOI: 10.1007/s10237-020-01403-7
Яковлев Е.В., Смирнов А.А., Живолупов С.А., Гневышев Е.Н., Мохова Е.С., Тероева Ю.А. и др. Анатомическая оценка изолированного влияния биомеханических факторов на процесс формирования смещений дискового материала за пределы пространства межпозвонковых дисков шейного отдела позвоночника в структуре дорсопатий. Оперативная хирургия и клиническая анатомия. 2022;6(2):32–44. https://doi.org/10.17116/operhirurg2022602132..
DOI: 10.17116/operhirurg2022602132
Yakovlev E.V., Ovsepyan A.L., Smirnov A.A., Safronova A.A., Starchik D.A., Zhivolupov S.A. et al. Reproducing morphological features of intervertebral disc using finite element modeling to predict the course of cervical spine dorsopathy. Russian Open Medical Journal. 2022;11:e0118. Available at: https://romj.org/2022-0118.https://romj.org/2022-0118
Yakovlev E.V., Ovsepyan A.L., Smirnov A.A., Safronova A.A., Starchik D.A., Zhivolupov S.A. et al. Reproducing morphological features of intervertebral disc using finite element modeling to predict the course of cervical spine dorsopathy. Russian Open Medical Journal. 2022;11:e0118. Available at: https://romj.org/2022-0118.https://romj.org/2022-0118
Shea M., Edwards W.T., White A.A., Hayes W.C. Variations of stiffness and strength along the human cervical spine. J Biomech. 1991;24(2):95–107. https://doi.org/10.1016/0021-9290(91)90354-p..
DOI: 10.1016/0021-9290(91)90354-p
Diotalevi L., Bailly N., Wagnac É., Mac-Thiong J.M., Goulet J., Petit Y. Dynamics of spinal cord compression with different patterns of thoracolumbar burst fractures: Numerical simulations using finite element modelling. Clin Biomech (Bristol, Avon). 2020;72:186–194. https://doi.org/10.1016/j.clinbiomech.2019.12.023..
DOI: 10.1016/j.clinbiomech.2019.12.023
Stoner K.E., Abode-Iyamah K.O., Fredericks D.C., Viljoen S., Howard M.A., Grosland N.M. A comprehensive finite element model of surgical treatment for cervical myelopathy. Clin Biomech (Bristol, Avon). 2020;74:79–86. https://doi.org/10.1016/j.clinbiomech.2020.02.009..
DOI: 10.1016/j.clinbiomech.2020.02.009
Yang S., Qu L., Yuan L., Niu J., Song D., Yang H., Zou J. Finite Element Analysis of Spinal Cord Stress in a Single Segment Cervical Spondylotic Myelopathy. Front Surg. 2022;9:849096. https://doi.org/10.3389/fsurg.2022.849096..
DOI: 10.3389/fsurg.2022.849096
Kitahama Y., Ohashi H., Namba H., Sakai K., Shizuka H., Miyake H. Finite element method for nerve root decompression in minimally invasive endoscopic spinal surgery. Asian J Endosc Surg. 2021;14(3):628–635. https://doi.org/10.1111/ases.12879..
DOI: 10.1111/ases.12879
Kitahama Y., Ohashi H., Namba H., Sakai K., Shizuka H., Miyake H. Finite element method for nerve root decompression in minimally invasive endoscopic spinal surgery. Asian J Endosc Surg. 2021;14(3):628–635. https://doi.org/10.1111/ases.12879..
DOI: 10.1111/ases.12879