Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
Главная / Результаты поиска
СтатьяИскать документыПерейти к записи. 2022; № 18: 141–146. DOI:10.21518/2079-701X-2022-16-18-141-146
Постковидный синдром с позиции кардиоваскулярных нарушений
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[1]
Искать документыПерейти к записи[2]
Аффилированные организации
[1]Искать документыПерейти к записи
[2]Искать документыПерейти к записи
Аннотация

Коронавирусная инфекция стала одной из самых больших потрясений современности. Коронавирусы — это вирусы с положительной цепью РНК, чаще всего поражающие дыхательные пути. Вирус проникает в человеческие альвеолярные клетки типа II с помощью рецепторов к ангиотензинпревращающему ферменту 2 (АПФ2). SARS-CoV использует специфические факторы клеток-хозяев на протяжении всего своего инфекционного цикла. Вирус реплицируется внутри клеток, отвлекая собственные клеточные механизмы организма, и связывает вирион с рецептором АПФ2. Количество переболевших COVID-19 насчитывает более 100 млн человек. Многие выздоровевшие отмечают сохранение симптомов в течение нескольких месяцев после острого заболевания. Чаще всего пациенты жалуются на одышку, усталость, общую слабость, боли за грудиной, учащенное сердцебиение. Современные исследования наглядно продемонстрировали влияние COVID-19 на метаболические нарушения, развитие и прогрессирование сердечно-сосудистых заболеваний и летальность. В настоящее время получены достоверные данные, что при COVID-19 формируется очаг воспаления в стенке миокарда. Его патогенез полностью не выяснен. Согласно двум основным теориям, в повреждении миокарда играет важную роль АПФ2, а также гипериммунный ответ, который самостоятельно может привести к развитию миокардита. Частота и прогностическое влияние миокардита, вызванного COVID-19, неизвестны.  В данной статье был проведен анализ актуальных литературных данных об эпидемиологии, патогенезе и клинических проявлениях постковидного синдрома, в частности подострого COVID-19, в фокусе кардиоваскулярных нарушений. Поиск актуальной литературы осуществлялся на базе Web of  Science, PubMed по ключевым словам: long COVID-19, cardiovascular deseases, postacute COVID-19 syndrome, SARS-CoV-2. В анализ включались систематические обзоры, метаанализы, клинические исследования, обзоры литературы, опубликованные за последние два года.

[p/]
Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Рубрики Mesh
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Fogarty H., Townsend L., Morrin H., Ahmad A., Comerford C., Karampini E. et al. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J Thromb Haemost. 2021;19(10):2546–2553. https://doi.org/10.1111/jth.15490..
DOI: 10.1111/jth.15490

Амиров Н.Б., Давлетшина Э.И., Васильева А.Г., Фатыхов Р.Г. Постковидный синдром: мультисистемные «дефициты». Вестник современной клинической медицины. 2021;14(6):94–104. https://doi.org/10.20969/VSKM..
DOI: 10.20969/VSKM

Nalbandian A., Sehgal K., Gupta A., Madhavan M.V., McGroder C., Stevens J.S. et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27:601–615. https://doi.org/10.1038/s41591-021-01283-z..
DOI: 10.1038/s41591-021-01283-z

Augustin M., Schommers P., Stecher M., Dewald F., Gieselmann L., Gruell H. et al. Post-COVID syndrome in non-hospitalised patients with COVID-19: a longitudinal prospective cohort study. Lancet Reg Health Eur. 2021;6:100122. https://doi.org/10.1016/j.lanepe.2021.100122..
DOI: 10.1016/j.lanepe.2021.100122

Hirschtick J.L., Titus A.R., Slocum E., Power L.E., Hirschtick R.E., Elliott M.R. et al. Population-based estimates of post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC) prevalence and characteristics. Clin Infect Dis. 2021;73:2055–2064. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/pmc8240848.http://www.ncbi.nlm.nih.gov/pmc/articles/pmc8240848

Hirschtick J.L., Titus A.R., Slocum E., Power L.E., Hirschtick R.E., Elliott M.R. et al. Population-based estimates of post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC) prevalence and characteristics. Clin Infect Dis. 2021;73:2055–2064. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/pmc8240848.http://www.ncbi.nlm.nih.gov/pmc/articles/pmc8240848

Logue J.K., Franko N.M., McCulloch D.J., McDonald D., Magedson A., Wolf C.R. et al. Sequelae in adults at 6 months after COVID-19 infection. JAMA Netw Open. 2021;4:e210830. https://doi.org/10.1001/jamanetworkopen.2021.0830..
DOI: 10.1001/jamanetworkopen.2021.0830

Whitaker M., Elliott J., Chadeau-Hyam M., Riley S., Darzi A, Cooke G, et al. Persistent symptoms following SARS-CoV-2 infection in a random community sample of 508,707 people. medRxiv. 2021.06.28.21259452. https://doi.org/10.1101/2021.06.28.21259452.
DOI: 10.1101/2021.06.28.21259452

Sudre C.H., Murray B., Varsavsky T., Graham M.S., Penfold R.S., Bowyer R.C. et al. Attributes and predictors of long COVID. Nat Med. 2021;27:626–631. https://doi.org/10.1038/s41591-021-01292-y..
DOI: 10.1038/s41591-021-01292-y

Huang C., Huang L., Wang Y., Li X., Ren L., Gu X. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397:220–232. https://doi.org/10.1016/s0140-6736(20)32656-8..
DOI: 10.1016/s0140-6736(20)32656-8

Huang L., Yao Q., Gu X., Wang Q., Ren L., Wang Y. et al. 1-year outcomes in hospital survivors with COVID-19: a longitudinal cohort study. Lancet. 2021;398:747–758. https://doi.org/10.1016/s0140-6736(21)01755-4..
DOI: 10.1016/s0140-6736(21)01755-4

Seeßle J., Waterboer T., Hippchen T., Simon J., Kirchner M., Lim A. et al. Persistent symptoms in adult patients one year after COVID-19: a prospective cohort study. Clin Infect Dis. 2022;74(7):1191–1198. https://doi.org/-10.1093/cid/ciab611..
DOI: -10.1093/cid/ciab611

Mahmud R., Rahman M.M., Rassel M.A., Monayem F.B., Sayeed S.J.B., Islam M.S. et al. Post-COVID-19 syndrome among symptomatic COVID-19 patients: a prospective cohort study in a tertiary care center of Bangladesh. PLoS ONE. 2021;16:e0249644. https://doi.org/10.1371/journal.pone.0249644..
DOI: 10.1371/journal.pone.0249644

Thompson E.J., Williams D.M., Walker A.J., Mitchell R.E., Niedzwiedz C.L., Yang T.C. et al. Risk factors for long COVID: analyses of 10 longitudinal studies and electronic health records in the UK. medRxiv. 2021.06.24.21259277. https://doi.org/10.1101/2021.06.24.21259277.
DOI: 10.1101/2021.06.24.21259277

Evans R.A., McAuley H., Harrison E.M., Shikotra A., Singapuri A., Sereno M. et al. Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): a UK multicentre prospective cohort study. Lancet Respir Med. 2021;9:1275–1287. Available at: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_conditionClinical_case_definition-2021.1.https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_conditionClinical_case_definition-2021.1

Evans R.A., McAuley H., Harrison E.M., Shikotra A., Singapuri A., Sereno M. et al. Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): a UK multicentre prospective cohort study. Lancet Respir Med. 2021;9:1275–1287. Available at: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_conditionClinical_case_definition-2021.1.https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_conditionClinical_case_definition-2021.1

Wu X., Liu X., Zhou Y., Yu H., Li R., Zhan Q. et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: a prospective study. Lancet Resp Med. 2021;9:747–754. https://doi.org/10.1016/s2213-2600(21)00174-0..
DOI: 10.1016/s2213-2600(21)00174-0

Lyons D., Frampton M., Naqvi S., Donohoe D., Adams G., Glynn K. Fallout from the COVID-19 pandemic — should we prepare for a tsunami of post viral depression? Ir J Psychol Med. 2020;37:295–300. https://doi.org/10.1017/ipm.2020.40..
DOI: 10.1017/ipm.2020.40

Islam M.F., Cotler J., Jason L.A. Post-viral fatigue and COVID-19: lessons from past epidemics. Fatigue Biomed Health Behav. 2020;8:61–69. Available at: https://www.tandfonline.com/action/showCitFormats?-doi=10.1080/21641846.2020.1778227.https://www.tandfonline.com/action/showCitFormats?-doi=10.1080/21641846.2020.1778227

Islam M.F., Cotler J., Jason L.A. Post-viral fatigue and COVID-19: lessons from past epidemics. Fatigue Biomed Health Behav. 2020;8:61–69. Available at: https://www.tandfonline.com/action/showCitFormats?-doi=10.1080/21641846.2020.1778227.https://www.tandfonline.com/action/showCitFormats?-doi=10.1080/21641846.2020.1778227

Hotchin N., Read R., Smith D., Crawford D. Active Epstein-Barr virus infection in post-viral fatigue syndrome. J Infect. 1989;18:143–150. Available at: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1.https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1

Hotchin N., Read R., Smith D., Crawford D. Active Epstein-Barr virus infection in post-viral fatigue syndrome. J Infect. 1989;18:143–150. Available at: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1.https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1

Bond P. A role for herpes simplex virus in the aetiology of chronic fatigue syndrome and related disorders. Med Hypotheses. 1993;40:301–308. https://doi.org/10.1016/0306-9877(93)90010-n..
DOI: 10.1016/0306-9877(93)90010-n

Carod-Artal F.J. Post-Ebolavirus disease syndrome: what do we know? Expert Rev Anti Infect Ther. 2015;13:1185–1187. https://doi.org/10.1586/14787210.2015.1079128..
DOI: 10.1586/14787210.2015.1079128

Libby P., Lüscher T. COVID-19 is, in the end, an endothelial disease. Eur Heart J. 2020;41(32):3038–3044. https://doi.org/10.1093/eurheartj/ehaa623..
DOI: 10.1093/eurheartj/ehaa623

Long COVID: let patients help define long-lasting COVID symptoms. Nature. 2020;586:170. https://doi.org/10.1038/d41586-020-02796-2..
DOI: 10.1038/d41586-020-02796-2

Horton R. Offline: COVID-19 is not a pandemic. Lancet. 2020;396(10255):874. https://doi.org/10.1016/s0140-6736(20)32000-6..
DOI: 10.1016/s0140-6736(20)32000-6

Бутрова С.А. От эпидeмии ожирения к эпидемии сахарного диабета. Международный эндокринологический журнал. 2013;(2):19–24. Режим доступа: http://www.mif-ua.com/archive/article/35699.http://www.mif-ua.com/archive/article/35699

Бутрова С.А. От эпидeмии ожирения к эпидемии сахарного диабета. Международный эндокринологический журнал. 2013;(2):19–24. Режим доступа: http://www.mif-ua.com/archive/article/35699.http://www.mif-ua.com/archive/article/35699

Лескова И.В., Ершова Е.В. Ожирение в России: современный взгляд под углом социальных проблем. Ожирение и метаболизм. 2019;16(1):20–26. https://doi.org/10.14341/omet9988..
DOI: 10.14341/omet9988

Grosso G. Obesity during COVID-19: an underrated pandemic? EClinicalMedicine. 2021;39:101062. Available at: https://www.thelancet.com/pdfs/journals/eclinm/PIIS2589-5370(21)00342-4.pdf.https://www.thelancet.com/pdfs/journals/eclinm/PIIS2589-5370(21)00342-4.pdf

Grosso G. Obesity during COVID-19: an underrated pandemic? EClinicalMedicine. 2021;39:101062. Available at: https://www.thelancet.com/pdfs/journals/eclinm/PIIS2589-5370(21)00342-4.pdf.https://www.thelancet.com/pdfs/journals/eclinm/PIIS2589-5370(21)00342-4.pdf

Ritchie S., Connell J. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis. 2007;17:319–326. https://doi.org/10.1016/j.numecd.2006.07.005..
DOI: 10.1016/j.numecd.2006.07.005

Petrey A.C., Qeadan F., Middleton E.A., Pinchuk I.V., Campbell R.A., Beswick E.J. Cytokine release syndrome in COVID-19: Innate immune, vascular, and platelet pathogenic factors differ in severity of disease and sex. J Leukoc Biol. 2021;109(1):55–66. https://doi.org/10.1002/jlb.3cova0820-410rrr..
DOI: 10.1002/jlb.3cova0820-410rrr

Helms J., Tacquard C., Severac F., Leonard-Lorant I., Ohana M., Delabranche X. et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1089–1098. https://doi.org/10.1007/s00134-020-06062-x..
DOI: 10.1007/s00134-020-06062-x

Dong E., Du H., Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20:533–534. Available at: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1.https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1

Dong E., Du H., Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20:533–534. Available at: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1.https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1

Drake T.M., Riad A.M., Fairfield C.J., Egan C., Knight S.R., Pius R. et al. Characterisation of in-hospital complications associated with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol UK: a prospective, multicentre cohort study. Lancet. 2021;398:223–237. https://doi.org/10.1016/s0140-6736(21)00799-6..
DOI: 10.1016/s0140-6736(21)00799-6

Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. https://doi.org/10.1016/s0140-6736(20)30183-5..
DOI: 10.1016/s0140-6736(20)30183-5

Raman B., Bluemke D.A., Lüscher T.F., Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. 2022;43(11):1157–1172. https://doi.org/10.1093/eurheartj/ehac031..
DOI: 10.1093/eurheartj/ehac031

Inciardi R.M., Adamo M., Lupi L., Cani D.S., Di Pasquale M., Tomasoni D. et al. Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. Eur Heart J. 2020;41(19):1821–1829. https://doi.org/10.1093/eurheartj/ehaa388..
DOI: 10.1093/eurheartj/ehaa388

Hu Z., Li S., Song X. Cytokine storm with rapidly elevated interleukin-6 indicates sudden death in patients with critical COVID-19. Cytokine Growth Factor Rev. 2021;58:30–31. https://doi.org/10.1016/j.cytogfr.2020.08.001..
DOI: 10.1016/j.cytogfr.2020.08.001

Chatrath N., Kaza N., Pabari P.A., Fox K., Mayet J., Barton C. et al. The effect of concomitant COVID-19 infection on outcomes in patients hospitalized with heart failure. ESC Heart Fail. 2020;7:4443–4447. https://doi.org/10.1002/ehf2.13059..
DOI: 10.1002/ehf2.13059

Alvarez-Garcia J., Lee S., Gupta A., Cagliostro M., Joshi A.A., Rivas-Lasarte M. et al. Prognostic impact of prior heart failure in patients hospitalized with COVID-19. J Am Coll Cardiol. 2020;76:2334–2348. https://doi.org/10.1016/j.jacc.2020.09.549..
DOI: 10.1016/j.jacc.2020.09.549

Ayoubkhani D., Khunti K., Nafilyan V., Maddox T., Humberstone B., Diamond I., Banerjee A. Post-covid syndrome in individuals admitted to hospital with covid-19: retrospective cohort study. BMJ. 2021;372:n693. https://doi.org/10.1136/bmj.n693..
DOI: 10.1136/bmj.n693

Puntmann V.O., Carerj M.L., Wieters I., Fahim M., Arendt C., Hoffmann J. et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered from Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(11):1265–1273. http://doi.org/10.1001/jamacardio.2020.3557..
DOI: 10.1001/jamacardio.2020.3557

Kopanczyk R., Kumar N., Papadimos T. Post-Acute COVID-19 Syndrome for Anesthesiologists: A Narrative Review and a Pragmatic Approach to Clinical Care. J Cardiothorac Vasc Anesth. 2021;36(8):2727–2737. http://doi.org/10.1053/j.jvca.2021.09.051..
DOI: 10.1053/j.jvca.2021.09.051

Fox S.E., Vander Heide R.S. COVID-19: the heart of the matter—pathological changes and a proposed mechanism. J Cardiovasc Pharmacol Ther. 2021;26:217–224. https://doi.org/10.1177/1074248421995356..
DOI: 10.1177/1074248421995356

Lindner D., Fitzek A., Brauninger H., Aleshcheva G., Edler C., Meissner K. et al. Association of Cardiac Infection with SARS-CoV-2 in Confirmed COVID-19 Autopsy Cases. JAMA Cardiol. 2020;(5):1281–1285. Available at: https://ccforum.biomedcentral.com/articles/10.1186/s13054-020-03183-z.https://ccforum.biomedcentral.com/articles/10.1186/s13054-020-03183-z

Lindner D., Fitzek A., Brauninger H., Aleshcheva G., Edler C., Meissner K. et al. Association of Cardiac Infection with SARS-CoV-2 in Confirmed COVID-19 Autopsy Cases. JAMA Cardiol. 2020;(5):1281–1285. Available at: https://ccforum.biomedcentral.com/articles/10.1186/s13054-020-03183-z.https://ccforum.biomedcentral.com/articles/10.1186/s13054-020-03183-z

Lindner D., Fitzek A., Bräuninger H., Aleshcheva G., Edler C., Meissner K. et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol. 2020;5(11):1281–1285. https://doi.org/10.1001/jamacardio.2020.3551..
DOI: 10.1001/jamacardio.2020.3551

Basso C., Leone O., Rizzo S., De Gaspari M., van der Wal A.C., Aubry M.C. et al. Pathological features of COVID-19-associated myocardial injury: a multicentre cardiovascular pathology study. Eur Heart J. 2020;41(39):3827–3835. https://doi.org/10.1093/eurheartj/ehaa664..
DOI: 10.1093/eurheartj/ehaa664

Halushka M.K., Vander Heide R.S. Myocarditis is rare in COVID-19 autopsies: cardiovascular findings across 277 postmortem examinations. Cardiovasc Pathol. 2021;50:107300. https://doi.org/10.1016/j.carpath.2020.107300..
DOI: 10.1016/j.carpath.2020.107300

Siripanthong B., Nazarian S., Muser D., Deo R., Santangeli P., Khanji M.Y. et al. Recognizing COVID-19-related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020;17:1463–1471. http://doi.org/10.1016/j.hrthm.2020.05.001..
DOI: 10.1016/j.hrthm.2020.05.001

Wu Q., Zhou L., Sun X., Yan Z., Hu C., Wu J. et al. Altered Lipid Metabolism in Recovered SARS Patients Twelve Years after Infection. Sci Rep. 2017;7:9110. http://doi.org/10.1038/s41598-017-09536-z..
DOI: 10.1038/s41598-017-09536-z

Fried J.A., Ramasubbu K., Bhatt R., Topkara V.K., Clerkin K.J., Horn E. et al. The Variety of Cardiovascular Presentations of COVID-19. Circulation. 2020;141:1930–1936. http://doi.org/10.1161/CIRCULATIONAHA.120.047164..
DOI: 10.1161/CIRCULATIONAHA.120.047164

Ziegler C.G.K., Allon S.J., Nyquist S.K., Mbano I.M., Miao V.N., Tzouanas C.N. et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell. 2020;181:1016–1035.e19. http://doi.org/10.1016/j.cell.2020.04.035..
DOI: 10.1016/j.cell.2020.04.035

Reynolds H.R., Adhikari S., Pulgarin C., Troxel A.B., Iturrate E., Johnson S.B. et al. Renin-Angiotensin-Aldosterone System Inhibitors and Risk of COVID-19. N Engl J Med. 2020;382:2441–2448. http://doi.org/10.1056/NEJMoa2008975..
DOI: 10.1056/NEJMoa2008975

Liu P.P., Blet A., Smyth D., Li H. The Science Underlying COVID-19: Implications for the Cardiovascular System. Circulation. 2020;142:68–78. http://doi.org/10.1161/CIRCULATIONAHA.120.047549..
DOI: 10.1161/CIRCULATIONAHA.120.047549

Radin J.M., Quer G., Ramos E., Baca-Motes K., Gadaleta M., Topol E.J., Steinhubl S.R. Assessment of Prolonged Physiological and Behavioral Changes Associated With COVID-19 Infection. JAMA Netw Open. 2021;4(7):e2115959. http://doi.org/10.1001/jamanetworkopen.2021.15959..
DOI: 10.1001/jamanetworkopen.2021.15959

Wong S., Fan B., Huang W., Chia Y. ST-segment elevation myocardial infarction in post-COVID-19 patients: A case series. Ann Acad Med Singap. 2021;50(5):425–430. http://doi.org/10.1097/CRD.0000000000000368..
DOI: 10.1097/CRD.0000000000000368

Giustino G., Croft L.B., Stefanini G.G., Bragato R., Silbiger J.J., Vicenzi M. et al. Characterization of myocardial injury in patients with COVID-19. J Am Coll Cardiol. 2020;76:2043–2055. https://doi.org/10.1016/j.jacc.2020.08.069..
DOI: 10.1016/j.jacc.2020.08.069

Bois M.C., Boire N.A., Layman A.J., Aubry M.C., Alexander M.P., Roden A.C. et al. COVID-19-associated nonocclusive fibrin microthrombi in the heart. Circulation. 2021;143:230–243. https://doi.org/10.1161/circulationaha.120.050754..
DOI: 10.1161/circulationaha.120.050754

Nabors C., Sridhar A., Hooda U., Lobo S.A., Levine A., Frishman W.H., Dhand A. Characteristics and Outcomes of Patients 80 Years and Older Hospitalized With Coronavirus Disease 2019 (COVID-19). Cardiol Rev. 2021;29(1):39–42. http://doi.org/10.1097/CRD.0000000000000368..
DOI: 10.1097/CRD.0000000000000368

Li X., Pan X., Li Y., An N., Xing Y., Yang F. et al. Cardiac injury associated with severe disease or ICU admission and death in hospitalized patients with COVID-19: A meta-analysis and systematic review. Crit Care. 2020;24:468. http://doi.org/10.1186/s13054-020-03183-z..
DOI: 10.1186/s13054-020-03183-z

Shi S., Qin M., Shen B., Cai Y., Liu T., Yang F. et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5:802–810. http://doi.org/10.1001/jamacardio.2020.0950..
DOI: 10.1001/jamacardio.2020.0950

Sims J.T., Krishnan V., Chang C.Y., Engle S.M., Casalini G., Rodgers G.H. et al. Characterization of the cytokine storm reflects hyperinflammatory endothelial dysfunction in COVID-19. J Allergy Clin Immunol. 2021;147(1):107–111. https://doi.org/10.1016/j.jaci.2020.08.031..
DOI: 10.1016/j.jaci.2020.08.031

Nagashima S., Mendes M.C., Camargo Martins A.P., Borges N.H., Godoy T.M., Miggiolaro A.F.R.D.S. et al. Endothelial dysfunction and thrombosis in patients with COVID-19 brief report. Arterioscler Thromb Vasc Biol. 2020;40(10):2404–2407. https://doi.org/10.1161/atvbaha.120.314860..
DOI: 10.1161/atvbaha.120.314860

Pollack A., Kontorovich A.R., Fuster V., Dec G.W. Viral myocarditis — diagnosis, treatment options, and current controversies. Nat Rev Cardiol. 2015;12:670–680. https://doi.org/10.1038/nrcardio.2015.108..
DOI: 10.1038/nrcardio.2015.108

Kim H.W., de Chantemèle E.J.B., Weintraub N.L. Perivascular adipocytes in vascular disease. Arterioscler Thromb Vasc Biol. 2019;39:2220–222. https://doi.org/10.1161/atvbaha.119.312304..
DOI: 10.1161/atvbaha.119.312304

Blagova O., Varionchik N., Zaidenov V., Savina P., Sarkisova N. Anti-heart antibodies levels and their correlation with clinical symptoms and outcomes in patients with confirmed or suspected diagnosis COVID-19. Eur J Immunol. 2021;51:893–902. https://doi.org/10.1002/eji.202048930..
DOI: 10.1002/eji.202048930

Richter A.G., Shields A.M., Karim A., Birch D., Faustini S.E., Steadman L. et al. Establishing the prevalence of common tissue-specific autoantibodies following severe acute respiratory syndrome coronavirus 2 infection. Clin Exp Immunol. 2021;205:99–105. https://doi.org/10.1111/cei.13623..
DOI: 10.1111/cei.13623

Franke C., Ferse C., Kreye J., Reincke S.M., Sanchez-Sendin E., Rocco A. et al. High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms. Brain Behav Immun. 2021;93:415–419. https://doi.org/10.1016/j.bbi.2020.12.022..
DOI: 10.1016/j.bbi.2020.12.022

Talla A., Vasaikar S.V., Lemos M.P., Moodie Z., Pebworth M.-P.L., Henderson K.E. et al. Longitudinal immune dynamics of mild COVID-19 define signatures of recovery and persistence. bioRxiv [Preprint]. 2021.05.26.442666. https://doi.org/10.1101/2021.05.26.442666..
DOI: 10.1101/2021.05.26.442666

von Meijenfeldt F.A., Havervall S., Adelmeijer J., Lundström A., Magnusson M., Mackman N. et al. Sustained prothrombotic changes in COVID-19 patients 4 months after hospital discharge. Blood Adv. 2021;5(3):756–759. https://doi.org/10.1182/bloodadvances.2020003968..
DOI: 10.1182/bloodadvances.2020003968

Мартынов М.Ю., Боголепова А.Н. Эндотелиальная дисфункция при COVID-19 и когнитивные нарушения. Журнал неврологии и психиатрии им. С.С. Корсакова. 2021;121(6):93–99. https://doi.org/10.17116/jnevro202112106193..
DOI: 10.17116/jnevro202112106193

Suzuki Y.J., Nikolaienko S.I., Shults N.V., Gychka S.G. COVID-19 patients may become predisposed to pulmonary arterial hypertension. Med Hypotheses. 2021;147:110483. https://doi.org/10.1016/j.mehy.2021.110483..
DOI: 10.1016/j.mehy.2021.110483

Vechi H.T., Maia L.R., Alves M.D.M. Late acute pulmonary embolism after mild Coronavirus Disease 2019 (COVID-19): a case series. Rev Inst Med Trop Sao Paulo. 2020;62:e63. https://doi.org/10.1590/s1678-9946202062063..
DOI: 10.1590/s1678-9946202062063

Дополнительная информация
Язык текста: Русский
ISSN: 2079-701X
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4e432d4d4544534f5645542d41525449434c452d323032322d31362d31382d302d3134312d313436/