Ткачева О.Н., Яхно Н.Н., Незнанов Н.П, Левин О.С., Гусев Е.И., Мартынов М.Ю. и др. Когнитивные расстройства у лиц пожилого и старческого возраста: клинические рекомендации. 2020. 317 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/054/890/original/Клиничеa<ие_рекомендации_Когнитивные_расстройства_у_лиц_пожилого_и_старческого_возраста.pdf?1614860915.https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/054/890/original/Клиничеa<ие_рекомендации_Когнитивные_расстройства_у_лиц_пожилого_и_старческого_возраста.pdf?1614860915
Ткачева О.Н., Яхно Н.Н., Незнанов Н.П, Левин О.С., Гусев Е.И., Мартынов М.Ю. и др. Когнитивные расстройства у лиц пожилого и старческого возраста: клинические рекомендации. 2020. 317 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/054/890/original/Клиничеa<ие_рекомендации_Когнитивные_расстройства_у_лиц_пожилого_и_старческого_возраста.pdf?1614860915.https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/054/890/original/Клинические_рекомендации_Когнитивные_расстройства_у_лиц_пожилого_и_старческого_возраста.pdf?1614860915
Мхитарян Э.А., Чердак М.А. Возможности дифференциальной диагностики и лечения болезни Альцгеймера на стадии умеренного когнитивного расстройства. Эффективная фармакотерапия. 2020;16(23):22-28. Режим доступа: https://umedp.ru/upload/iblock/89d/Mhitaryan.pdf.https://umedp.ru/upload/iblock/89d/Mhitaryan.pdf
Мхитарян Э.А., Чердак М.А. Возможности дифференциальной диагностики и лечения болезни Альцгеймера на стадии умеренного когнитивного расстройства. Эффективная фармакотерапия. 2020;16(23):22-28. Режим доступа: https://umedp.ru/upload/iblock/89d/Mhitaryan.pdf.https://umedp.ru/upload/iblock/89d/Mhitaryan.pdf
Пилипович А.А. Мемантин в терапии когнитивных расстройств. Доктор Ру. 2017;8(137):50-58. Режим доступа: https://journaldoctor.ru/en/catalog/psikhiatriya/memantin-v-terap.https://journaldoctor.ru/en/catalog/psikhiatriya/memantin-v-terap
Пилипович А.А. Мемантин в терапии когнитивных расстройств. Доктор Ру. 2017;8(137):50-58. Режим доступа: https://journaldoctor.ru/en/catalog/psikhiatriya/memantin-v-terap.https://journaldoctor.ru/en/catalog/psikhiatriya/memantin-v-terap
Russ T.C., Morling J.R. Cholinesterase inhibitors for mild cognitive impairment. Cochrane Database Syst Rev. 2012.2(9):CD009132. https://doi.org/10.1002/14651858.CD009132.pub2..
DOI: 10.1002/14651858.CD009132.pub2
Raschetti R., Albanese E., Vanacore N., Maggini M. Cholinesterase inhibitors in mild cognitive impairment: A systematic review of randomised trials. PLoS Med . 2007;4(11): e338. https://doi.org/10.1371/journal.pmed.0040338..
DOI: 10.1371/journal.pmed.0040338
Khachaturian Z.S. Hypothesis on the regulation of cytosol calcium concentration and the aging brain. Neurobiol Aging. 1987;8:345-346. https://doi.org/10.1016/0197-4580(87)90073-x..
DOI: 10.1016/0197-4580(87)90073-x
Khachaturian Z.S. Calcium, membranes, aging, and Alzheimer's disease. Introduction and overview. Ann N YAcad Sci. 1989;568:1-4. https://doi.org/10.1111/j.1749-6632.1989.tb12485.x..
DOI: 10.1111/j.1749-6632.1989.tb12485.x
Landfield P.W., Pitler T.A. Prolonged Ca2+-dependent after hyperpolarizations in hippocampal neurons of aged rats. Science. 1984;226:1-4. https://doi.org/10.1126/science.6494926..
DOI: 10.1126/science.6494926
Landfield PW. Increased calcium current' hypothesis of brain aging. Neurobiol Aging. 1987;8:346-347. https://doi.org/10.1016/0197-4580(87)90074-1..
DOI: 10.1016/0197-4580(87)90074-1
Berridge MJ. Neuronal calcium signaling. Neuron. 1998;21(1):13-26. https://doi.org/10.1016/s0896-6273(00)80510-3..
DOI: 10.1016/s0896-6273(00)80510-3
Bezprozvanny I., Mark P. Mattson Neuronal calcium mishandling and the pathogenesis of Alzheimer's disease. Trends Neurosci. 2008;31(9):454-463. https://doi.org/0.1016/j.tins.2008.06.005..
DOI: 0.1016/j.tins.2008.06.005
Arispe N., Rojas E., Pollard H.B. Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by trometh-amine and aluminum. Proc Natl Acad Sci USA. 1993;90(2):567-571. https://doi.org/10.1073/pnas.90.2.567..
DOI: 10.1073/pnas.90.2.567
Ito E., Oka K., Etcheberrigaray R., Nelson TJ. Internal Ca2+ mobilization is altered in fibroblasts from patients with Alzheimer disease. Proc Natl Acad Sci USA. 1994;91(2):534-538. https://doi.org/10.1073/pnas.91.2.534..
DOI: 10.1073/pnas.91.2.534
Leissring M.A., Paul B.A., Parker I., Cotman C.W. Alzheimer's presenilin-1 mutation potentiates inositol 1,4,5-trisphosphate-mediated calcium signaling in Xenopus oocytes. J Neurochem. 1999;72(3):1061-1068. https://doi.org/10.1046/j.1471-4159.1999.0721061.x..
DOI: 10.1046/j.1471-4159.1999.0721061.x
Stutzmann G.E., Caccamo A., LaFerla F.M., Parker I. Dysregulated IP3 signaling in cortical neurons of knock-in mice expressing an Alzheimer's-linked mutation in presenilin1 results in exaggerated Ca2+ signals and altered membrane excitability. J Neurosci. 2004;24(2):508-513. https://doi.org/10.1523/JNEUROSCI.4386-03.2004..
DOI: 10.1523/JNEUROSCI.4386-03.2004
Stutzmann G.E., Smith I., Caccamo A., Oddo S. Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer's disease mice. J Neurosci. 2006;26(19):5180-5189. https://doi.org/10.1523/JNEUROSCI.0739-06.2006..
DOI: 10.1523/JNEUROSCI.0739-06.2006
Leissring M.A., Akbari Y., Fanger C.M., Cahalan M.D. Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J Cell Biol. 2000;149(4):793-798. https://doi.org/10.1083/jcb.149.4.793..
DOI: 10.1083/jcb.149.4.793
Yoo A.S., Cheng I., Chung S., Grenfell T.Z. Presenilin-mediated modulation of capacitative calcium entry. Neuron. 2000;27(3):561-572. https://doi.org/10.1016/s0896-6273(00)00066-0..
DOI: 10.1016/s0896-6273(00)00066-0
Nelson O., Tu H., Lei T., Bentahir M. Familial Alzheimer disease-linked mutations specifically disrupt Ca2 + leak function of presenilin 1. J Clin Invest. 2007;117(5):1230-1239. https://doi.org/10.1172/JCI30447..
DOI: 10.1172/JCI30447
Nelson O., Supnet C., Liu H., Bezprozvanny I. Familial Alzheimer's disease mutations in presenilins: effects on endoplasmic reticulum calcium homeostasis and correlation with clinical phenotypes. J Alzheimers Dis. 2010;21(3):781-793. https://doi.org/10.3233/JAD-2010-100159..
DOI: 10.3233/JAD-2010-100159
Zhang H., Sun S., Herreman A., De Strooper B. Role of presenilins in neuronal calcium homeostasis. J Neurosci. 2010;30(25):8566-8580. https://doi.org/10.1523/JNEUROSCI.1554-10.2010..
DOI: 10.1523/JNEUROSCI.1554-10.2010
Nelson O., Supnet C., Tolia A., Horre K. Mutagenesis mapping of the presenilin 1 calcium leak conductance pore. J Biol Chem. 2011;286(25):22339-22347. https://doi.org/10.1074/jbc.M111.243063..
DOI: 10.1074/jbc.M111.243063
Peterson C., Gibson G., Blass J. Altered calcium uptake in cultured skin fibroblasts from patients with Alzheimer's disease. N Engl J Med. 1985;312:1063-1065. https://doi.org/10.1056/NEJM198504183121618..
DOI: 10.1056/NEJM198504183121618
Попугаева Е.А., Власова О.Л., Безпрозванный И.Б. Роль внутриклеточного кальция в развитии патогенеза болезни Альцгеймера. Научно-технические ведомости СПбГПУ. Физико-математические науки. 2014;189(1):79-90. Режим доступа: https://physmath.spbstu.ru/userfiles/files/volume/ph_1_2014.pdf.https://physmath.spbstu.ru/userfiles/files/volume/ph_1_2014.pdf
Попугаева Е.А., Власова О.Л., Безпрозванный И.Б. Роль внутриклеточного кальция в развитии патогенеза болезни Альцгеймера. Научно-технические ведомости СПбГПУ. Физико-математические науки. 2014;189(1):79-90. Режим доступа: https://physmath.spbstu.ru/userfiles/files/volume/ph_1_2014.pdf.https://physmath.spbstu.ru/userfiles/files/volume/ph_1_2014.pdf
Cascella R., Cecchi C. Calcium Dyshomeostasis in Alzheimer's Disease Pathogenesis. Int J Mol Sci. 2021;22:4914. https://doi.org/10.3390/ijms22094914..
DOI: 10.3390/ijms22094914
Nanclares C., Baraibar A.M., Araque A., Kofuji P Dysregulation of Astrocyte-Neuronal Communication in Alzheimer's Disease. Int J Mol Sci. 2021;22:7887. https://doi.org/10.3390/ijms22157887..
DOI: 10.3390/ijms22157887
Tong B.C.-K., Wu AJ., Li M., Cheung K.-H. Calcium signaling in Alzheimer's disease & therapies. BBA Molecular Cell Research. 2018;1865:1745-1760. https://doi.org/10.1016/j.bbamcr.2018.07.018..
DOI: 10.1016/j.bbamcr.2018.07.018
Boeckel G.R., Ehrlich B.E. NCS-1 is a regulator of calcium signaling in health and disease. BBA Molecular Cell Research. 2018;1865:1660-1667. https://doi.org/10.1016/j.bbamcr.2018.05.005..
DOI: 10.1016/j.bbamcr.2018.05.005
Colbourne L., Harrison PJ. Brain-penetrant calcium channel blockers are associated with a reduced incidence of neuropsychiatric disorders. Mol Psychiatry. 2022;27(9):3904-3912. https://doi.org/10.1038/s41380-022-01615-6..
DOI: 10.1038/s41380-022-01615-6
Li J.-W., Ren S.-H., Ren J.-R., Zhen ZJ., Li L.R., Hao X.-D., Ji H.-M. Nimodipine Improves Cognitive Impairment After Subarachnoid Hemorrhage in Rats Through IncRNA NEAT1/miR-27a/MAPT Axis. Drug Design, Development and Therapy. 2020;14:2295-2306. https://doi.org/10.2147/DDDT.S248115..
DOI: 10.2147/DDDT.S248115
Biessels GJ., ter Laak M.P, Hamers F.P, Gispen W.H. Neuronal Ca2+ disreg-ulation in diabetes mellitus. Eur J Pharmacol. 2002;447(2-3):201-209. https://doi.org/10.1016/s0014-2999(02)01844-7..
DOI: 10.1016/s0014-2999(02)01844-7
Singhal K., Sandhir R. L-type calcium channel blocker ameliorates diabetic encephalopathy by modulating dysregulated calcium homeostasis. J Neurosci Res. 2015;93(2):296-308. https://doi.org/10.1002/jnr.23478..
DOI: 10.1002/jnr.23478
Есин Р.Г., Сафина Д.Р, Хакимова А.Р., Есин О.Р Нейровоспаление и невропатология. Журнал неврологии и психиатрии им. С.С. Корсакова. 2021;121(4):107-112. https://doi.org/10.17116/jnevro2021121041107..
DOI: 10.17116/jnevro2021121041107
Hopp S.C., D'Angelo H.M., Royer S.E., Kaercher R.M., Crockett A.M., Adzovic L., Wenk G.L.Calcium dysregulation via L-type voltage-dependent calcium channels and ryanodine receptors underlies memory deficits and synaptic dysfunction during chronic neuroinflammation. J Neuroinflammation. 2015;12:56. https://doi.org/10.1186/s12974-015-0262-3..
DOI: 10.1186/s12974-015-0262-3
Ghanbari-Maman A., Ghasemian-Roudsari F., Aliakbari S., Gholami Pourbadie H., Khodagholi F., Shaerzadeh F., Daftari M. Calcium Channel Blockade Ameliorates Endoplasmic Reticulum Stress in the Hippocampus Induced by Amyloidopathy in the Entorhinal Cortex. Iran J Pharm Res. 2019;18(3):1466-1476. https://doi.org/10.22037/ijpr.2019.111532.13216..
DOI: 10.22037/ijpr.2019.111532.13216
Hu M., Liu Z., Lv P, Wang H., Zhu Y.. Oi Q. et al. Nimodipine activates neuroprotective signaling events and inactivates autophages in the VCID rat hippocampus. Neurol Res. 2017;39(10):904-909. https://doi.org/10.1080/01616412.2017.1356157..
DOI: 10.1080/01616412.2017.1356157
Zhang Q., Li Y., Bao Y., Yin C., Xin X., Guo Y et al. Pretreatment with nimodipine reduces incidence of POCD by decreasing calcineurin mediated hippocampal neuroapoptosis in aged rats. BMC Anesthesiology. 2018;18:42. https://doi.org/10.1186/s12871-018-0501-0..
DOI: 10.1186/s12871-018-0501-0
Zhang Q., Tianbao Y., Yanan L., Xi X., Jinhua H., Qiujun W. Pre-treatment with nimodipine and 7.5[%] hypertonic saline protects aged rats against postoperative cognitive dysfunction via inhibiting hippocampal neuronal apoptosis. BehavBrain Res. 2017;15(321):1-7. https://doi.org/10.1016/j.bbr.2016.12.029..
DOI: 10.1016/j.bbr.2016.12.029
Wang S., Yang H., Zhang J., Zhang B., Liu T., Gan L., Zheng J. Efficacy and safety assessment of acupuncture and nimodipine to treat mild cognitive impairment after cerebral infarction: a randomized controlled trial. BMC Complement Altern Med. 2016;16(1):361. https://doi.org/10.1186/s12906-016-1337-0..
DOI: 10.1186/s12906-016-1337-0
Zhang J., Liu N., Yang C. Effects of rosuvastatin in combination with nimodipine in patients with mild cognitive impairment caused by cerebral small vessel disease. Panminerva Med. 2019;61(4):439-443. https://doi.org/10.23736/S0031-0808.18.03475-4..
DOI: 10.23736/S0031-0808.18.03475-4
Tong J., Li J., Zhang Q.-S., Yang J.-K., Zhang L., Liu H.-Y. et al. Delayed cognitive deficits can be alleviated by calcium antagonist nimodipine by downregulation of apoptosis following whole brain radiotherapy. Oncology Letters. 2018;16:2525-2532. https://doi.org/10.3892/ol.2018.8968..
DOI: 10.3892/ol.2018.8968
Li Y.-N., Zhang Q., Yin C.-P., Guo Y.-Y., Huo S.-P., Wang L., Wang Q.-J. Effects of nimodipine on postoperative delirium in elderly under general anesthesia. Medicine. 2017;96:19(e6849). http//doi.org/10.1097/MD.0000000000006849.
Moreno L.C.G.E.A.I., Solas M., Martinez-Oharriz M.C., Munoz E., Santos-Magalhaes N.S., Ramirez MJ., Irache J.M. Pegylated nanoparticles for the oral delivery of nimodipine: Pharmacokinetics and effect on the anxiety and cognition in mice. Int J Pharm. 2018;543(1-2):245-256. https://doi.org/10.1016/j.ijpharm.2018.03.048..
DOI: 10.1016/j.ijpharm.2018.03.048
Desai R.A.. Davies A.L., Rossi N.D., Tachrount M., Dyson A., Gustavson B. et al. Nimodipine Reduces Dysfunction and Demyelination in Models of Multiple Sclerosis. Ann Neurol. 2020;88:123-136. https://doi.org/10.1002/ana.25749..
DOI: 10.1002/ana.25749
Haile M., Galoyan S., Li Y.-S., Cohen B.H., Quartermain D., Blanck T., Bekker A. Nimodipine-Induced Hypotension but Not Nitroglycerin-Induced Hypotension Preserves Longand Short-Term Memory in Adult Mice. Anesth Analg. 2012;114(5):1034-1041. https://doi.org/10.1213/ANE.0b013e31824b2b05..
DOI: 10.1213/ANE.0b013e31824b2b05
Torrente F., Bustin J., Triskier F., Ajzenman N., Tomio A., Mastai R., Lopez Boo F. Effect of a Social Norm Email Feedback Program on the Unnecessary Prescription of Nimodipine in Ambulatory Care of Older Adults: A Randomized Clinical Trial. JAMA Netw Open. 2020;3(12):e2027082. https://doi.org/10.1001/jamanetworkopen.2020.27082..
DOI: 10.1001/jamanetworkopen.2020.27082