Размер шрифта
Цветовая схема
Изображения
Форма
Межсимвольный интервал
Межстрочный интервал
стандартные настройки
обычная версия сайта
закрыть
  • Вход
  • Регистрация
  • Помощь
Выбрать БД
Простой поискРасширенный поискИстория поисков
Главная / Результаты поиска
СтатьяИскать документыПерейти к записи. 2022; № 18: 20–28. DOI:10.21518/2079-701X-2022-16-18-20-28
Новые возможности терапии тяжелой бронхиальной астмы
Искать документыПерейти к записи[1,2]
Искать документыПерейти к записи[1,2]
Искать документыПерейти к записи[1,2]
Искать документыПерейти к записи[2]
Искать документыПерейти к записи[2]
Искать документыПерейти к записи[2]
Искать документыПерейти к записи[2]
Аффилированные организации
[1]Искать документыПерейти к записи
[2]Искать документыПерейти к записи
Аннотация
В обзоре приведены современные данные о новых возможностях терапии тяжелой бронхиальной астмы (БА). Распространенность тяжелой астмы составляет от 3 до 10[%], но именно для лечения данной группы пациентов расходуется более 80[%] средств, выделяемых на лечение заболевания в целом. Пациенты c тяжелой БА составляют особую категорию, так как традиционная терапия, эффективная у большинства больных БА, не позволяет контролировать заболевание. Гетерогенность и многоликость заболевания диктуют необходимость разработки персонифицированного подхода, который невозможен без значительных финансовых и кадровых вложений. Понимание патогенетических путей, лежащих в основе развития воспаления при астме, явилось толчком к разработке таргетной терапии. Было разработано и одобрено пять генноинженерных иммунобиологических препаратов для пациентов с тяжелой аллергической и (или) эозинофильной БА. Выбор правильного лекарства должен зависеть от правильного диагноза тяжелой астмы, понимания эндотипа пациента и учета специфических для него факторов. Стоит отметить, что все одобренные биопрепараты и большинство находящихся в настоящее время в разработке сосредоточены на Т2-иммунном ответе. Безусловно, существует огромный пул пациентов, у которых регистрируется другой тип воспаления. И поэтому, несмотря на быстрое развитие знаний в области таргетной терапии БА, необходимы дальнейшая расшифровка и углубление знаний о патофизиологических механизмах, в частности не Т2-воспаления, а также анализ опыта применения существующих препаратов для четкого понимания показаний и оценки эффективности и безопасности существующих методов лечения.
Ключевые слова
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Рубрики Mesh
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Искать документыПерейти к записи
Литература

Corren J. Asthma phenotypes and endotypes: an evolving paradigm for classification. Discov Med. 2013;15(83):243–249. Available at: https://www.discoverymedicine.com/Jonathan-Corren/2013/04/26/asthmaphenotypes-and-endotypes-an-evolving-paradigm-for-classification/.https://www.discoverymedicine.com/Jonathan-Corren/2013/04/26/asthmaphenotypes-and-endotypes-an-evolving-paradigm-for-classification/

Corren J. Asthma phenotypes and endotypes: an evolving paradigm for classification. Discov Med. 2013;15(83):243–249. Available at: https://www.discoverymedicine.com/Jonathan-Corren/2013/04/26/asthmaphenotypes-and-endotypes-an-evolving-paradigm-for-classification/.https://www.discoverymedicine.com/Jonathan-Corren/2013/04/26/asthmaphenotypes-and-endotypes-an-evolving-paradigm-for-classification/

Thomas M., Gruffydd-Jones K., Stonham C., Ward S., Macfarlane T.V. Assessing asthma control in routine clinical practice: use of the Royal College of Physicians ‘3 questions’. Prim Care Respir J. 2009;18(2):83–88. https://doi.org/10.3132/pcrj.2008.00045..
DOI: 10.3132/pcrj.2008.00045

Геппе Н.А., Колосова Н.Г., Кондюрина Е.Г., Малахов А.Б., Мизерницкий Ю.Л., Ревякина В.А. (ред.). Национальная программа «Бронхиальная астма у детей. Стратегия лечения и профилактика». 5-е изд. М.: Оригиналмакет; 2017. 160 с. Режим доступа: http://astgmu.ru/wp-content/uploads/2018/10/Natsionalnaya-programma-BA-u-detej.-Strategiyalecheniya-i-profilaktika.pdf.http://astgmu.ru/wp-content/uploads/2018/10/Natsionalnaya-programma-BA-u-detej.-Strategiyalecheniya-i-profilaktika.pdf

Геппе Н.А., Колосова Н.Г., Кондюрина Е.Г., Малахов А.Б., Мизерницкий Ю.Л., Ревякина В.А. (ред.). Национальная программа «Бронхиальная астма у детей. Стратегия лечения и профилактика». 5-е изд. М.: Оригиналмакет; 2017. 160 с. Режим доступа: http://astgmu.ru/wp-content/uploads/2018/10/Natsionalnaya-programma-BA-u-detej.-Strategiyalecheniya-i-profilaktika.pdf.http://astgmu.ru/wp-content/uploads/2018/10/Natsionalnaya-programma-BA-u-detej.-Strategiyalecheniya-i-profilaktika.pdf

Masoli M., Fabian D., Holt S., Beasley R. Global Initiative for Asthma (GINA) Program. The global burden of asthma: executive summary of the GINA Dissemination Committee Report. Allergy. 2004;59(5):469–478. https://doi.org/10.1111/j.1398-9995.2004.00526.x..
DOI: 10.1111/j.1398-9995.2004.00526.x

Barnes P.J., Adcock I.M. Glucocorticoid resistance in inflammatory diseases. Lancet. 2009;373(9678):1905–1917. https://doi.org/10.1016/S0140-6736(09)60326-3..
DOI: 10.1016/S0140-6736(09)60326-3

Pepper A.N., Renz H., Casale T.B., Garn H. Biologic Therapy and Novel Molecular Targets of Severe Asthma. J Allergy Clin Immunol Pract. 2017;5(4):909–916. https://doi.org/10.1016/j.jaip.2017.04.038..
DOI: 10.1016/j.jaip.2017.04.038

Lötvall J., Akdis C.A., Bacharier L.B., Bjermer L., Casale T.B., Custovic A. et al. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol. 2011;127(2):355–360. https://doi.org/10.1016/j.jaci.2010.11.037..
DOI: 10.1016/j.jaci.2010.11.037

Carr T.F., Zeki A.A., Kraft M. Eosinophilic and Noneosinophilic Asthma. Am J Respir Crit Care Med. 2018;197(1):22–37. https://doi.org/10.1164/rccm.201611-2232PP..
DOI: 10.1164/rccm.201611-2232PP

Kips J.C., O’Connor B.J., Langley S.J. Woodcock A., Kerstjens H.A.M., Postma D.S. et al. Effect of SCH55700, a humanized anti-human interleukin-5 antibody, in severe persistent asthma: A pilot study. Am J Respir Crit Care Med. 2003;167(12):1655–1659. https://doi.org/10.1164/rccm.200206-525OC..
DOI: 10.1164/rccm.200206-525OC

Svenningsen S., Nair P. Asthma Endotypes and an overview of targeted therapy for asthma. Front Med (Lausanne). 2017;4:158. https://doi.org/10.3389/fmed.2017.00158..
DOI: 10.3389/fmed.2017.00158

Moore W.C., Meyers D.A., Wenzel S.E., Teague W.G., Li H., Li X. et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med. 2010;181(4):315–323. https://doi.org/10.1164/rccm.200906-0896OC..
DOI: 10.1164/rccm.200906-0896OC

Loza M.J., Djukanovic R., Chung K.F., Horowitz D., Ma K., Branigan P. et al. Validated and longitudinally stable asthma phenotypes based on cluster analysis of the ADEPT study. Respir Res. 2016;17(1):165. https://doi.org/10.1186/s12931-016-0482-9..
DOI: 10.1186/s12931-016-0482-9

Lefaudeux D., De Meulder B., Loza M.J., Peffer N., Rowe A., Baribaud F. et al. U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. J Allergy Clin Immunol. 2016;139(6):1797–1807. https://doi.org/10.1016/j.jaci.2016.08.048..
DOI: 10.1016/j.jaci.2016.08.048

Haldar P., Brightling C.E., Hargadon B., Gupta S., Monteiro W., Sousa A. et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med. 2009;360(10):973–984. https://doi.org/10.1056/NEJMoa0808991..
DOI: 10.1056/NEJMoa0808991

Wenzel S. Severe asthma: from characteristics to phenotypes to endotypes. Clin Exp Allergy. 2012;42(5):650–658. https://doi.org/10.1111/j.1365-2222.2011.03929.x..
DOI: 10.1111/j.1365-2222.2011.03929.x

Nair P. Anti-interleukin-5 monoclonal antibody to treat severe eosinophilic asthma. N Engl J Med. 2014;371(13):1249–1251. https://doi.org/10.1056/NEJMe1408614..
DOI: 10.1056/NEJMe1408614

Xu X., Reitsma S., Wang D.Y., Fokkens W.J. Highlights in the advances of chronic rhinosinusitis. Allergy. 2021;76(11):3349–3358. https://doi.org/10.1111/all.14892..
DOI: 10.1111/all.14892

Asano K., Ueki S., Tamari M., Imoto Y., Fujieda S., Taniguchi M. Adult‐onset eosinophilic airway diseases. Allergy. 2020;75(12):3087–3099. https://doi.org/10.1111/all.14620..
DOI: 10.1111/all.14620

Vinall S.L., Townsend E.R., Pettipher R. A paracrine role for chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) in mediating chemotactic activation of CRTH2+ CD4+ T helper type 2 lymphocytes. Immunology. 2007;121(4):577–584. https://doi.org/10.1111/j.1365-2567.2007.02606.x..
DOI: 10.1111/j.1365-2567.2007.02606.x

Barnes P.J. The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Invest. 2008;118(11):3546–3556. https://doi.org/10.1172/JCI36130..
DOI: 10.1172/JCI36130

Robinson D., Humbert M., Buhl R., Cruz A.A., Inoue H., Korom S. et al. Revisiting Type 2-high and Type 2-low airway inflammation in asthma: current knowledge and therapeutic implications. Clin Exp Allergy. 2017;47(2):161–175. https://doi.org/10.1111/cea.12880..
DOI: 10.1111/cea.12880

Cosmi L., Liotta F., Maggi L., Annunziato F. Role of type 2innate lymphoid cells in allergic diseases. Curr Allergy Asthma Rep. 2017;17(10):66. https://doi.org/10.1007/s11882-017-0735-9..
DOI: 10.1007/s11882-017-0735-9

Hammad H., de Heer H.J., Soullie T., Hoogsteden H.C., Trottein F., Lambrecht B.N. Prostaglandin D2 inhibits airway dendritic cell migration and function in steady state conditions by selective activation of the D prostanoid receptor 1. J Immunol. 2003;171(8):3936–3940. https://doi.org/10.4049/jimmunol.171.8.3936..
DOI: 10.4049/jimmunol.171.8.3936

Faveeuw C., Gosset P., Bureau F., Angeli V., Hirai H., Maruyama T. et al. Prostaglandin D2 inhibits the production of interleukin-12 in murine dendritic cells through multiple signaling pathways. Eur J Immunol. 2003;33(4):889–898. https://doi.org/10.1002/eji.200323330..
DOI: 10.1002/eji.200323330

Gosset P., Pichavant M., Faveeuw C., Bureau F., Tonnel A.B., Trottein F. Prostaglandin D2 affects the differentiation and functions of human dendritic cells: impact on the T cell response. Eur J Immunol. 2005;35(5):1491–1500. https://doi.org/10.1002/eji.200425319..
DOI: 10.1002/eji.200425319

Tanaka K., Hirai H., Takano S., Nakamura M., Nagata K. Effects of prostaglandin D2 on helper T cell functions. Biochem Biophys Res Commun. 2004;316(4):1009–1014. https://doi.org/10.1016/j.bbrc.2004.02.151..
DOI: 10.1016/j.bbrc.2004.02.151

Wills-Karp M., Finkelman F.D. Untangling the complex web of IL-4- and IL-13-mediated signaling pathways. Sci Signal. 2008;1(51):pe55. https://doi.org/10.1126/scisignal.1.51.pe55..
DOI: 10.1126/scisignal.1.51.pe55

Bartemes K.R., Kephart G.M., Fox S.J., Kita H. Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J Allergy Clin Immunol. 2014;134(3):671–678.e4. https://doi.org/10.1016/j.jaci.2014.06.024..
DOI: 10.1016/j.jaci.2014.06.024

Flood-Page P., Swenson C., Faiferman I., Matthews J., Williams M., Brannick L. et al. A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am J Respir Crit Care Med. 2007;176(11):1062–1071. https://doi.org/10.1164/rccm.200701-085OC..
DOI: 10.1164/rccm.200701-085OC

Hirose K., Iwata A., Tamachi T., Nakajima H. Allergic airway inflammation: key players beyond the Th2 cell pathway. Immunol Rev. 2017;278(1):145– 161. https://doi.org/10.1111/imr.12540..
DOI: 10.1111/imr.12540

Khorasanizadeh M., Eskian M., Assa’ad A.H., Camargo C.A., Jr,, Rezaei N. Efficacy and Safety of Benralizumab, a Monoclonal Antibody against IL-5Rα, in Uncontrolled Eosinophilic Asthma. Int Rev Immunol. 2016;35(4):294–311. https://doi.org/10.3109/08830185.2015.1128901..
DOI: 10.3109/08830185.2015.1128901

Nair P., Pizzichini M.M.M., Kjarsgaard M., Inman M.D., Efthimiadis A., Pizzichini E. et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med. 2009;360(10):985–993. https://doi.org/10.1056/NEJMoa0805435..
DOI: 10.1056/NEJMoa0805435

Samitas K., Zervas E., Gaga M. T2-low asthma: currentapproach to diagnosis and therapy. Curr Opin Pulm Med. 2017;23(1):48–55. https://doi.org/10.1097/MCP.0000000000000342..
DOI: 10.1097/MCP.0000000000000342

Licari A., Castagnoli R., Brambilla I., Marseglia A., Tosca M.A., Marseglia G.L. et al. New approaches for identifyingand testing potential new anti-asthma agents. Expert Opin Drug Discov. 2018;13(1):51–63. https://doi.org/10.1080/17460441.2018.1396315..
DOI: 10.1080/17460441.2018.1396315

Saglani S., Lloyd C.M. Eosinophils in the pathogenesis of paediatric severe asthma. Curr Opin Allergy Clin Immunol. 2014;14(2):143–148. https://doi.org/10.1097/ACI.0000000000000045..
DOI: 10.1097/ACI.0000000000000045

Schleich F.N., Manise M., Sele J., Henket M., Seidel L., Louis R. Distribution of sputum cellular phenotype in a large asthma cohort: predicting factors for eosinophilic vs neutrophilic inflammation. BMC Pulm Med. 2013;13:11. https://doi.org/10.1186/1471-2466-13-11..
DOI: 10.1186/1471-2466-13-11

Cowan D.C., Taylor D.R., Peterson L.E., Cowan J.O., Palmay R., Williamson A. et al. Biomarker-based asthma phenotypes of corticosteroid response. J Allergy Clin Immunol. 2015;135(4):877–883.e1. https://doi.org/10.1016/j.jaci.2014.10.026..
DOI: 10.1016/j.jaci.2014.10.026

Price D., Wilson A.M., Chisholm A., Rigazio A., Burden A., Thomas M. et al. Predicting frequent asthma exacerbations using blood eosinophil count and other patient data routinely available in clinical practice. J Asthma Allergy. 2016;9:1–12. https://doi.org/10.2147/JAA.S97973..
DOI: 10.2147/JAA.S97973

Busse W., Spector S., Rosen K., Wang Y., Alpan O. High eosinophil count: a potential biomarker for assessing successful omalizumab treatment effects. J Allergy Clin Immunol. 2013;132(2):485–486.e11. https://doi.org/10.1016/j.jaci.2013.02.032..
DOI: 10.1016/j.jaci.2013.02.032

Wagener A.H., de Nijs S.B., Lutter R., Sousa A.R., Weersink E.J., Bel E.H. et al. External validation of blood eosinophils, FE(NO) and serum periostin as surrogates for sputum eosinophils in asthma. Thorax. 2015;70(2):115– 120. https://doi.org/10.1136/thoraxjnl-2014-205634..
DOI: 10.1136/thoraxjnl-2014-205634

Ullmann N., Bossley C.J., Fleming L., Silvestri M., Bush A., Saglani S. Blood eosinophil counts rarely reflect airway eosinophilia in children with severe asthma. Allergy. 2013;68(3):402–406. https://doi.org/10.1111/all.12101..
DOI: 10.1111/all.12101

Bjerregaard A., Laing I.A., Backer V., Sverrild A., Khoo S.K., Chidlow G. et al. High fractional exhaled nitric oxide and sputum eosinophils are associated with an increased risk of future virus-induced exacerbations: a prospective cohort study. Clin Exp Allergy. 2017;47(8):1007–1013. https://doi.org/10.1111/cea.12935..
DOI: 10.1111/cea.12935

Baraldi E., de Jongste J.C. European Respiratory Society/American Thoracic Society (ERS/ATS). Task Force. Measurement of exhaled nitric oxide in children, 2001. Eur Respir J. 2002;20(1):223–237. https://doi.org/10.1183/09031936.02.00293102..
DOI: 10.1183/09031936.02.00293102

Dweik R.A., Boggs P.B., Erzurum S.C., Irvin C.G., Leigh M.W., Lundberg J.O. et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med. 2011;184(5):602–615. https://doi.org/10.1164/rccm.9120-11ST..
DOI: 10.1164/rccm.9120-11ST

Pijnenburg M.W., De Jongste J.C. Exhaled nitric oxide in childhood asthma: a review. Clin Exp Allergy. 2008;38(2):246–259. https://doi.org/10.1111/j.1365-2222.2007.02897.x..
DOI: 10.1111/j.1365-2222.2007.02897.x

Giannetti M.P., Cardet J.C. Interleukin-5 antagonists usher in a new generation of asthma therapy. Curr Allergy Asthma Rep. 2016;16(11):80. https://doi.org/10.1007/s11882-016-0662-1..
DOI: 10.1007/s11882-016-0662-1

Nannini L.J. Treat to target approach for asthma. J Asthma. 2020;57(6):687– 690. https://doi.org/10.1080/02770903.2019.1591443..
DOI: 10.1080/02770903.2019.1591443

Normansell R., Walker S., Milan S.J., Walters E.H., Nair P. Omalizumab for asthma in adults and children. Cochrane Database Syst Rev. 2014;(1):CD003559. https://doi.org/10.1002/14651858.CD003559.pub4..
DOI: 10.1002/14651858.CD003559.pub4

Farne H.A., Wilson A., Powell C., Bax L., Milan S.J. Anti-IL5 therapies for asthma. Cochrane Database Syst Rev. 2017;(9):CD010834. https://doi.org/10.1002/14651858.CD010834.pub3..
DOI: 10.1002/14651858.CD010834.pub3

Zayed Y., Kheiri B., Banifadel M., Hicks M., Aburahma A., Hamid K. et al. Dupilumab safety and efficacy in uncontrolled asthma: a systematic review and meta-analysis of randomized clinical trials. J Asthma. 2019;56(10):1110–1119. https://doi.org/10.1080/02770903.2018.1520865..
DOI: 10.1080/02770903.2018.1520865

Fajt M.L., Wenzel S.E. Asthma phenotypes and the use of biologic medications in asthma and allergic disease: the next steps toward personalized care. J Allergy Clin Immunol. 2015;135(2):299–310. https://doi.org/10.1016/j.jaci.2014.12.1871..
DOI: 10.1016/j.jaci.2014.12.1871

Flood-Page P.T., Menzies-Gow A.N., Kay A.B., Robinson D.S. Eosinophil’s role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am J Respir Crit Care Med. 2003;167(2):199–204. https://doi.org/10.1164/rccm.200208-789OC..
DOI: 10.1164/rccm.200208-789OC

Leckie M.J., ten Brinke A., Khan J., Diamant Z., O’Connor B.J., Walls C.M. et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet. 2000;356(9248):2144–2148. https://doi.org/10.1016/s0140-6736(00)03496-6..
DOI: 10.1016/s0140-6736(00)03496-6

Leckie M.J., ten Brinke A., Khan J., Diamant Z., O’Connor B.J., Walls C.M. et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet. 2000;356(9248):2144–2148. https://doi.org/10.1016/s0140-6736(00)03496-6..
DOI: 10.1016/s0140-6736(00)03496-6

Pavord I., Korn S., Howarth P., Bleecker E.R., Buhl R., Keene O.N. et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet. 2012;380(9842):651–659. https://doi.org/10.1016/S0140-6736(12)60988-X..
DOI: 10.1016/S0140-6736(12)60988-X

Hoshino M., Ohtawa J. Effects of adding omalizumab, an anti-immunoglobulin E antibody, on airway wall thickening in asthma. Respiration. 2012;83(6):520–528. https://doi.org/10.1159/000334701..
DOI: 10.1159/000334701

Tajiri T., Niimi A., Matsumoto H., Ito I., Oguma T., Otsuka K. et al. Comprehensive efficacy of omalizumab for severe refractory asthma: a time-series observational study. Ann Allergy Asthma Immunol. 2014;113(4):470–475. https://doi.org/10.1016/j.anai.2014.06.004..
DOI: 10.1016/j.anai.2014.06.004

Tajiri T., Matsumoto H., Hiraumi H., Ikeda H., Morita K., Izuhara K. et al. Efficacy of omalizumab in eosinophilic chronic rhinosinusitis patients with asthma. Ann Allergy Asthma Immunol. 2013;110(5):387–388. https://doi.org/10.1016/j.anai.2013.01.024..
DOI: 10.1016/j.anai.2013.01.024

Wenzel S., Ford L., Pearlman D., Spector S., Sher L., Skobieranda F. et al. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med. 2013;368(26):2455–2466. https://doi.org/10.1056/NEJMoa1304048..
DOI: 10.1056/NEJMoa1304048

Wechsler M.E. Inhibiting IL-4 and IL-13 in difficult-to-control asthma. N Engl J Med. 2013;368(26):2511–2513. https://doi.org/10.1056/NEJMe1305426..
DOI: 10.1056/NEJMe1305426

Garlisi C.G., Kung T.T., Wang P., Minnicozzi M., Umland S.P., Chapman R.W. et al. Effects of chronic anti-interleukin-5 monoclonal antibody treatment in a murine model of pulmonary inflammation. Am J Respir Cell Mol Biol. 1999;20(2):248–255. https://doi.org/10.1165/ajrcmb.20.2.3327..
DOI: 10.1165/ajrcmb.20.2.3327

Ortega H.G., Liu M.C., Pavord I.D., Brusselle G.G., FitzGerald J.M., Chetta A. et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med. 2014;371(13):1198–1207. https://doi.org/10.1056/NEJMoa1403290..
DOI: 10.1056/NEJMoa1403290

Castro M., Mathur S., Hargreave F. et al. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med. 2011;184(10):1125–1132. https://doi.org/10.1164/rccm.201103-0396OC..
DOI: 10.1164/rccm.201103-0396OC

Castro M., Zangrilli J., Wechsler M.E., Bateman E.D., Brusselle G.G., Bardin P. et al. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir Med. 2015;3(5):355–366. https://doi.org/10.1016/S2213-2600(15)00042-9..
DOI: 10.1016/S2213-2600(15)00042-9

Mukherjee M., Paramo F.A., Kjarsgaard M., Salter B., Nair G., LaVigne N. et al. Weight-adjusted intravenous reslizumab in severe asthma with inadequate response to fixed-dose subcutaneous mepolizumab. Am J Respir Crit Care Med. 2018;197(1):38–46. https://doi.org/10.1164/rccm.201707-1323OC..
DOI: 10.1164/rccm.201707-1323OC

Walsh G.M. Tralokinumab, an anti-IL-13 mAb for the potential treatment of asthma and COPD. Curr Opin Investig Drugs. 2010;11(11):1305–1312. Available at: https://pubmed.ncbi.nlm.nih.gov/21157650/.https://pubmed.ncbi.nlm.nih.gov/21157650/

Walsh G.M. Tralokinumab, an anti-IL-13 mAb for the potential treatment of asthma and COPD. Curr Opin Investig Drugs. 2010;11(11):1305–1312. Available at: https://pubmed.ncbi.nlm.nih.gov/21157650/.https://pubmed.ncbi.nlm.nih.gov/21157650/

May R.D., Monk P.D., Cohen E.S., Manuel D., Dempsey F., Davis N.H.E. et al. Preclinical development of CAT-354, an IL-13-neutralising antibody, for the treatment of severe uncontrolled asthma. Br J Pharmacol. 2012;166(1):177–193. https://doi.org/10.1111/j.1476-5381.2011.01659.x..
DOI: 10.1111/j.1476-5381.2011.01659.x

Piper E., Brightling C., Niven R., Oh C., Faggioni R., Poon K. et al. A phase II placebo-controlled study of tralokinumab in moderate-to-severe asthma. Eur Respir J. 2013;41(2):330–338. https://doi.org/10.1183/09031936.00223411..
DOI: 10.1183/09031936.00223411

Noonan M., Korenblat P., Mosesova S., Scheerens H. , Arron J.R., Zheng Y. et al. Dose-ranging study of lebrikizumab in asthmatic patients not receiving inhaled steroids. J Allergy Clin Immunol. 2013;132(3):567–574. https://doi.org/10.1016/j.jaci.2013.03.051..
DOI: 10.1016/j.jaci.2013.03.051

Diamant Z., Gauvreau G.M., Cockcroft D.W., Boulet L.P., Sterk P.J., de Jongh F.H.C. et al. Inhaled allergen bronchoprovocation tests. J Allergy Clin Immunol. 2013;132(5):1045–1055.e6. https://doi.org/10.1016/j.jaci.2013.08.023..
DOI: 10.1016/j.jaci.2013.08.023

Scheerens H., Arron J.R., Zheng Y., Erickson R.W., Choy D.F., Harris J.M. et al. The effects of lebrikizumab in patients with mild asthma following whole lung allergen challenge. Clin Exp Allergy. 2014;44(1):38–46. https://doi.org/10.1111/cea.12220..
DOI: 10.1111/cea.12220

Jiang H., Harris M.B., Rothman P. IL-4/IL-13 signalling beyond JAK/STAT. J Allergy Clin Immunol. 2000;105(6 Pt 1):1063–1070. https://doi.org/10.1067/mai.2000.107604..
DOI: 10.1067/mai.2000.107604

Liu Y., Zhang S., Li D.W., Jiang S.J. Efficacy of anti-interleukin-5 therapy with mepolizumab in patients with asthma: a meta-analysis of randomized placebo-controlled trials. PLoS ONE. 2013;8(3):e59872. https://doi.org/10.1371/journal.pone.0059872..
DOI: 10.1371/journal.pone.0059872

Parker J.M., Oh C.K., LaForce C., Miller S.D., Pearlman D.S., Le C. et al. Safety profile and clinical activity of multiple subcutaneous doses of MEDI-528, a humanized anti-interleukin-9 monoclonal antibody, in two randomized phase 2a studies in subjects with asthma. BMC Pulm Med. 2011;11:14. https://doi.org/10.1186/1471-2466-11-14..
DOI: 10.1186/1471-2466-11-14

Cheng G., Arima M., Honda K., Hirata H., Eda F., Yoshida N. et al. Antiinterleukin-9 antibody treatment inhibits airway inflammation and hyperreactivity in mouse asthma model. Am J Respir Crit Care Med. 2002;166(3):409–416. https://doi.org/10.1164/rccm.2105079..
DOI: 10.1164/rccm.2105079

Yang G., Li L., Volk A., Emmell E., Petley T., Giles-Komar J. et al. Therapeutic dosing with anti-interleukin-13 monoclonal antibody inhibits asthma progression in mice. J Pharmacol Exp Ther. 2005;313(1):8–15. https://doi.org/10.1124/jpet.104.076133..
DOI: 10.1124/jpet.104.076133

Singh D., Kane B., Molfino N.A., Faggioni R., Roskos L., Woodcock A. A phase 1 study evaluating the pharmacokinetics, safety and tolerability of repeat dosing with a human IL-13 antibody (CAT-354) in subjects with asthma. BMC Pulm Med. 2010;10:3. https://doi.org/10.1186/1471-2466-10-3..
DOI: 10.1186/1471-2466-10-3

Corren J., Lemanske R.F., Hanania N.A., Korenblat P.E., Parsey M.V., Arron J.R. et al. Lebrikizumab treatment in adults with asthma. N Engl J Med. 2011;365(12):1088–1098. https://doi.org/10.1056/NEJMoa1106469..
DOI: 10.1056/NEJMoa1106469

Laviolette M., Gossage D., Gauvreau G., Leigh R., Olivenstein R., Katial R. et al. Effects of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. J Allergy Clin Immunol. 2013;132(5):1086–1096. https://doi.org/10.1016/j.jaci.2013.05.020..
DOI: 10.1016/j.jaci.2013.05.020

Pérez de Llano L.A., Cosío B.G., Domingo C., Urrutia I., Bobolea I., Valero A. et al. Efficacy and safety of reslizumab in patients with severe asthma with inadequate response to omalizumab: A multicenter, open-label pilot study. J Allergy Clin Immunol Pract. 2019;7(7):2277–2283.e2. https://doi.org/10.1016/j.jaip.2019.01.017..
DOI: 10.1016/j.jaip.2019.01.017

Bleecker E.R., FitzGerald J.M., Chanez P., Papi A., Weinstein S.F., Barker P. et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting beta2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet. 2016;388(10056):2115–2127. https://doi.org/10.1016/S0140-6736(16)31324-1..
DOI: 10.1016/S0140-6736(16)31324-1

FitzGerald J.M., Bleecker E., Nair P., Korn S., Ohta K., Lommatzsch M. et al. Benralizumab, an anti-interleukin-5 receptor alpha monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2016;388(10056):2128–2141. https://doi.org/10.1016/S0140-6736(16)31322-8..
DOI: 10.1016/S0140-6736(16)31322-8

Parulekar A.D., Diamant Z., Hanania N.A. Role of biologics targeting type 2 airway inflammation in asthma: what have we learned so far? Curr Opin Pulm Med. 2017;23(1):3–11. https://doi.org/10.1097/MCP.0000000000000343..
DOI: 10.1097/MCP.0000000000000343

Menzies-Gow A., Ponnarambil S., Downie J., Bowen K., Hellqvist Å., Colice G. DESTINATION: a phase 3, multicentre, randomized, doubleblind, placebo-controlled, parallel-group trial to evaluate the longterm safety and tolerability of tezepelumab in adults and adolescents with severe, uncontrolled asthma. Respir Res. 2020;21(1):279. https://doi.org/10.1186/s12931-020-01541-7..
DOI: 10.1186/s12931-020-01541-7

Chung K.F., Wenzel S.E., Brozek J.L., Bush A., Castro M., Sterk P.J. et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43(2):343–373. https://doi.org/10.1183/09031936.00202013..
DOI: 10.1183/09031936.00202013

Дополнительная информация
Язык текста: Русский
ISSN: 2079-701X
Унифицированный идентификатор ресурса для цитирования: //medj.rucml.ru/journal/4e432d4d4544534f5645542d41525449434c452d323032322d31362d31382d302d32302d3238/