Story M.J. Essential sufficiency of zinc, ω-3 polyunsaturated fatty acids, vitamin D and magnesium for prevention and treatment of COVID-19, diabetes, cardiovascular diseases, lung diseases and cancer. Biochimie. 2021;187:94–109. https://doi.org/10.1016/j.biochi.2021.05.013..
DOI: 10.1016/j.biochi.2021.05.013
Nedjimi B. Can trace element supplementations (Cu, Se, and Zn) enhance human immunity against COVID-19 and its new variants? Beni Suef Univ J Basic Appl Sci. 2021;10(1):33. https://doi.org/10.1186/s43088-021-00123-w..
DOI: 10.1186/s43088-021-00123-w
Ющук Н.Д., Маев И.В., Гуревич К.Г. (ред.) Здоровый образ жизни и профилактика заболеваний. М.: Практика; 2019. 536 с.
Беликина Д.В., Малышева Е.С., Петров А.В., Некрасова Т.А., Некаева Е.С., Лаврова А.Е. и др. COVID-19 при сопутствующем сахарном диабете: особенности клинического течения, метаболизма, воспалительных и коагуляционных нарушений. Современные технологии в медицине. 2020;(5):6–18. https://doi.org/10.17691/stm2020.12.5.01..
DOI: 10.17691/stm2020.12.5.01
Ng W.H., Tipih T., Makoah N.A., Vermeulen J.G., Goedhals D., Sempa J.B. et al. Comorbidities in SARS-CoV-2 Patients: a Systematic Review and MetaAnalysis. mBio. 2021;12(1):e03647–20. https://doi.org/10.1128/mBio.03647-20..
DOI: 10.1128/mBio.03647-20
Cheng S., Zhao Y., Wang F., Chen Y., Kaminga A.C., Xu H. Comorbidities’ potential impacts on severe and non-severe patients with COVID-19: A systematic review and meta-analysis. Medicine (Baltimore). 2021;100(12):e24971. https://doi.org/10.1097/MD.0000000000024971..
DOI: 10.1097/MD.0000000000024971
Jeong I.K., Yoon K.H., Lee M.K. Diabetes and COVID-19: Global and regional perspectives. Diabetes Res Clin Pract. 2020;166:108303. https://doi.org/10.1016/j.diabres.2020.108303..
DOI: 10.1016/j.diabres.2020.108303
Громова О.А. Торшин И.Ю. Важность цинка для поддержания активности белков врожденного противовирусного иммунитета: анализ публикаций, посвященных COVID-19. Профилактическая медицина. 2020;(3):131–139. https://doi.org/10.17116/profmed202023031131..
DOI: 10.17116/profmed202023031131
Mercola J., Grant W.B., Wagner C.L. Evidence Regarding Vitamin D and Risk of COVID-19 and Its Severity. Nutrients. 2020;12(11):3361. https://doi.org/10.3390/nu12113361..
DOI: 10.3390/nu12113361
Bae M., Kim H. Mini-Review on the Roles of Vitamin C, Vitamin D, and Selenium in the Immune System against COVID-19. Molecules. 2020;25(22):5346. https://doi.org/10.3390/molecules25225346..
DOI: 10.3390/molecules25225346
Zeng H.L., Yang Q., Yuan P., Wang X., Cheng L. Associations of essential and toxic metals/metalloids in whole blood with both disease severity and mortality in patients with COVID-19. FASEB J. 2021;35(3):e21392. https://doi.org/10.1096/fj.202002346RR..
DOI: 10.1096/fj.202002346RR
Samad N., Sodunke T.E., Abubakar A.R., Jahan I., Sharma P., Islam S. et al. The Implications of Zinc Therapy in Combating the COVID-19 Global Pandemic. J Inflamm Res. 2021;14:527–550. https://doi.org/10.2147/JIR.S295377..
DOI: 10.2147/JIR.S295377
Doboszewska U., Wlaź P., Nowak G., Młyniec K. Targeting zinc metalloenzymes in coronavirus disease 2019. Br J Pharmacol. 2020;177(21): 4887–4898. https://doi.org/10.1111/bph.15199..
DOI: 10.1111/bph.15199
Razzaque M.S. COVID-19 Pandemic: Can Maintaining Optimal Zinc Balance Enhance Host Resistance? Tohoku J Exp Med. 2020;251(3): 175–181. https://doi.org/10.1620/tjem.251.175..
DOI: 10.1620/tjem.251.175
Moghaddam A., Heller R.A., Sun Q., Seelig J., Cherkezov A., Seibert L. et al. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients. 2020;12(7):2098. https://doi.org/10.3390/nu12072098..
DOI: 10.3390/nu12072098
Zhang J., Taylor E.W., Bennett K., Saad R., Rayman M.P. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr. 2020;111(6):1297–1299. https://doi.org/10.1093/ajcn/nqaa095..
DOI: 10.1093/ajcn/nqaa095
Bermano G., Méplan C., Mercer D.K., Hesketh J.E. Selenium and viral infection: are there lessons for COVID-19? Br J Nutr. 2021;125(6):618–627. https://doi.org/10.1017/S0007114520003128..
DOI: 10.1017/S0007114520003128
Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3..
DOI: 10.1016/S0140-6736(20)30566-3
Habib H.M., Ibrahim S., Zaim A., Ibrahim W.H. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Biomed Pharmacother. 2021;136:111228. https://doi.org/10.1016/j.biopha.2021.111228..
DOI: 10.1016/j.biopha.2021.111228
Hackler J., Heller R.A., Sun Q., Schwarzer M., Diegmann J., Bachmann M. et al. Relation of Serum Copper Status to Survival in COVID-19. Nutrients. 2021;13(6):1898. https://doi.org/10.3390/nu13061898..
DOI: 10.3390/nu13061898
Raha S., Mallick R., Basak S., Duttaroy A.K. Is copper beneficial for COVID-19 patients? Med Hypotheses. 2020;142:109814. https://doi.org/10.1016/j.mehy.2020.109814..
DOI: 10.1016/j.mehy.2020.109814
de Almeida Brasiel P.G. The key role of zinc in elderly immunity: A possible approach in the COVID-19 crisis. Clin Nutr ESPEN. 2020;38: 65–66. https://doi.org/10.1016/j.clnesp.2020.06.003..
DOI: 10.1016/j.clnesp.2020.06.003
Dharmalingam K., Birdi A., Tomo S., Sreenivasulu K., Charan J., Yadav D. et al. Trace Elements as Immunoregulators in SARS-CoV-2 and Other Viral Infections. Indian J Clin Biochem. 2021;36(4):1–11. https://doi.org/10.1007/s12291-021-00961-6..
DOI: 10.1007/s12291-021-00961-6
Ansari R.A., Rabiu K.M. Oxidative Cascade Prognosis, Antioxidants & Selected Trace Elements in COVID-19. Open Journal of Applied Sciences. 2020;10:688–700. https://doi.org/10.4236/ojapps.2020.1011048..
DOI: 10.4236/ojapps.2020.1011048
Даренская М.А., Колесникова Л.И., Колесников С.И. COVID-19: окислительный стресс и актуальность антиоксидантной терапии. Вестник Российской академии медицинских наук. 2020;(4):318–325. https://doi.org/10.15690/vramn1360..
DOI: 10.15690/vramn1360
Muhammad Y., Kani Y.A., Iliya S., Muhammad J.B., Binji A., El-Fulaty Ahmad A. et al. Deficiency of antioxidants and increased oxidative stress in COVID-19 patients: A cross-sectional comparative study in Jigawa, Northwestern Nigeria. SAGE Open Med. 2021;9:2050312121991246. https://doi.org/10.1177/2050312121991246..
DOI: 10.1177/2050312121991246
Zeng H.L., Zhang B., Wang X., Yang Q., Cheng L. Urinary trace elements in association with disease severity and outcome in patients with COVID-19. Environ Res. 2021;194:110670. https://doi.org/10.1016/j.envres.2020.110670..
DOI: 10.1016/j.envres.2020.110670
Skalny A.V., Timashev P.S., Aschner M., Aaseth J., Chernova L.N., Belyaev V.E. et al. Serum Zinc, Copper, and Other Biometals Are Associated with COVID-19 Severity Markers. Metabolites. 2021;11(4):244. https://doi.org/10.3390/metabo11040244..
DOI: 10.3390/metabo11040244
Shrivastava R., Upreti R.K., Seth P.K., Chaturvedi U.C. Effects of chromium on the immune system. FEMS Immunol Med Microbiol. 2002;34(1):1–7. https://doi.org/10.1111/j.1574-695X.2002.tb00596.x..
DOI: 10.1111/j.1574-695X.2002.tb00596.x
Terpiłowska S., Siwicki A.K. Chromium(III) and iron(III) inhibits replication of DNA and RNA viruses. Biometals. 2017;30(4):565–574. https://doi.org/10.1007/s10534-017-0027-9..
DOI: 10.1007/s10534-017-0027-9
Higashiyama M., Sugita A., Koganei K., Wanatabe K., Yokoyama Y., Uchino M. et al. Management of elderly ulcerative colitis in Japan. J Gastroenterol. 2019;54(7):571–586. https://doi.org/10.1007/s00535-019-01580-y..
DOI: 10.1007/s00535-019-01580-y
Akiyama H. Aging well: an update. Nutr Rev. 2020;78(12 Suppl.):3–9. https://doi.org/10.1093/nutrit/nuaa084..
DOI: 10.1093/nutrit/nuaa084
Amengual O., Atsumi T. COVID-19 pandemic in Japan. Rheumatol Int. 2021;41(1):1–5. https://doi.org/10.1007/s00296-020-04744-9..
DOI: 10.1007/s00296-020-04744-9
Verheesen R.H., Traksel R.A.M. Iodine, a preventive and curative agent in the COVID-19 pandemic? Med Hypotheses. 2020;144:109860. https://doi.org/10.1016/j.mehy.2020.109860..
DOI: 10.1016/j.mehy.2020.109860
Tamama K. Potential benefits of dietary seaweeds as protection against COVID19. Nutr Rev. 2021;79(7):814–823. https://doi.org/10.1093/nutrit/nuaa126..
DOI: 10.1093/nutrit/nuaa126
Fischer A.J., Lennemann N.J., Krishnamurthy S., Pócza P., Durairaj L., Launspach J.L. et al. Enhancement of respiratory mucosal antiviral defenses by the oxidation of iodide. Am J Respir Cell Mol Biol. 2011;45(4): 874–881. https://doi.org/10.1165/rcmb.2010-0329OC..
DOI: 10.1165/rcmb.2010-0329OC
Hoang B.X., Hoang H.Q., Han B. Zinc Iodide in combination with Dimethyl Sulfoxide for treatment of SARS-CoV-2 and other viral infections. Med Hypotheses. 2020;143:109866. https://doi.org/10.1016/j.mehy.2020.109866..
DOI: 10.1016/j.mehy.2020.109866
Тутельян В.А., Онищенко Г.Г., Гуревич К.Г., Погожева А.В. Здоровое питание: роль БАД. М.: ГЭОТАР-Медиа; 2020. 480 c.
Stathis C., Victoria N., Loomis K., Nguyen S.A., Eggers M., Septimus E., Safdar N. Review of the use of nasal and oral antiseptics during a global pandemic. Future Microbiol. 2021;16(2):119–130. https://doi.org/10.2217/fmb-2020-0286..
DOI: 10.2217/fmb-2020-0286
Burton M.J., Clarkson J.E., Goulao B., Glenny A.M., McBain A.J., Schilder A.G. et al. Antimicrobial mouthwashes (gargling) and nasal sprays administered to patients with suspected or confirmed COVID-19 infection to improve patient outcomes and to protect healthcare workers treating them. Cochrane Database Syst Rev. 2020;9(9):CD013627. https://doi.org/10.1002/14651858.CD013627.pub2..
DOI: 10.1002/14651858.CD013627.pub2
Kronbichler A., Effenberger M., Eisenhut M., Lee K.H., Shin J.I. Seven recommendations to rescue the patients and reduce the mortality from COVID-19 infection: An immunological point of view. Autoimmun Rev. 2020;19(7):102570. https://doi.org/10.1016/j.autrev.2020.102570..
DOI: 10.1016/j.autrev.2020.102570
Domingo J.L., Marquès M. The effects of some essential and toxic metals/ metalloids in COVID-19: A review. Food Chem Toxicol. 2021;152:112161. https://doi.org/10.1016/j.fct.2021.112161..
DOI: 10.1016/j.fct.2021.112161
Skalny A.V., Lima T.R.R., Ke T., Zhou J.C., Bornhorst J., Alekseenko S.I. et al. Toxic metal exposure as a possible risk factor for COVID-19 and other respiratory infectious diseases. Food Chem Toxicol. 2020;146:111809. https://doi.org/10.1016/j.fct.2020.111809..
DOI: 10.1016/j.fct.2020.111809
Sorahan T., Lister A., Gilthorpe M.S., Harrington J.M. Mortality of copper cadmium alloy workers with special reference to lung cancer and non-malignant diseases of the respiratory system, 1946–92. Occup Environ Med. 1995;52(12):804–812. https://doi.org/10.1136/oem.52.12.804..
DOI: 10.1136/oem.52.12.804
Oh C.M., Oh I.H., Lee J.K., Park Y.H., Choe B.K., Yoon T.Y., Choi J.M. Blood cadmium levels are associated with a decline in lung function in males. Environ Res. 2014;132:119–25. https://doi.org/10.1016/j.envres.2014.04.008..
DOI: 10.1016/j.envres.2014.04.008
Park S.K., Sack C., Sirén M.J., Hu H. Environmental Cadmium and Mortality from Influenza and Pneumonia in U.S. Adults. Environ Health Perspect. 2020;128(12):127004. https://doi.org/10.1289/EHP7598..
DOI: 10.1289/EHP7598
Шинетова Л.Е., Бекеева С.А. Современные представления о влиянии различных форм ртути на организм. Вестник КазНМУ. 2017;(1):370–375. Режим доступа: https://cyberleninka.ru/article/n/sovremennyepredstavleniya-o-vliyanii-razlichnyh-form-rtuti-na-organizm/viewer.https://cyberleninka.ru/article/n/sovremennyepredstavleniya-o-vliyanii-razlichnyh-form-rtuti-na-organizm/viewer
Шинетова Л.Е., Бекеева С.А. Современные представления о влиянии различных форм ртути на организм. Вестник КазНМУ. 2017;(1):370–375. Режим доступа: https://cyberleninka.ru/article/n/sovremennyepredstavleniya-o-vliyanii-razlichnyh-form-rtuti-na-organizm/viewer.https://cyberleninka.ru/article/n/sovremennyepredstavleniya-o-vliyanii-razlichnyh-form-rtuti-na-organizm/viewer
Pollard K.M., Cauvi D.M., Toomey C.B., Hultman P., Kono D.H. Mercuryinduced inflammation and autoimmunity. Biochim Biophys Acta Gen Subj. 2019;1863(12):129299. https://doi.org/10.1016/j.bbagen.2019.02.001..
DOI: 10.1016/j.bbagen.2019.02.001
Kuraś R., Janasik B., Wąsowicz W., Stanisławska M. Revision of reciprocal action of mercury and selenium. Int J Occup Med Environ Health. 2018;31(5):575–592. https://doi.org/10.13075/ijomeh.1896.01278..
DOI: 10.13075/ijomeh.1896.01278
Kaczyńska K., Walski M., Szereda-Przestaszewska M. Long-term ultrastructural indices of lead intoxication in pulmonary tissue of the rat. Microsc Microanal. 2013;19(6):1410–1415. https://doi.org/10.1017/S1431927613013305..
DOI: 10.1017/S1431927613013305
Шестова Г.В., Ливанов Г.А., Остапенко Ю.Н., Иванова Т.М., Сизова К.В. Опасность хронических отравлений свинцом для здоровья населения. Медицина экстремальных ситуаций. 2012;(4):65–76. Режим доступа: https://j-mes.ru/arkhiv-zhurnalov/4-2012-dekabr/.https://j-mes.ru/arkhiv-zhurnalov/4-2012-dekabr/
Шестова Г.В., Ливанов Г.А., Остапенко Ю.Н., Иванова Т.М., Сизова К.В. Опасность хронических отравлений свинцом для здоровья населения. Медицина экстремальных ситуаций. 2012;(4):65–76. Режим доступа: https://j-mes.ru/arkhiv-zhurnalov/4-2012-dekabr/.https://j-mes.ru/arkhivzhurnalov/4-2012-dekabr/
Chowdhury T., Roymahapatra G., Mandal S.M. In Silico Identification of a Potent Arsenic Based Approved Drug Darinaparsin against SARS-CoV-2: Inhibitor of RNA Dependent RNA polymerase (RdRp) and Essential Proteases. Infect Disord Drug Targets. 2021;21(4):608–618. https://doi.org/10.2174/1871526520666200727153643..
DOI: 10.2174/1871526520666200727153643
Barh D., Tiwari S., Weener M.E., Azevedo V., Góes-Neto A., Gromiha M.M., Ghosh P. Multi-omics-based identification of SARS-CoV-2 infection biology and candidate drugs against COVID-19. Comput Biol Med. 2020;126:104051. https://doi.org/10.1016/j.compbiomed.2020.104051..
DOI: 10.1016/j.compbiomed.2020.104051
Shahzad B., Mughal M.N., Tanveer M., Gupta D., Abbas G. Is lithium biologically an important or toxic element to living organisms? An overview. Environ Sci Pollut Res Int. 2017;24(1):103–115. https://doi.org/10.1007/s11356-016-7898-0..
DOI: 10.1007/s11356-016-7898-0
Spuch C., López-García M., Rivera-Baltanás T., Rodrígues-Amorím D., Olivares J.M. Does Lithium Deserve a Place in the Treatment Against COVID-19? A Preliminary Observational Study in Six Patients, Case Report. Front Pharmacol. 2020;11:557629. https://doi.org/10.3389/fphar.2020.557629..
DOI: 10.3389/fphar.2020.557629
Murru A., Manchia M., Hajek T., Nielsen R.E., Rybakowski J.K., Sani G. et al. Lithium’s antiviral effects: a potential drug for CoViD-19 disease? Int J Bipolar Disord. 2020;8(1):21. https://doi.org/10.1186/s40345-020-00191-4..
DOI: 10.1186/s40345-020-00191-4
Nowak J.K, Walkowiak J. Lithium and coronaviral infections. A scoping review. F1000Res. 2020;9:93. https://doi.org/10.12688/f1000research.22299.2..
DOI: 10.12688/f1000research.22299.2
Gómez-Bernal G. Lithium for the 2019 novel coronavirus. Med Hypotheses. 2020;142:109822. https://doi.org/10.1016/j.mehy.2020.109822..
DOI: 10.1016/j.mehy.2020.109822
Bach R.O. Lithium and viruses. Med Hypotheses. 1987;23(2):157–170. https://doi.org/10.1016/0306-9877(87)90152-6..
DOI: 10.1016/0306-9877(87)90152-6
Rajkumar R.P. Lithium as a candidate treatment for COVID-19: Promises and pitfalls. Drug Dev Res. 2020;81(7):782–785. https://doi.org/10.1002/ddr.21701..
DOI: 10.1002/ddr.21701
Suwanwongse K., Shabarek N. Lithium Toxicity in Two Coronavirus Disease 2019 (COVID-19) Patients. Cureus. 2020;12(5):e8384. https://doi.org/10.7759/cureus.8384..
DOI: 10.7759/cureus.8384
Danışman Sonkurt M., Sonkurt H.O. Lithium Intoxication in COVID-19: A Case Report. Psychiatr Danub. 2021;33(2):248–249. https://doi.org/10.24869/psyd.2021.248..
DOI: 10.24869/psyd.2021.248